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ABSTRACT 

 

DEVELOPMENT OF HEURISTICS METHODS BASED ON GENETIC 

ALGORITHM FOR VEHICLE ROUTING PROBLEM (VRP) 

 

 

The Vehicle Routing Problem (VRP) is an important area and has been studied as 

combinatorial optimization problems.  VRP calls for the determination of the optimal set 

of routes to be performed by a fleet of vehicle to serve a given set of customers.  VRP in 

which demand at each location is unknown at the time when the route is designed but is 

follow a known probability distribution, is known as VRP with Stochastic Demands 

(VRPSD).  VRPSD finds its application on wide-range of distribution and logistics-

transportation sector with the objective is to serve a set of customers at minimum total 

expected cost.  One of the applications of VRPSD is in the case of picking up garbage 

done by solid waste collection company. 

The computational complexity of most vehicle routing problem and moreover the 

intricate of stochastic VRP algorithm has made them an important candidate for solution 

using metaheuristics.  This research proposes the enhanced metaheuristic algorithms that 

exploit the power of Tabu Search, Genetic Algorithm, and Simulated Annealing for 

solving VRPSD.  Genetic Algorithm as population-based methods are better identifying 

promising areas in the search space, while Tabu Search and Simulated Annealing as 

trajectory methods are better in exploring promising areas in search space.   

Simulated Annealing is a global optimization technique which traverses the 

search space by generating neighboring solutions of the current solution. A superior 

neighbor is always accepted and an inferior neighbor is accepted with some probability. 

 Tabu Search is similar to Simulated Annealing, in that both traverse the solution space 

by testing mutations of an individual solution.  However, simulated annealing generates 

only one mutated solution but Tabu Search generates many mutated solutions and moves 

to the solution with the lowest fitness of those generated.  Genetic Algorithm gives a pool 

of solutions rather than just one. The process of finding superior solutions mimics the 

evolution process, with solutions being combined or mutated to find out the pool of 



solutions.  This research explored and developed new heuristics based on GA for solving 

VRPSD.   New algorithms, journal papers and computerized system were also 

developed.  Future, area that may be explored include the used of Ant Colony 

Optimization (ACO) which exploits the nature phenomenon of ants.  Based on the 

proposed heuristic method, we developed a program to optimize the routing problem 

using the Visual Studio C++ 6.0 programming language. 
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ABSTRAK 

 

PEMBANGUNAN KAEDAH HEURISTIK BERASASKAN KAEDAH 

GENETIC ALGORITMA (GA) UNTUK MASALAH PERJALANAN 

KENDERAAN (VRP). 
 

 

Masalah Perjalanan Kenderaan (VRP) adalah satu ruang yang penting 

untuk dikaji sebagai salah satu daripada gabungan masalah pengoptimaan. 

VRP juga dikenali sebagai pencarian suatu set optimum kepada perjalaan 

kenderaan untuk mewakili atau di anggap sebagai satu set pelanggan.  VRP 

untuk setiap permintaan dan disetiap lokasi adalah satu anu yang tidak 

diketahui ketika perjalanan dibentuk, akan tetapi ianya akan mengikut setiap 

taburan kebarangkalian yang diketahuinya, dan  ini juga dikenali sebagai VRP 

bersama permintaan Stokastik (VRPSD).   Aplikasi VRPSD ditemui dalam suatu 

ruang kebarangkalian yang luas dan sektor pengangkutan logistik bersama 

objektifnya yang tersendiri iaitu untuk menghasilkan set pelanggan pada kadar 

minimum. Salah satu daripada aplikasi VRPSD adalah daripada kes untuk 

mengangkut bahan buangan pepejal yang telah dilakukan oleh syarikat 

pengangkutan bahan buangan pepejal. 

Kompleks Pengkomputeran adalah masalah system pengangkutan 

kenderaan yang lebih kompleks kepada algoritma stokastik. VRP telah 

membuatkan ianya sebagai satu cara yang penting untuk penyelesaian 

masalah menggunakan kaedah metaheuristik. Kajian ini bertujuan untuk 

memberi penekanan yang lebih mendalam kepada kaedah metaheuristik yang 

membentuk kaedah lain, seperti Tabu Search, Genetic Algorithm, dan Simulated 

Annealing untuk menyelesaikan masalah VRPSD.  Algoritma Genetic adalah 

kaedah populasi asalan sebagai suatu kaedah yang baik dalam mencari identiti 

di ruang carian, akan tetapi Tabu Search dan Simulated Annealing adalah 

kesinambungan yang lebih baik di ruang carian.   

Simulated Annealing adalah teknik optimum global yang telah 

melangkaui ruang carian dengan menghasilkan kebanyakan penyelesaian 

untuk masalah berjiran. Suatu set berjiran yang matang dan jiran yang 



berdekatan akan sentiasa diterima dengan apa sahaja kemungkinan.  Tabu 

Search mempunyai ciri-ciri yang sama seperti Simulated Annealing, kedua-

duanya menguasai penyelesaian ruang untuk pencubaan mutasi daripada 

masalah  individu. Walaubagaimanapun, simulated annealing menghasilkan 

hanya satu penyelesaian mutasi, manakala tabu search menghasilkan lebih 

daripada satu masalah mutasi, dan membentuk penyelessaian tersebut kepada 

bentuk penghasilan yang terbaik.  Genetic Algorithm memberi lebih daripada 

satu penyelesain, malah satu koleksi kumpulan penyelesaian. Evolusi proses, 

iaitu suatu proses mencari ajukan kepada superior solutions bersama 

penyelesaiannya, telah dikombinasikan atau dimutasikan, untuk mencari satu 

kumpulan penyelesaian. Kajian ini diselidik dan telah membentuk satu kaedah 

baru untuk heuristics yang berasaskan GA bagi menyelesaikan masalah 

VRPSD.   Algoritma-algoritma baru, akhbar jurnal dan sistem perkomputeran 

juga telah dihasilkan. Tambahan lagi, bahagian yang dikaji juga bersangkutan 

dengan kaedah yang digunkan untuk Ant Colony Optimization (ACO) yang telah 

dibentuk mengikut fenomena semut.  Merujuk kepada tujuan kaedah heuristic, 

dengan ini kami membentuk suatu program untuk mengoptimumkan masalah 

perjalanan dengan menggunakan Visual Studio C++ 6.0 programming.  
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SUMMARY 

The Vehicle Routing Problem (VRP) is an important area and has been 

studied as combinatorial optimization problems.  VRP calls for the determination of 

the optimal set of routes to be performed by a fleet of vehicle to serve a given set of 

customers.  VRP in which demand at each location is unknown at the time when the 

route is designed but is follow a known probability distribution, is known as VRP 

with Stochastic Demands (VRPSD).  VRPSD finds its application on wide-range of 

distribution and logistics-transportation sector with the objective is to serve a set of 

customers at minimum total expected cost.  One of the applications of VRPSD is in 

the case of picking up garbage done by solid waste collection company. 

The computational complexity of most vehicle routing problem and moreover 

the intricate of stochastic VRP algorithm has made them an important candidate for 

solution using metaheuristics.  This research proposes the enhanced metaheuristic 

algorithms that exploit the power of Tabu Search, Genetic Algorithm, and Simulated 

Annealing for solving VRPSD.  Genetic Algorithm as population-based methods are 

better identifying promising areas in the search space, while Tabu Search and 

Simulated Annealing as trajectory methods are better in exploring promising areas in 

search space.   

Simulated Annealing is a global optimization technique which traverses the 

search space by generating neighboring solutions of the current solution. A superior 

neighbor is always accepted and an inferior neighbor is accepted with some 

probability.  Tabu Search is similar to Simulated Annealing, in that both traverse the 

solution space by testing mutations of an individual solution.  However, simulated 

annealing generates only one mutated solution but tabu search generates many 

mutated solutions and moves to the solution with the lowest fitness of those 

generated.  Genetic Algorithm gives a pool of solutions rather than just one. The 

process of finding superior solutions mimics the evolution process, with solutions 

being combined or mutated to find out the pool of solutions.  This research explored 

and developed new heuristics based on GA for solving VRPSD.   New algorithms, 

journal papers and computerized system were also developed.  Future, area that may 

be explored include the used of Ant Colony Optimization (ACO) which exploits the 

nature phenomenon of ants.  Based on the proposed heuristic method, we developed 

a program to optimize the routing problem using the Visual Studio C++ 6.0 

programming language. 
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CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

 

 

1.1 Introduction 

 

Optimization is a part of life.  In our day to day lives, we make decisions that 

we believe can maximize or minimize our objectives, such as taking a shortcut to 

minimize the time or distance required to reach a particular destination, or finding a 

lowest priced items in the supermarket.  Most of these decisions are based on our 

years of experience and knowledge about the system without resorting to any 

systematic mathematical formulation.  However, as the system becomes more 

complicated, further it is needed to formulate it into specific mathematical model, 

and with the advent of computer it is possible to exploit optimization theories to their 

maximum extent. 

   

Combinatorial optimization is a branch of optimization that arises everywhere 

and certainly in applied mathematics and computer science, related to operations 

research, algorithm theory and computational complexity theory that sit at the 

intersection of several fields, including artificial intelligence, mathematics and 

software engineering.  Combinatorial optimization algorithms solve problem 

instances that are believed to be hard in general, by exploring the usually large 

solution space of these instances.  Combinatorial optimization algorithms achieve 

this by reducing the effective size of the space and by exploring the space efficiently.  
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The Vehicle Routing Problems (VRP), Traveling Salesman Problem (TSP), 

minimum spanning tree problem and knapsack problem are example problems of 

combinatorial optimization.   

 

Since late fifties, the Vehicle Routing Problem (VRP) has been and remains a 

rich topic for researchers and practitioners.  It becomes an area of importance to 

operations research as well as its use for real world applications.  An integral 

component of logistics is transportation, and a frequently arising situation in the 

transportation and distribution of commodities has usually been modeled as a 

Vehicle Routing Problem (VRP).  Usually real world VRP arises with many site 

constraints.  VRP is a generalized problem of the Traveling Salesman Problem (TSP) 

in that the VRP consists in determining m vehicle, where a route is tour that begins at 

the depot.  The task is to visit a set of customer in a given order and returns to the 

depot.  All customers must be visited exactly once and the total customer demand of 

a route must not exceed the vehicle capacity.  Given a set of geographically dispersed 

customers, each showing a positive demand for a given commodity, the VRP 

consists of finding a set of tours of minimum length (or cost) for a fleet of vehicles.   

 

The majority of these researches conducted on operations research are focus 

on static and deterministic cases of vehicle routing in which all information is 

determined before the time of planning of the routes.  Whereas in this ICT age, 

information is gathered in real time and in many cases they are changing.  The 

complexity of the problem increases as more information is unavailable at the time of 

the planning or when the service has begun such as the time to begin service, the 

location, actual demand.  In some service industries, it allow for customers to request 

for service within a short period of time and such request has increase the dynamism 

and complexity of the problem.   

 

In most real life application, stochastic or dynamic information occurs 

parallel to the routes being carried out.  Many of the vehicle routing problems have 

inherent randomness, which is not considered in deterministic models, probably 

travel times or demands are random variables with known distributions.  The work 

by Tillman (1969) was the first that has brought us to explore cases on VRP with 

stochastic demands.  Since that, many theories and algorithms on VRPSD have been 
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proposed and or developed.  In this thesis, we interest in studying variables as 

stochastic part.  This chapter presents the flow of the research proposal and it begins 

with the background and problem statement of the research.  It is important that an 

extensive work has been carried out in order to present a case for this work and this 

is given in Chapter 2.  Research objectives, the scope of this study and discussion on 

the research contribution are also given.  Finally, the brief of each chapter is outlined. 

 

 

  

1.2 Background of the problem 

 

The classical VRP models usually do not capture an important aspect of real 

life transportation and distribution-logistic problems, namely fact that several of the 

problem parameters (demand, time, distance, city location, etc) are often stochastic.  

Most existing VRP models oversimplify the actual system by assuming system 

parameter (e.g. customer demands) as deterministic value, although in real 

application, it may not be possible to know all information about customers before 

designing routes.  Stochastic information occurs and has major impact on how the 

problem is formulated and how the solution is implemented.  As compared to the 

development in deterministic case, research in Stochastic VRP is rather undeveloped.   

 

This study considers an important variation of VRP that is VRP with 

Stochastic Demands (VRPSD) in which demand at each location is unknown at the 

time when the route is designed, but is follow a known probability distribution.  This 

situation arises in practice when whenever a company, on any given day, is faced 

with the problem of collection/ deliveries from or to a set of customers, each has a 

random demand.  In this study, we deal with specific case at solid waste collection.  

It is hoped that optimization can take into account the stochasticity of the problem in 

obtaining better routes or reducing cost.   

 

In stochastic environment, due to its randomness in customers’ demands, a 

vehicle capacity may be exceeded during service.  A route failure is said to occur if 

the demand exceeds capacity and a recourse action needs to be taken.  Assuming that 

enough capacity is available at the depot, the vehicle may return to the depot, 
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replenish its load, and then resume service at the point where failure occurred.  

Therefore the vehicle will always be able to satisfy all demands, and the length of the 

corresponding tour becomes a random quantity.  The recourse action could be the 

vehicle resumes service along the planned route, namely a priori approach 

(Bertsimas et al., 1990), or visiting the remaining customers possibly in an order that 

differs from the planned sequence that is called re-optimization approach (Dror et al, 

1989). 

 

Tillman (1969) was the first to propose algorithm for the VRPSD in the case 

where there were multiple terminal deliveries and multiple vehicles.  Since then, 

many researchers have studied this problem in two frameworks, namely the chance 

constrained and stochastic with recourse.  In the chance constrained VRPSD, the 

problem is to design a number of vehicle routes of least distance traveled, subject to 

constraint that the probability of route failure on any route is within an allowable 

limit.  In contrast, VRPSD with recourse try to minimize the total expected cost (or 

distance), including the cost of travel as well as the cost of recourse action when a 

route failure occurs.  The VRPSD with recourse is considerably more difficult than 

chance constrained VRPSD (Yang et al., 2000).  

 

Various formulations and algorithms have been proposed and investigated, 

including the properties and solution frameworks of VRPSD studied by                 

Dror et al. (1989), Bertsimas (1992) who proposed cyclic heuristic and found a priori 

solution for single vehicle and Dror et al. (1993) who have examined a priori VRPSD 

in the context of Stochastic Programming where there is only one vehicle and the 

number of potential failures is small.  Yang’s thesis (1996) developed optimal 

restocking policy in conjunction with routing decisions for a priori VRPSD for single 

and multiple vehicles.  Secomandi (2001) considered re-optimization-type routing 

policy by means of rollout policy for single vehicle.  Chepuri and Homem-de-Mello 

(2005) proposed a new heuristic method based on the Cross-Entropy method for 

single vehicle.   

 

Bianchi et al. (2005) considered basic implementation of five metaheuristics 

for single vehicle: Iterated Local Search, Tabu Search, Simulated Annealing, Ant 

Colony Optimization and Evolutionary Algorithm (Genetic Algorithm) that found 
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better solution quality in respect to cyclic heuristic.  Instead of the work of Bianchi et 

al. (2005) and Gendreau et al. (1995), the work on the application of GA, TS and 

ACO for VRPSD are lacking in the literature,  although it is widely known that GA 

has been proven effective and successful in a wide variety of combinatorial 

optimization problems, including certain types of VRP, especially where time 

windows are included and in TSP, and as known also that Tabu Search, the approach 

that dominates the list of successful algorithms that is a robust, efficient and effective 

approach to the general VRP family of problem (Laporte 1992, Osman 1993) and 

Tabu Search often outperforms other heuristic techniques in terms of computational 

speed and solution quality (Osman, 1993).   

 

The number of published work on the application of GA for solving basic 

VRP, TSP, VRPTW, VRPB, and multi depot VRP has been growing.  Different 

approaches were also proposed based on different crossover operator, different 

mutation operator, or replacement methods.  In 2005, the work of Bianchi et al. 

results that the performance of GA and TS seem to be not significantly different, due 

to the fact that these algorithms find solutions values which are not very different to 

each other.  Based on previous research on algorithm developed for VRPSD and the 

knowledge of the basic structure of GA and TS, in this study we develop a TS and 

GA for single VRPSD in the next chapter.  

 

Although pure GA performs well, mostly it does not equal Tabu Search        

in terms of solution quality, sometimes pure GA perform inefficient on practical 

combinatorial optimization.  To improve pure GA performance, some algorithms are 

combined with the simple GA, yielding a hybrid algorithm.  The statement about GA 

hybridization is noted by Coley (1999) that hybrid algorithms, which combine a GA 

with more traditional algorithms, have been hinted as a highly powerful combination 

for solving practical problem, also by Lacomme et al. (2005) that it is well known 

that a standard GA must be hybridized with another search procedure to be able to 

compete with metaheuristics like Tabu Search.  Baker and Ayechew (2003) showed 

that hybrid GA with neighbourhood search in the basic VRP is competitive with tabu 

search and simulated annealing in terms of solution time and quality.  Hybrid 

Genetic Algorithms also have widespread application to VRPTW, including the work 
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of Blanton and Wainwright (1993), Thangiah (1995a and 1995b), Berger et al. 

(1998) and Braysy et al. (2000).   

 

In this study, several metaheuristics were developed for solving VRPSD, 

including GA, TS and ACS.  As known, GA and ACS as population-based methods 

are better in identifying promising areas in the search space, whereas TS as trajectory 

methods are better in exploring promising areas in search space. 

 

 

 

1.3 Problem Statement of Research 

 

The VRPSD is defined on a complete graph G = (V, A, C), where  

V =   {0, 1,…, n} is a set of nodes with node 0 denotes the depot and nodes 1, 2, …, 

n correspond to the customers, 

A =    },,:),{( jiVjiji ≠∈  is the set of arcs joining the nodes,  

and a non-negative matrix  

C  =  ( },,: jiVjicij ≠∈ ) denotes the travel cost (distance) between node i and j. 

The cost matrix C is symmetric and satisfies the triangular inequality. Customers 

have stochastic demands iξ , i = 1,…, n, which are a non-negative discrete random 

variable with known probability distribution )(Pr k
iik obp ξξ ==  , k = 0, 1,…, K ≤ 

Q. Assume further that customers’ demands are independent and identical. Actual 

demand is only known after the vehicle arrives at customer’s location. If there is a 

route failure at any node, the recourse action has to be made, the recourse action is 

travels back to the depot for replenish and then to resume its journey as planned at 

the node where failure occurred. 

 

A stochastic vehicle routing problem arises when not all information relevant 

to the planning of the routes is known by the planner when the routing process begins 

and information can change after the initial routes have been constructed.  

Algorithms for stochastic VRP are considerably more intricate than deterministic and 

it calls for efficient algorithm that is able to work in real-time since the immediate 
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requests should be served.  These have made them an important candidate for 

solution using metaheuristics.   

 

This research tries to propose new metaheuristic algorithm based on hybrid 

Genetic Algorithm with Tabu Search to solve VRPSD.  In this work, we initially 

consider a single-vehicle model and later expand our analysis to incorporate multiple 

homogeneous and heterogeneous vehicles.  In the hybrid GA, Tabu Search is used as 

mutation operator.  The performance of this algorithm will be compared with other 

heuristics/ metaheuristics and implementation of this algorithm also will be done to 

solve real problem in optimizing solid waste collection.   

 

 

 

1.4 Objectives of the Study 

 

The aim of this study is to develop various approaches to optimize VRPSD 

solution, particularly in the use of metaheuristics approach.  The objectives of this 

study are to:  

a. develop metaheuristics for solving single VRPSD that include: 

1. Tabu Search 

2. Genetic Algorithm 

3. Ant Colony Optimization 

4. Simulated Annealing 

b. conduct comparative evaluation on the performance of the above 

metaheuristics. 

c. implement the VRPSD models for solving real problem data in optimizing 

solid waste collection. 

 

 

 

1.5 Scope of the Study 

 

In this research, we confine the application of our algorithm to randomly 

generated problem following some discrete probability distributions for the 
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performance testing, and also implementing the algorithm to solve real problem data 

in optimizing solid waste collection.   

 

The scope of this study can be summarized as follows: 

1. It is assumed that vehicles are start and end at a single depot.   

2. It is also assumed that a customer demand can not be split between vehicles, 

and that the demand is to be fully satisfied.   

3. The recourse action to be taken is a priori approach. 

4. The problem data were generated and tested using Minitab 14 and SPSS 13, 

while the implementation of metaheuristics was done using Delphi 7.0. 

 

 

 

1.6 Significance of the Study 

 

From the view point of VRP, our algorithm is the first implementation of 

hybrid GA (especially hybrid GA with Tabu Search) approach to the VRPSD 

appeared in the literature.  From application aspect, in addition to solve real problem 

in optimizing waste collection using the proposed algorithm, we also develop 

software package for solving VRPSD.  And the result of this study will be presented 

and published at the international publications/ journal. 

  

Along the recent increase in the demand for an efficient management system 

for VRP and logistics and the advances in computer and information technology, the 

importance of being able to effectively make use of the huge amount of on-line 

information and it has become important for a wide range of applications.  Cost 

efficient routing of vehicles play an important role to a wide range of industries.  As 

indicated earlier, our focus would be to work on the problem related to VRP for solid 

waste collection in Johor Bahru. 
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1.7 Thesis Proposal Layout 

 

This thesis proposal contains eight chapters.  The first chapter is the 

introduction.  This chapter gives an introduction to the background of the problem, 

the statement of the problem, objectives and scope of the study, and significance of 

the study.  Chapter two is the Literature Review.  This chapter presents a literature 

review about the Vehicle Routing Problem with Stochastic Demands, solution 

techniques appeared in literature and also techniques which may be applied for 

solving VRPSD.  Chapter three, the Research Methodology, presents the direction of 

the study and an overview of the methods used.   

 

Chapter four explores the development of heuristic method based on Tabu 

Search for solving single VRPSD.  The discussion of this chapter begins with the 

detail development of TS for single VRPSD, followed by the experimental results 

and discussion.  Chapter five explores the dynamism of Genetic Algorithm in solving 

the VRPSD.  Chapter six provides the introduction and applications of Programming 

with Microsoft Visual Studio C++ 6.0 using Ant Colony System (ACS) and 

Simulated Annealing (SA).  Chapter seven discusses the comparison between ACS 

and SA.  The last chapter, Chapter eight, is Conclusion and Recommendations for 

further research.    
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CHAPTER 2 

 

 

 

 

REVIEW OF THE LITERATURE 

 

 

 

 

2.1 Introduction 

 

The process of solving Vehicle Routing Problem (VRP) takes place again and 

again in many business operations.  This has led many researchers in this field to 

develop solution techniques to generate an optimal solution for solving VRP which 

may also be applied to other variant of VRPs.  This research as indicated in the 

previous chapter focuses on developing solution methods for solving VRP with 

Stochastic Demands (VRPSD).  This chapter commences with the description of the 

VRPSD, the preview on the solution frameworks, and mathematical model of 

VRPSD fully with previous works on VRPSD.  These are followed by a discussion 

on issues related to the use of heuristic methods, the basic concept of metaheuristics 

and hybrid metaheuristcs relevant to this study, and some criteria for classification of 

metaheuristics.  Finally, the last section of this chapter discusses the taxonomy of 

hybrid metaheuristics.  
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2.2 Vehicle Routing Problem with Stochastic Demands (VRPSD) 

 

VRP and its variants are at the core of many industrial applications in 

transportation logistics.  In this study a variant of VRP is studied, where customer 

demands are not deterministically known but unknown until the time when the 

vehicle arrives at the customer location.  To deal with this problem, the VRP is 

extended to cover the more realistic case of uncertainty in customer demands by 

using VRP with Stochastic Demands model.  The customer demands are unknown 

but assumed to follow specific probability distribution according to the past 

experience about customer demands. 

 

 

   

2.2.1 Real World Applications 

 

The VRPSD finds its applications in all those cases where it is impossible to 

know the demand of the customers before the vehicles arrive at customer’s location. 

The pick up of garbage is one of them.  It is of course impossible to know a priori 

how much garbage has to be collected at each customer location. It is possible that 

the total quantity of garbage could exceed the vehicle capacity.  In such situation, the 

vehicle needs to go to the depot to replenish and then resume its route.  

 

The delivery of petrol stations is another case subject to the stochasticity of 

demand. When customer issues the order, it is still unknown how much he will sell in 

the time between the order and the new delivery.  Another related application is in 

the cash replenishment of automatic teller machines of a bank.  The daily demand for 

cash at a specific machine is a random variable, while the maximum amount of cash 

that might be carried by a vehicle at any time is specified by a security policy.  Not 

all machines may be able to be supplied on a route from its designated vehicle, 

forcing a decision to be made as to how to supply the machines when restocking 

demand may exceed vehicle capacity. 

 

According to Yang et al. (2000), VRPSD also can appear in case of 

salespersons on peddle routes, salesperson stock their trucks with goods that they 
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anticipate can be sold on the route.  Visits are made to predetermined customer sites 

with the intent of replacing depleted stock.  Because there is no advanced reporting 

of the current inventory level or the size of a replenishment order, the amount to be 

sold is not known until the site is visited.  Examples of such peddle routes are (1) 

beer distribution to retail outlets, (2) supply of baked goods at food stores, (3) 

replenishment of liquid gas at research laboratories, and (4) stocking of vending 

machines.   

 

 

 

2.2.2 Solution Frameworks for VRPSD 

 

Dror et al. (1989) mentioned that there are two solution frameworks for 

Stochastic VRP (including VRPSD), namely stochastic programming and Markov 

decision process.   

 

 

 

2.2.2.1 Stochastic Programming 

 

By a mathematical programming problem, we usually understand a problem 

of the type 

Minimize )(xfZ MP =   

subject to: 0)( ≤xgi , (i = 0, 1, …, m), 

nRSx ⊆∈ , 

0≥x  

where the real functions f, ig (i = 0, 1, …, m) are assumed to be deterministic and 

known. 

In general, the stochastic programming is mathematical programming where 

one or more parameters are random variables.  Such cases seem typical of real-life 

problems, where it may be difficult to determine the values of the parameters with 

certainty.  The stochastic programming can be described as 

Minimize ),( ξxfZ SP =  
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subject to:  0),( ≤ξxgi , (i = 0, 1, …, m) 

nRSx ⊆∈ , 

0≥x . 

where ξ  is a vector of random variables defined on a probability space ),,( ΡΣΩ , 

hence ( ),( ξxf , ),( ξxgi , i = 0, 1, …, m) is a random vector. 

 

 Stochastic programming terminology distinguishes between “wait and see” 

and “here and now” situations.  The SVRP more naturally belongs to the “here and 

now” category since usually routes have to be planned in anticipation of customer 

demands which become only known only in the process of executing the planned 

routing sequence.  Again, the problems in this category are usually modeled in two 

ways: so-called chance constrained stochastic programming and stochastic 

programming with recourse.  (Dror et al., 1989) 

 

(i) Chance constrained programming 

Minimize )],([ ξxfEZ iCPP =  

subject to: Sx∈  

αξξ −≥≤ 1)0),(( xgP i , i = 0, 1, …, m 

or  ii xgP αξξ −≥≤ 1)0),(( , i = 0, 1, …, m 

 

 The name “chance constrained” follows from the fact that each constraint is 

realized with a minimum probability of iα−1 , 10 << iα  (Taha, 2003).  Laporte et 

al. (1989) in Dror et al. (1989) define two-index variables ijx  instead of three-index 

variables ijkx , but their model cannot take into account heterogeneous vehicle 

capacities.  Let ijx  be a binary variable equal to 1 if and only if a vehicle travels on 

arc (i,j).  Also let m be the number of vehicles available, mT  is the set of all feasible 

solutions to the m-TSP and α  is the maximum allowable probability of route failure.  

Then the Laporte et al. model (called CCP1), adapted to the case of general distance 

matrices, can be written as 

 Minimize ∑=
ji

ijijCCP xcZ
,

1  
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subject to  ∑
∉∈

≥
SjSi

ij SVx
,

)(α , )2};,...,1{( ≥⊆ SnS  

  mij Txx ∈= )(  

 

 Here )(SVα  is the minimum number of vehicles required to serve all 

customers of S so that the probability of route failure in S does not exceedα , i.e., 

)(SVα  is the smallest integer such that ∑
∈

≤>
Si

i SQVP )))(( αξ α .  The value of )(SVα  

is easily determined provided the probability distribution of ∑
∈Si

iξ  is known or even 

approximated for any non-empty subset S of {1, …, n}. 

 

(ii) Stochastic Programming with Recourse 

Minimize )],(),([ ξφξ xxfEZ iSPR +=  

subject to: Sx∈  

where ),( ξφ x   is some non-negative real function )),(( ξxgH i  taking the value 0 if 

( ),( ξxgi ≤  0).  This expresses the fact that if all the constraints are satisfied, then we 

are concerned with the value of the objective function f only, but when a constraints 

violation occurs, we have to add a penalty to the objective function.  In the SVRP, 

),( ξφ x  correspond to the cost of corrective or recourse actions.  (Dror et al., 1989) 

 

 Laporte and Loveaux (1989) in Dror et al. (1989) propose a stochastic models 

with recourse with full service (i.e., no split deliveries) is assumed and two cases are 

considered:  

1. The SVRP with early information: all customer demands are known after 

the route is constructed but before the vehicle leaves the depot and route 

breaks are planned in advance so as to minimize their expected cost;  

2. The SVRP with late information: breaks and failures coincide.   

In both cases, it is assumed that the planned routing sequence is unaltered by 

failures or breaks.  The two models differ only in their recourse function.  The 

general model (called SPR1) given as 

Minimize  )],([1 ξφ xEcxZ iSPR +=  

subject to  mTx∈  
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where ),( ξφ x  is the recourse function.  

For a more detailed analysis we refer to the original paper since the explicit recourse 

representation is quite complicated. 

 

 

 

2.2.2.2 A Markov Decision Process Model 

 

Consider a SVRP with a single vehicle of fixed capacity Q located at the 

depot with the assumption that no customer demand exceeds Q.  In addition, assume 

that the exact demand becomes known immediately upon arrival at the customer 

location (i.e., before replenishment begins).  Upon the arrival at a customer location, 

two possible actions can be taken prior to the start of service: 

(i) not to replenish the customer and then move to another location (which could 

be another customer or the depot), 

(ii) to replenish the customer and then move to another location. 

 

Dror et al. (1989) assumed a non preemptive service policy which implies 

that if customer service (replenishment) has started, it is not interrupt until either the 

customer is fully replenished or the vehicle is empty, in which case the only option is 

to return to the depot.  When there are no more customers to be replenished, then 

again the only option is to return to the depot.  This is the final state of the system.  

The initial state is condition that there is a full vehicle at the depot with all n 

customers to be serviced. 

 

The system is observed each time the vehicle arrives at one of the locations of 

{0, 1, …, n}.  Let 1210 ,...(,,0 +≤= ii τττττ ; i = 0, 1, …) be the times (cumulative 

distance traveled by the vehicle) at which these events occur.  Note that iτ  

corresponds to the time of the ith arrival which is not necessarily an arrival time at 

location i.  These are called transition times and correspond to the times at which 

decisions are taken.  The state of the system at a transition time kτ  is described by a 

vector ),...,,,( 1 nxxlrs = , where r ∈ {0, 1, …, n} denotes the position of the vehicle 

and l ∈ [0,Q] describes the stock level in the vehicle (if r = 0 the l =Q i.e., the 
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vehicle is full).  If customer i has been visited, then the exact demand is known and xi 

represents the remaining demand (xi ≥0).  If customer I has not yet been visited, then 

the demand is unknown and is denoted by xi = -1.  The state space is a subset S of 

{0, 1, …, n} ×  [0, Q] ×  nQ]),0[}1({ ∪−  which satisfies the above conditions.   

 

At each transition time, a decision d is selected from the decision space 

},...,1,0{},{ 21 nddD ×=  where ),( 1 idd =  means that the vehicle goes to the 

customer i from its present location, say j, without servicing j and ),( 2 idd =  

corresponds to the case where the vehicle first replenishes j before going to i.  The 

decision )0(),,( ≠⋅= iid  is admissible even if l = 0, which represents the value of 

collecting the information on the demand at i without being able to satisfy any part of 

that demand.  If xi = 0 for all I, then the only admissible action is )0,( 1dd =  i.e., 

returning to the depot.  For each Ss∈ , let DsD ⊂)( denote the set of admissible 

decisions when the system is in state s, and )}(),{( sDdds ∈=τ  the set of 

admissible state-decision pairs. 

 

At transition time kτ , the system is in some state Ssk ∈  and a decision 

)( kk sDd ∈  is taken.  The time 1+kτ  of the next transition is deterministic (specified 

by the distance matrix C), and the next state 1+ks  is generated according to the 

probability distribution which governs the demand variables.  Suppose 

Sxxlrs nk k
∈= ),...,,,( 1τ  is the observed state at the current transition time kτ , and 

)(),( * sDidd ∈=  is the decision taken, where },{ 21* ddd ∈ .  Then the time 

(distance) until the next event is simply the difference irkk k
c ,1 τ

ττ =−+   where 
k

rτ is 

the location of the vehicle at transition time kτ  (we implicitly assume that service 

time is zero).  Let ),( dsp ⋅  be the transition law, i.e., for every Borel subset S  of S, 

),( dsSp  is the probability that the next state belongs to S , given s and d. 

 

A control policy is a function µ  which associates with each state Ss∈  a 

decision )()( sDsd ∈= µ .  The aim of the decision maker is to find a policy which 

minimizes the expected cost of a decision sequence, starting at )1,...,1,,0(0 −−= Qs  
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and terminating at )0,...,0,,0(* Qs = .  More precisely, one seeks a policy *µ  which 

minimizes ∑
=

+

T

k
rr kk

cE
0

, ][
1ττµ  where T is the random number of transitions.                     

(Dror et al., 1989) 

 

 

 

2.2.3 Mathematical Formulation of Single VRPSD 

 

VRPSD is a variant of VRP with the goal is to find a vehicle route and a 

restocking policy at each node (a threshold) that minimizes the total expected cost.  

The costs under consideration are: 

- Cost of traveling from one customer to another as planned. 

- Restocking cost: the cost of traveling back to the depot for restocking. 

- The cost of returning to depot for restocking caused by the remaining stock in the 

vehicle being insufficient to satisfy demand upon arrival at a customer location. 

This route-failure cost is a fixed nonnegative cost b plus a cost of traveling to the 

depot and back to the route.    

   

Let 0 → 1 → 2 … j → j+1 … → n be a particular vehicle route. Upon the 

service completion at customer j, suppose the vehicle has a remaining load q (or the 

residual capacity of the vehicle after having serviced customer j), and let )(qf j  

denote the total expected cost from node j onward. If jS  represents the set of all 

possible loads that a vehicle can have after service completion at customer j, then, 

)(qf j  for q ∈ jS  satisfies  

,
)(
)(

min)(
⎪⎩

⎪
⎨
⎧

=
qf
qf

imumqf r
j

p
j

j                (2.1) 

where 

∑
≤

+++ −+=
qk

kj
k

jjj
p

j
k

pqfcqf
ξ

ξ
:

,111, )()(   

  ∑
>

+++ −++++
qk

kj
k

jj
k

pQqfcb
ξ

ξ
:

,110,1 )](2[              (2.2) 

and 
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∑
=

+++ −++=
K

k
kj

k
jjj

r
j pQfccqf

1
,111,00, )()( ξ              (2.3) 

with the boundary condition 

nnn Sqcqf ∈= ,)( 0,                 (2.4) 

In equations (2.2-2.4), )(qf p
j  represents the expected cost of going directly to the 

next node, whereas )(qf r
j  represents the expected cost of the restocking action. 

These equations are used to recursively determine the objective value of the planned 

vehicle route and the optimal sequence of decisions after customers are served.  

(Bianchi et al., 2005)  In principle, this procedure leads to a dynamic programming 

since each time a customer demand is revealed, a decision has to be taken as to 

where the vehicle should proceed.  

 

 

 

2.2.4 Threshold and Expected Cost Evaluation 

 

The expected cost-to-go in case of restocking, is constant in q, since in case 

of restocking the vehicle will have full capacity Q before serving the next customer, 

whatever the current capacity q is.  On the other hand, )(qf p
j is a monotonically non-

increasing function in q, for every fixed customer j.  Therefore there is a capacity 

threshold value jh such that, if the vehicle has more than this value of residual goods, 

then the best policy is to proceed to the next planned customer, otherwise it is better 

to go back to the depot for replenish, as seen in Figure 2.1. (Yang et al., 2000) 

 

 
Figure 2.1. Function of q 
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 The algorithm in Figure 2.2 is an implementation of the above dynamic 

programming recursion for the calculation of )(0 Qf and of the thresholds (Bianchi et 

al., 2005). 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.2.  Algorithm for the computation of the VRPSD objective function )(0 Qf  

 

 

 

2.2.5 Multiple homogeneous VRPSD 

 

Given a fleet of vehicles indexed by m ∈ M, is based at a depot with each 

capacities Q, the problem is to find a set of a priori routes (and the associated optimal 

restocking policies), each to be served by a vehicle, such that customer demands on 

the route are fully satisfied and the total expected cost is minimized. The total 

demand of customers assigned to each route does not exceed the vehicle capacity of 

the vehicle assigned to it, and the total cost is minimized. 

 

In deterministic vehicle routing problems, a single route will always be 

optimal if the vehicle has enough capacity to carry all customer demand. However, 

multiple vehicles (routes) are needed when the total customer demand exceeds the 

vehicle capacity. It is assumed that there are m vehicles for n customer nodes. Let 

{ }mrrrr ,...,, 21=  be a particular solution in which ir  is the sub tour dedicated to ith 

vehicle. The function to be minimized is the sum of expected cost for all vehicles 

for (q = Q, Q-1,…,0) do 

)(qfn = 0,nc  

for (j = n-1, n-2, …, 1) do 

compute 
r
jf  using (.)1+jf  

for (q = Q, Q-1, …, 0) do 

compute )(qf p
j  

compare 
r
jf  and )(qf p

j  for finding the threshold jh  

compute )(qf j  using (.)1+jf  

end for 
end for 

end for 

compute )(0 Qf  

return )(0 Qf  
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whereas the function of each vehicle is similar with the single vehicle. (Yang et al., 

2000) 

 

 

2.2.6 Previous Works on the VRPSD 

 

The summary of main contributions to solve VRPSD and similar problems is 

given in Table 2.1. 

 

Table 2.1. Previous works on VRPSD 

Authors Methods Description 

Tillman 

(1969) 

Heuristic [multiple 

vehicles] 

the first to propose simple heuristic algorithm for the 

VRPSD in the case where there were multiple 

terminal deliveries  

Dror, Laporte 

and Trudeau 

(1989) 

Theory  overviewed concepts and main issues in VRPSD 

along with some properties of optimal solutions. 

They also presented a new solution framework using 

Markovian decision processes from theoretical point. 

Bertsimas,  

Jaillet, and 

Odoni (1990) 

Theory  

[single VRPSD] 

introduced the idea of a priori optimization as a 

strategy competitive to the strategy of re-

optimization. It was shown that a priori and re-

optimization strategies have on average very close 

behaviour. 

Bertsimas 

(1992) 

Theory  

[single VRPSD] 

compared performance of cyclic heuristic and 

reoptimization. He gave analytical evidence that this 

approach, which is based on finding an a priori 

sequence, performs quite well especially if the 

distribution of the demand of the customers is the 

same. 

 
 
 
 
 
 
 
 
 



 

 

21

Table 2.1. Previous works on VRPSD (continued1) 

Authors Methods Description 

Gendreau, 

Laporte and 

Seguin (1996) 

Tabu Search 

[multiple 

homogeneous 

vehicles] 

developed a tabu search algorithm called 

TABUSTOCH; this algorithm is to be employed 

when instances become too large to be solved 

exactly by the L-shaped method. Comparison with 

known optimal solutions (exact algorithm) whose 

sizes vary from 6 to 46 customers indicate that the 

heuristic produces on optimal solution in 89.45% of 

cases, with an average deviation of 0.38% from 

optimality. 

Yang’s thesis 

(1996) 

Heuristic [single 

and multiple 

homogeneous]  

developed optimal restocking policy in conjunction 

with routing decisions for a priori VRPSD. 

 

Yang,  

Mathur, and 

Ballou (2000) 

Heuristics [single 

and multiple 

homogeneous 

vehicles]  

investigated the route first-cluster second and the 

cluster first-route second. Both algorithms seem to 

be efficient and robust for small size instances, as 

shown by comparisons with branch and bound 

solutions to instances up to 15 customers. They also 

adapt the OrOpt local search to the stochastic case.  

Secomandi 

(2001) 

Rollout policy 

[single vehicle] 

considered re-optimization-type routing policy by 

means of rollout policy. 

Laporte, 

Louveaux and 

van Hamme 

(2002) 

Exact algorithm 

[between 2 and 4 

vehicles] 

proposed an Integer L-Shaped algorithm for the 

VRPSD for instances involving between 25 and 100 

vertices where demands follow a Poisson or a 

normal distribution. The objective is to minimize the 

expected solution cost. 

Chepuri and 

Homem-de-

Mello (2005) 

Heuristic  

[single vehicle] 

proposed a new heuristic method based on Cross-

Entropy method for VRPSD. 

 

Bianchi et al 

(2005) 

Metaheuristics 

[single vehicle] 

considered basic implementation of five 

metaheuristics: Iterated Local Search, Tabu Search, 

Simulated Annealing, ACO and Genetic Algorithm 

that found better solution quality in respect to cyclic 

heuristic.  
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Table 2.1. Previous works on VRPSD (continued2) 

Authors Methods Description 

Irhamah 

(2006) 

Metaheuristics 

[single, 

homogeneous and 

heterogeneous 

vehicles] 

- based on Hybrid Genetic Algorithm with Tabu 

Search where TS as a mutation operator 

- management of initial population: the inclusion of 

constructive and insertion heuristic and the 

implementation of the concept of statistical control  

- first considering heterogeneous VRPSD 

 

 

 

2.3 Heuristic Methods 

 

Silver et al. (1980) define a heuristic method as a procedure for solving well-

defined mathematical problem by intuitive approach in which the structure of the 

problem can be interpreted and exploited intelligently to obtain a reasonable solution.   

 

 

 

2.3.1 Why Use a Heuristic Method? 

 

According to Silver et al. (1980), there are several possible reasons for using 

heuristic methods of solution.  These include: 

a. The mathematical problem is of such a nature that an analytic (closed form) 

or iterative solution procedure is unknown. 

b. Although an exact analytic or iterative solution procedure may exist, it may 

be computationally prohibitive to use or perhaps unrealistic in its data 

requirements.  

c. The heuristic method, by design, may be simpler for the decision maker to 

understand, hence markedly increasing the chances of implementation. 

d. For well-defined problem that can be solved optimally a heuristic method can 

be used for learning purposes, e.g., to develop an intuitive feeling as to what 

variables are important.  (This closely parallels one of the primary reasons for 

using simulation methods in operational research.) 
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e. A heuristic may be used as part of an iterative procedure that guarantees the 

finding of an optimal solution.  Two distinct possibilities exist: 

i. To easily obtain an initial feasible solution. 

ii. To make a decision at an intermediate step of an exact solution 

procedure. 

f. Heuristics can be used to give such ‘good’ starting solutions.  In implicit 

enumeration approaches to problem solving a good starting solution can give 

a bound that drastically reduces the computational effort. 

 

 

 

2.3.2 Measuring the Quality of a Heuristic 

 

Silver et al. (1980) stated that a good heuristic should possess the following 

four properties: 

1. Realistic computational effort to obtain solution. 

2. The solution should be close to the optimum on the average, i.e., we want 

good performance on the average. 

3. The chance of a very poor solution (i.e., far from the optimum) should be 

law. 

4. The heuristic should be as simple as possible for the user to understand, 

preferably explainable in intuitive terms, particularly if it is to be used 

manually. 

 

Here are several ways for measuring the quality of heuristics: 

1. Comparison with the optimum solution. 

2. Problem relaxation – bounding. 

3. Extreme value statistical methods. 

4. Other comparisons. 

i. Comparison with an enumerative method, requiring much more 

computational effort that is terminated after a large amount of 

computation, but likely without having found the optimal solution. 

ii. Comparison with performance of the decision maker, either during an 

earlier time frame or directly in parallel – there are compelling arguments 
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for this type of comparison.  Identification of significant improvement 

over existing procedures is probably much more important for 

encouraging implementation than any proof of optimality, or nearness to 

optimality. 

iii. Comparison with other heuristic procedures – where other heuristic 

solution methods have been proposed and/or used, one certainly can 

compare ‘our’ heuristic against the others. 

iv. Comparison with a ‘random’ decision rule – an extreme type of heuristic 

is where one makes a decision completely at random. 

5. Worst-case behaviour. 

 

 

 

2.3.3 Types of heuristic methods 

 

It should be emphasized that the categories are not meant to be mutually 

exclusive. 

1. Decomposition methods 

 Here the problem under consideration is broken into smaller parts that are 

solved separately, but taking account, at least in a crude way, of possible 

interactions among the parts.  

2. Inductive methods. 

 The idea here is to generalize from smaller (or somewhat simpler) versions of 

the same problem. 

3. Feature extraction (or reduction) methods. 

 The general approach here is to first obtain the optimal solutions to several 

numerical cases under consideration.  Common features of these solutions are 

extracted and are assumed to hold in general. 

4. Methods involving model manipulation: 

- modification of the objective function. 

- relaxation of certain constraints, some of which may be flexible in any 

event. 

- change nature of probability distribution. 
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- Aggregation of variables, the idea being to reduce the number of decision 

variables. 

5. Constructive methods. 

6. Local improvement methods. 

 In contrast with the constructive procedures, local improvement starts with a 

feasible solution and improve upon it iteratively. 

 

 

 

2.4 Metaheuristics 

 

The term metaheuristic is firstly introduced by Fred Glover, derives from the 

composition of two Greek words. Heuristic derives from the verb heuriskein which 

means “to find”, while the suffix meta means “beyond, in an upper level”. Before 

this term was widely adopted, metaheuristics were often called modern heuristics 

(Reeves, 1993).  Examples of metaheuristics include-but not limited to- Ant Colony 

Optimization, Evolutionary Computation including Genetic Algorithm, Iterated 

Local Search, Simulated Annealing and Tabu Search. Nowadays metaheuristics are 

widely used to solve important practical combinatorial optimization problems.  

However, due to the variety of techniques and concepts comprised by metaheuristics, 

there is still no commonly agreed definition for metaheuristics.  

 

A metaheuristic is formally defined as an iterative generation process which 

guides a sub-ordinate heuristic by combining intelligently different concepts for 

exploring and exploiting the search space, learning strategies are used to structure 

information in order to find efficiently near-optimal solutions (Osman and Laporte, 

1996).  Stutze (1999) defined metaheuristics as typically high-level strategies which 

guide an underlying, more problem specific heuristic, to increase their performance. 

The main goal is to avoid the disadvantages of iterative improvement and, in 

particular, multiple descents by allowing the local search to escape from local 

optima.  This is achieved by either allowing new starting solutions for the local 

search in a more ‘intelligent’ way than just providing random initial solutions.  Many 

of the methods can be interpreted as introducing a bias such that high quality 

solutions are produced quickly.  This bias can be of various forms and can be cast as 
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descent bias (based on the objective function), memory bias (based on previously 

made decisions) or experience bias (based on prior performance).  Many of the 

metaheuristic approaches rely on probabilistic decision made during the search.  But, 

the main difference to pure random search is that in metaheuristic algorithm 

randomness is not used blindly but in an intelligent biased form.  

 

The definition used in the Metaheuristics Network (2000) is as follows.           

A metaheuristic is a set of concepts that can be used to define heuristic methods that 

can be applied to a wide set of different problems.  In other words, a metaheuristic 

can be seen as a general algorithmic framework which can be applied to different 

optimization problems with relatively few modifications to make them adapted to a 

specific problem.  Blum and Roli (2003) summarized metaheuristics as high-level 

strategies for exploring search spaces by using different methods.  Of great 

importance hereby is that a dynamic balance is given between diversification and 

intensification.  The term diversification generally refers to the exploration of the 

search space, whereas the term intensification refers to the exploitation of the 

accumulated search experience.  These terms stem from the tabu search field and it is 

important to clarify that the terms exploration and exploitation are sometimes used 

instead, for example in the Evolutionary Computation field, with a more restricted 

meaning.  In fact the notions of exploration and exploitation often refer to rather 

short term strategies tied to randomness, whereas intensification and diversification 

also refer to medium and long term strategies based on the usage of memory.  The 

use of the terms diversification and intensification in heir initial meaning becomes 

more and more accepted by the whole field of metaheuristics.   

 

According to Glover (2003) in Raidl (2006), “… these methods have over 

time also come to include any procedure for problem solving that employs a strategy 

for overcoming the trap of local optimality in complex solution spaces, especially 

those procedures that utilize one or more neighbourhood structures as a means of 

defining admissible moves to transition from one solution to another, or to build or 

destroy solutions in constructive and destructive processes.” 
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2.4.1 Classification of Metaheuristics 

 

There are several ways to classify and describe metaheuristic algorithms. 

Blum and Roli (2003) summarized the most important way to classify metaheuristics 

as below. 

 

• Nature-inspired vs. non-nature inspired. 

Perhaps, the most intuitive way of classifying metaheuristics is based on the origins 

of the algorithm. There are nature-inspired algorithms, like Genetic Algorithms and 

Ant Algorithms, and non nature-inspired ones such as Tabu Search and Iterated 

Local Search. In our opinion this classification is not very meaningful for the 

following two reasons. First, many recent hybrid algorithms do not fit either class 

(or, in a sense, they fit both at the same time). Second, it is sometimes difficult to 

clearly attribute an algorithm to one of the two classes. So, for example, one might 

ask the question if the use of memory in Tabu Search is not nature-inspired as well.  

 

• Population-based vs. single point search.  

Another characteristic that can be used for the classification of metaheuristics is the 

number of solutions used at the same time: Does the algorithm work on a population 

or on a single solution at any time? Algorithms working on single solutions are 

called trajectory methods and encompass local search-based metaheuristics.  They all 

share the property of describing a trajectory in the search space during the search 

process. Population-based metaheuristics, on the contrary, perform search processes 

which describe the evolution of a set of points in the search space. 

 

• Dynamic vs. static objective function. 

Metaheuristics can also be classified according to the way they make use of the 

objective function. While some algorithms keep the objective function given in the 

problem representation “as it is”, some others, like Guided Local Search (GLS), 

modify it during the search. The idea behind this approach is to escape from local 

minima by modifying the search landscape. Accordingly, during the search the 

objective function is altered by trying to incorporate information collected during the 

search process.  

 



 

 

28

• One vs. various neighborhood structures. 

Most metaheuristic algorithms work on one single neighborhood structure. In other 

words, the fitness landscape topology does not change in the course of the algorithm. 

Other metaheuristics, such as Variable Neighborhood Search (VNS), use a set of 

neighborhood structures which gives the possibility to diversify the search by 

swapping between different fitness landscapes. 

 

• Memory usage vs. memory-less methods. 

A very important feature to classify metaheuristics is the use they make of the search 

history, that is, whether they use memory or not. Memory-less algorithms perform a 

Markov process, as the information they exclusively use to determine the next action 

is the current state of the search process. There are several different ways of making 

use of memory. Usually we differentiate between the use of short term and long term 

memory. The first usually keeps track of recently performed moves, visited solutions 

or, in general, decisions taken. The second is usually an accumulation of synthetic 

parameters about the search. The use of memory is nowadays recognized as one of 

the fundamental elements of a powerful metaheuristic. 

 

In the rest of this study, we use the way to classify metaheuristics according 

to the single point vs. population-based search classification, which divides 

metaheuristics into trajectory methods and population-based methods. This choice is 

motivated by the fact that this categorization permits a clearer description of the 

algorithms. Moreover, a current trend is the hybridization of methods in the direction 

of the integration of single point search algorithms in population-based ones.  

  

 

 

2.4.2 Trajectory Methods 

 

2.4.2.1 Basic Local Search: Iterative Improvement 

 

The basic local search is usually called iterative improvement, since each 

move is only performed if the resulting solution is better than the current solution.  

The algorithm stops as soon as it finds a local minimum.  
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2.4.2.2 Simulated Annealing 

 

Simulated Annealing (SA) is commonly said to be the oldest among the 

metaheuristics and surely one of the first algorithms that has an explicit strategy to 

escape from local minima.  The origins of the algorithm are in statistical mechanics 

(Metropolis algorithm) and it was first presented as a search algorithm for CO 

problem in Kirkpatrick et al. (1983) (given some assumptions on the cooling 

schedule of the temperature, etc.) that could be shown to converge to an optimal 

solution.  The fundamental idea is to allow moves resulting in solutions of worse 

quality than the current solution (uphill moves) in order to escape from local minima.  

The probability of doing such a move is decreased during the search.  

 

Simulated Annealing comes from the annealing process of solids.  A solid is 

heated until its melts, and then the temperature of the solid is slowly decreased 

(according to annealing schedule) until the solid reaches the lowest energy state or 

the ground state.  If the initial temperature is decreased rapidly, the solid at the 

ground state will have many defects or imperfections.  An easy implementation of 

the algorithm makes it very easy to adapt a local search method (e.g. best 

improvement local search) to a simulated annealing algorithm, usually rendering the 

local search with much better results.  But although it is proven to converge to the 

optimum, it converges in infinite time.  Not only for this reason, but also since we 

have to cool down slowly, the algorithm is usually not faster than its contemporaries. 

 

 

 

2.4.2.3 Tabu Search 

 

Tabu Search (TS) was proposed by Glover in 1986.  A description of the 

method and its concepts can be found in Glover and Laguna (1997).  The basic 

principle of TS is to pursue a best improvement Local Search whenever it encounters 

a local minimum by allowing non-improving moves, cycling back to previously 

visited solutions is prevented by the use of memories called tabu lists that record the 

recent history of the search, a key idea that can be linked to Artificial Intelligence 

concepts.  It is also important to remark that Glover did not see TS as a proper 
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heuristic, but rather as a metaheuristic, i.e., a general strategy for guiding and 

controlling “inner” heuristics specifically tailored to the problems at hand (Gendreau, 

2002).  Tabu Search (TS) is among the most cited and used metaheuristics for 

combinatorial problems.  Many computational experiments have shown that TS has 

now become an established optimization technique which can compete with almost 

all known techniques and which – by its flexibility – can beat many classical 

procedures. 

 

The word tabu (or taboo) comes from Tongan, a language of Polynesia, 

where it was used by the aborigines of Tonga Island to indicate things that can not be 

touched because they are sacred.  According to Webster’s Dictionary, the word now 

also means “a prohibition imposed by social custom as a protective measure: or of 

something “banned as constituting a risk”.  These current more pragmatic senses of 

the word accord well with the theme of tabu search.  The risk to be avoided in this 

case is that of following a counter-productive course, including one which may lead 

to entrapment without hope of escape.  On the other hand, as in the broader social 

context where “protective prohibitions” are capable of being superseded when the 

occasion demands, the “tabus” of tabu search are to be overruled when evidence of a 

preferred alternative becomes compelling.  

 

The most important association with traditional usage, however, stems from 

the fact that tabus as normally conceived are transmitted by means of a social 

memory which is subject to modification over time.  This creates the fundamental 

link to the meaning of “tabu” in TS.  The forbidden elements of TS receive their 

status by reliance on an evolving memory, which allows this status to shift according 

to time and circumstance.  More particularly, TS is based on the premise that 

problem solving, in order to qualify as intelligent, must incorporate adaptive memory 

and responsive exploration.  The adaptive memory feature of TS allows the 

implementation of procedures that implement a form of sampling (Glover and 

Laguna, 1997). 
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2.4.2.4 Explorative Local Search Methods 

 

These are the Greedy Randomized Adaptive Search Procedure (GRASP), 

Variable Neighbourhood Search (VNS), Guided Local Search (GLS) and Iterated 

Local Search (ILS). 

 

 

 

2.4.3 Population-based Methods 

 

Population-based methods deal in every iteration of the algorithm with a set 

(i.e., a population) of solutions rather than with a single solution.  As they deal with a 

population of solutions, population-based algorithms provide a natural, intrinsic way 

for the exploration of the search space.  Yet the final performance depends strongly 

on the way the population is manipulated.   

 

 

 

2.4.3.1 Evolutionary Computation 

 

Evolutionary Computation (EC) algorithms are inspired by nature’s 

capability to evolve living beings well adapted to their environment.  EC algorithms 

can be succinctly characterized as computational models of evolutionary processes.  

At each iteration a number of operators is applied to the individuals of the current 

population to generate the individuals of the population of the next generation 

(iteration).  Usually, EC algorithms use operator called recombination or crossover to 

recombine two or more individuals to produce new individuals.  They also use 

mutation or modification operators which cause a self-adaptation of individuals.  The 

driving force in evolutionary algorithms is the selection of individuals based on their 

fitness (this can be the value of an objective function or the result of a simulation 

experiment, or some other kind of quality measure).  Individual with a higher fitness 

have a higher probability to be chosen as members of the population of the next 

iteration (or as parents for the generation of new individuals).  This corresponds to 

the principle of survival of the fittest in natural evolution.  It is the capability of 
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nature to adapt itself to a changing environment, which gave the inspiration for EC 

algorithms. 

 

There has been a variety of slightly different EC algorithms proposed over 

the years.  Basically they fall into three different categories which have been 

developed independently from each other.  These are Evolutionary Programming 

(EP), Evolutionary Strategies and Genetic Algorithms.  EP arose from the desire to 

generate machine intelligence.  While EP originally was proposed to operate on 

discrete representations of finite state machines, most of the present variants are used 

for continuous optimization problems.  The latter also holds for most present variants 

of E, whereas GAs are mainly applied to solve combinatorial optimization problems.   

 

Genetic Algorithms (GAs) are an effective search and optimization method 

that simulates the process of natural selection or survival of the fittest. Holland in 

1974 developed the idea and concepts behind the Genetic Algorithm and many 

authors have refined his initial approach (Ortiz, et al., 2004).  The purpose of GAs is 

to provide satisfactory results for optimization problems that are hard to solve using 

exhaustive techniques. The researchers who used GAs to solve complex real-world 

problems report good results from these techniques.  

   

  Genetic Algorithms differ from traditional search and optimization algorithm 

in four ways: 

1. GAs work with a coding of solution set, not the solution themselves. 

2. GAs search from a population of solutions, not a single solution. 

3. GAs use payoff information (fitness function), not derivatives or other 

auxiliary knowledge. 

4. GAs use probabilistic transition rules, not deterministic rules. (Goldberg, 

1989) 

  

Whereas Jung (2000) notes that there are two distinguishing characteristics of 

the GAs that separate them from the general optimization techniques. The first is that 

the GAs start with an initial set of random feasible solutions, not a single solution. 

The GAs generate many possible solutions to a given problem and then let them 

compete and mate to generate improved offspring. In conventional optimization 
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techniques, a point to point approach is applied with a stepwise procedure to get the 

optimum solution. According to Gen and Cheng (1997), this approach has the danger 

of falling in local optima. However the GAs are population to population approach, 

and can escape from local optima and are very effective in global search with a multi 

directional search. The second characteristic is that the GAs do not have any specific 

functional requirement for the mathematical relationship that express a given 

problem. Therefore the GAs can handle any kind of objective function and 

constraints. It is difficult to apply simple GAs to complex optimization problem. 

However with some modification, GAs can solve some particular problems             

(Jung, 2000). 

  

There are three major advantages when applying GA to optimization problem 

(Gen and Cheng, 1997). 

1.  Due to their evolutionary nature, GAs will search for solutions without regard to 

the specific inner workings of the problem.  GAs can handle any kind of 

objective functions and any kind of constraints (linear and non linear) defined on 

discrete, continuous or mixed search spaces. 

2.  The ergodicity of evolution operators makes GA very effective at performing 

global search (in probability).  The traditional approaches perform local search 

by a convergent stepwise procedure, which compares the value of nearby points 

and moves to the relative optimal points.  Global optima can be found only if the 

problem possesses certain convexity properties that essentially guarantee that any 

local optima is a global optima. 

3.  GA provides a great flexibility to hybridize with domain dependent heuristics to 

make an efficient implementation for a specific problem. 

 

 

 

 2.4.3.2  Ant Colony Optimization 

 

Ant Colony Optimization (ACO) is a metaheuristic approach proposed in 

Dorigo 1992, 1996, 1999.  The inspiring source of ACO is the foraging behavior of 

real ants.  This behavior enables ants to find shortest paths between food sources and 

their nest.  While walking from food sources and the nest and vice versa, ants deposit 
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a substance called pheromone on the ground.  When they decide about a direction to 

go, they choose with higher probability paths that are marked by stronger pheromone 

concentrations.  This basic behavior is the basis for a cooperative interaction which 

leads to the emergence of shortest paths. 

  

 

 

2.5 Hybrid Metaheuristics 

 

Over the last decade a large number of algorithms were reported that do not 

purely follow the concepts of one single traditional metaheuristic, but they combine 

various algorithmic ideas, sometimes also from outside of the traditional 

metaheuristics field.  These approaches are commonly referred to as hybrid 

metaheuristics.  As for metaheuristics in general, there exist various perceptions of 

what a hybrid metaheuristic actually is.  Looking up the meaning of hybrid in the 

current issue (May 2006) of the Merriam Webster dictionary yields 

a. something heterogeneous in origin or composition, 

b. something (as a power plant, vehicle, or electronic circuit) that has two 

different types of components performing essentially the same function, 

while the current entry in Wiktionary defines this term as 

a. offspring resulting from cross-breeeding different entities, e.g. different 

species, 

b. something of mixed origin or composition. 

 

 

 

2.5.1 Design Issues 

 

According to Talbi (2002), hybridization of heuristics involves a few major 

issues which may be classified as design and implementation.  The former category 

concerns the hybrid algorithm itself, involving issues such as functionality and 

architecture of the algorithm.  The implementation consideration includes the 

hardware platform, programming model and environment on which the algorithm is 

to run.   
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2.5.1.1 Hierarchical classification 

 

The structure of the hierarchical portion of the taxonomy is shown in          

Figure 2.3.   

 

 

 

 

 

 

 

 

 

 

Figure 2.3.  Classification of hybrid metaheuristics (design issues) 

 

A discussion about the hierarchical portion then follows. 

(i).  Low-level versus high-level 

The low-level hybridization addresses the functional composition of a single 

optimization method.  In this hybrid class, a given function of a metaheuristic is 

replaced by another metaheuristic.  In high-level hybrid algorithm, the different 

metaheuristics are self contained. 

 

(ii).  Relay versus teamwork 

In relay hybridization, a set of metaheuristics is applied one after another, 

each using the output of the previous as its input, acting in a pipeline fashion.  

Teamwork hybridization represents cooperative optimization models, in which we 

have many parallel cooperating agents, where each agent carries out a search in a 

solution space.  Four classes are derived from the following: 

1. LRH (Low-level relay hybrid).  This class of hybrids represent algorithms in 

which a given metaheuristic is embedded into a single-solution metaheuristic. 

2. LTH (Low-level teamwork hybrid).  Two competing goals govern the design of a 

metaheuristic: exploration and exploitation.  Exploration is needed to ensure that 

every part of the space is searched enough to provide a reliable estimate of the 
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global optimum.  Exploitation is important since the refinement of the current 

solution will often produce a better solution.  Population-based heuristics (genetic 

algorithm, scatter search, ant colony, etc.) are powerful in the exploration of the 

search space, and weak in the exploitation of the solutions found.  Therefore, 

most efficient population-based heuristics have been coupled with local search 

heuristics such as hill-climbing, simulated annealing and tabu search, which are 

powerful optimization methods in terms of exploitation.  The two classes of 

algorithms have complementary strengths and weaknesses.  In LTH hybrid, a 

metaheuristic is embedded into a population-based metaheuristic. 

3. HRH (High-level relay hybrid).  In HRH hybrid, self-contained metaheuristics 

are executed in a sequence. 

4. HTH (High-level teamwork hybrid).  The HTH scheme involves several self-

contained algorithms performing a search in parallel, and cooperating to find an 

optimum.  Intuitively, HTH will ultimately perform at least as well as one 

algorithm alone, more often perform better, each algorithm providing information 

to the others to help them. 

 

 

 

2.5.1.2 Flat classification 

 

(i) Homogeneous versus heterogeneous 

In homogeneous hybrids, all the combined algorithms use the same 

metaheuristic.  In general, different parameters are used for the algorithms.  In 

heterogeneous algorithms, different metaheuristics are used. 

 

(ii) Global versus partial 

In global hybrids, all the algorithms search in the whole research space.  The 

goal is to explore the search more thoroughly.  All the above mentioned hybrids are 

global hybrids, in the sense that all the algorithms solve the whole optimization 

problem.  In partial hybrids, the problem to be solved is decomposed into sub-

problems, each one having its own search space.  Then, each algorithm is dedicated 

to the search in one of these sub-spaces.  Generally speaking, the sub-problems are 

all linked with each others, thus involving constraints between optima found by each 
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algorithm.  Hence, the algorithms communicate in order to respect these constraints 

and build a global viable solution to the problem.  

 

(iii) Specialist versus general 

All the above mentioned hybrids are general hybrids, in the sense that all the 

algorithms solve the same target optimization problem.  Specialist hybrids combine 

algorithms which solve different problems.  Another approach is to use a heuristic to 

optimize another heuristic, i.e. find the optimal values of the parameters of the 

heuristic.   

 

 

 

2.5.2 Implementation Issues 

 

The structure of the taxonomy concerning implementation issues is shown in         

Figure 2.4.  A discussion about this taxonomy then follows. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.4.  Classification of hybrid metaheuristics (implementation issues) 
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- Specific versus general-purpose computers 

Application specific computers differ from general purpose ones in that 

usually only solve a small range of problems, but often at much higher rates and 

lower cost.  Their internal structure is tailored for a particular problem, and thus can 

achieve much higher efficiency and hardware utilization than a processor which must 

handle a wide range of tasks. 

 

- Sequential versus parallel 

Most of the proposed hybrid metaheuristics are sequential programs.  

According to the size of problems, parallel implementations of hybrid algorithms 

have been considered.  The easiness to use a parallel and distributed architecture has 

been acknowledged for the HTH hybrid model. 

 

- Static, dynamic or adaptive 

Parallel heuristics fall into three categories depending on whether the number 

and/or the location of work (tasks, data) depend or not on the load state of the target 

parallel machine: 

- Static: this category represents parallel heuristics in which both the number of 

tasks of the application and the location of work (tasks or data) are generated at 

compilation time (static scheduling).  The allocation of processors to tasks (or 

data) remains unchanged during the execution of the application regardless of the 

current state of the parallel machine.  Most of the proposed parallel heuristics 

belong to this class. 

- Dynamic: this class represents heuristics for which the number of tasks is fixed at 

compilation time, but the location of work (tasks, data) is determined and/or 

changed at run-time. 

- Adaptive: parallel adaptive programs are parallel computations with a 

dynamically changing set of tasks.  Tasks may be created or killed as a function 

of the load state of the parallel machine.  A task is created automatically when a 

node becomes idle.  When a node becomes busy, the task is killed. (Talbi, 2002) 
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2.6 Critical Reviews 

 

As compared to the development of research in deterministic case, research 

on Stochastic Vehicle Routing Problem is rather undeveloped. So, the study of 

SVRPs is a relatively new and fast growing research area which should gain in 

importance with the spread of real time vehicle routing problems.  The Vehicle 

Routing Problem with Stochastic Demands (VRPSD) is without any doubt the most 

studied among all SVRPs.  Many algorithms for solving VRPSD have been proposed 

e.g. exact algorithm, heuristic, rollout policy and metaheuristics for single vehicle 

and multiple homogeneous vehicles.  

 

As we know, Genetic Algorithm (GA) has been proven to be effective and 

successful in a wide variety of search domain and have been widely applied in 

solving combinatorial optimization problems, including certain types of VRP, 

especially where time windows are included and in TSP.  Tabu Search (TS) also was  

known as a robust algorithm and often outperforms other heuristics in terms of 

computational speed and solution quality.  But, the use of GA and TS in VRPSD is 

lacking in the literature.   

 

Bianchi et al. (2005) have developed the basic implementation of five 

metaheuristics: Iterated Local Search (ILS), Tabu Search, Simulated Annealing, Ant 

Colony Optimization and Genetic Algorithm for single VRPSD that found better 

solution quality in respect to cyclic heuristic.  For GA application, a small sample 

size of 10 individuals is used.  Initial solutions are built with the randomized farthest 

insertion heuristic.  Local search is then applied to each member of the initial 

population.  In the steady state evolution process only one couple of parents 

reproduces at each generation.  Tournament selection of size 2 is used to select which 

parents are going to be given the chance to reproduce.  The crossover used in the 

final implementation is the Edge Recombination (ER) readapted to always start at the 

depot.  OX and PMX were also used but ER seems to work better.  It tries to build an 

offspring exclusively from the edges present in both parents, as outlined in Figure 

2.3.  Swap based mutation was used with swaps two adjacent alleles and never the 

depot.  It is applied with an adaptive mutation rate with a maximum probability of 

0.5.  Order based mutation that picks 2 loci at random and exchanges their alleles, 
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and inversion were also tried.  Local search is again applied at each generation to 

improve the quality of the offspring.  The improved offspring is then replaces the 

worst member of the population. 

 

 

 

 

 

 

 

 

 

 
Figure 2.5. Genetic Algorithm for the VRPSD 

 

For TS implementation, Bianchi et al. uses the randomized farthest insertion 

heuristic as the initial solution.  The neighbourhood is derived from Or-Opt local 

search as states in Yang et al. (2000).  The strategy of selection of new solutions is a 

descent-ascent method with the use of tabu list. 

 

Their experimental results show that Iterated Local Search is the only which 

is always among the best.  At the opposite extreme is the SA, which is always among 

the worst.  The performance of the other metaheuristics seems to be not significantly 

different from one to another.  It has been hypothesized that this is due to the fact 

that all algorithms find solutions which are very near to the optimal, and thus 

solution values found are not very different from each other.   

 

Gendreau et al. (1996) have developed TS for a stochastic VRP that combines 

two types of uncertainty: stochastic demand and stochastic customers (customers 

present at locations with some probabilities).  They were the first to implement exact 

algorithm for VRPSDC in order to find optimal solutions.  These can be used to 

assess the quality of solutions produced by another heuristics.  The problem consists 

of designing a first stage solution that minimizes the expected cost of the second 

stage solution, i.e., the cost of the first stage solution plus the expected cost of 

1.  Create an edge list from both parents, that provides for each customer all the 
other customers connected to it in at least one of the parent, 

2.  start from the depot as current customer, 
3.  select the customer in the edge list of the current customer, with the smallest 

number of customers left in its edge list, 
4.  if there is no customer left in the edge list of the current customer then 
5.      select a non yet visited customer, 
6.  end if 
7.  the selected customer becomes the current customer, 
8.  update the edge list by removing the current customer from each adjacent 

customer list, 
9.  if the tour is complete then 
10.      stop. 
11.  else 
12.   go to step 3. 
13.  end if. 
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recourse action.  The neighbourhood of current solution is defined by removing in 

turn one of q randomly selected customers and inserting each of them either 

immediately before, or immediately after one of its p nearest neighbours.  If a vertex 

is moved at iteration v, its reinsertion and displacement is tabu until iteration v+θ.  

TABUSTOCH algorithm proceeds as follows: 

1. Initialization. 

2. Neighbourhood Search. 

3. Incumbent update. 

4. Coefficient update: update the list of tabu move. 

5. Intensification or terminate. 

 

Results indicate that the running time of the proposed heuristic is reasonable, 

and optimal solutions were obtained in over 89% of all instances for which an 

optimum was known.  The success of TS seems largely due to the neighbourhood 

structure, to the fact that intermediate infeasible solutions are allowed, and to the 

proxy function used to evaluate candidate moves.  This device is responsible for 

large time savings as t avoids repeated costly computations of the objective function.  

(Gendreau et al.,1996) 

  

GA application in Bianchi et al. (2005) works seems to show redundancies in 

the use of local search for every chromosome generated twice, the first is for initial 

solution and the second time is for the final solution.  In addition, the fact that that 

GA and TS seems to have the same result but can not compete the ILS also have 

opened a new direction in developing TS and less redundant GA for solving VRPSD.  

Further, it is well known that a standard Genetic Algorithm must be hybridized with 

another search procedure to be able to compete with other metaheuristics.  So this 

study proposes the first implementation of hybrid GA with Tabu Search for the 

VRPSD that combines the advantage of GA and the strength of TS. 
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2.7 Summary 

 

This chapter provides an in-depth understanding of the area of VRPSD and 

solution techniques for it.  It began by looking at the description of VRPSD, some 

related works from researchers and heuristics (or metaheuristics) which can be used 

to solve the VRPSD.  In the area of improving the solution quality, Genetic 

algorithm, Tabu Search and hybrid of these two algorithms are considered. 
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CHAPTER 3 

 

 

 

 

RESEARCH METHODOLOGY 

 

 

 

 

3.1 Introduction 

 

This chapter presents the direction of the study and an overview of the 

methods used.  It begins with the general steps of research framework.  A description 

of the data source for this study and test related to it are also presented include case-

study of a real-life application at solid waste collection company (Perniagaan 

Zawiyah Sdn. Bhd).  It follows with the description of algorithm implemented with 

emphasis on Genetic Algorithm and Tabu Search.  We provide a brief introduction to 

some of the terminologies used when dealing with different types of applications 

within a stochastic environment. 

 

 

3.2 Research Framework 

 

The general steps of research framework are summarized in Figure 3.1 while 

the detail will be given in the next sections. 
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Figure 3.1. Research Framework 

 

 

 

3.3 Data Source 

 

There are two kinds of data that will be used to assess the performance of the 

proposed algorithm: 

 

 

a. Primary Data  

The primary data is a real life instance of VRPSD originating from the 

municipal solid waste collection.  The data was collected from Perniagaan Zawiyah, 

Sdn. Bhd., Johor Bahru, one of sub contractor of Southern Waste Management Sdn. 

Bhd. (SWM) – Johor Bahru branch office.  SWM is a provider of a diverse range of 
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waste management services for municipal authorities, commercial and industrial 

sectors for the Southern Region of Malaysia. We confine our study on residential 

area in Johor Bahru under municipal authorities of Majlis Perbandaran Johor Bahru.  

 

On any given day, the company faces the problem of collecting waste from a 

set of customer location where the amount of waste disposal is a random variable, 

while each collecting truck has a limited capacity.  The problem is to design a set of 

solid waste collection routes, each to be served by a truck such that the waste at each 

customer is fully collected and the total expected cost is minimized.  Detail of 

company profile and data collected are given in Chapter 8.  The variables to be 

measured in the data collection include: 

1. Distance or coordinates of customers locations. 

2. Customer demands. 

 

b. Simulation Data 

Several sets of instances will be generated to simulate real life instance of 

VRPSD in solid waste collection as described in Section 3.5. 

 

 

 

3.4 Data Testing 

 

After the data is collected, hypothesis test for distributional adequacy of 

demand data (whether a sample of data comes from specific distribution) will be 

conducted.  There are two kinds of test: 

1. Chi-Square Goodness of fit Test. 

2. Kolmogorov Smirnov. 

 

 

3.4.1 The Chi-Square Goodness of Fit Test 

 

The chi-square goodness-of-fit test can be applied to discrete distributions.  

The chi-square goodness-of-fit test is applied to binned data (i.e., data put into 

classes).  This is actually not a restriction since for non-binned data we can simply 
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calculate a histogram or frequency table before generating the chi-square test.  

However, the value of the chi-square test statistic is dependent on how the data is 

binned.  There is no optimal choice for the bin width (since the optimal bin width 

depends on the distribution) and most reasonable choices should produce similar, but 

not identical results.  For the chi-square approximation it requires a sufficient sample 

size in order to be valid, the expected frequency should be at least 5.  This test is not 

valid for small samples, and if some of the counts are less than five, we may need to 

combine some bins in the tails. 

  

The chi-square test is defined for the hypothesis:  

H0 : The data follow a specified distribution. 

H1 : The data do not follow the specified distribution. 

 

Test Statistic: 

For the chi-square goodness-of-fit computation, the data are divided into k bins and 

the test statistic is defined as  

∑
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χ  

where Oi is the observed frequency for bin i and Ei is the expected frequency for          

bin i.  The expected frequency is calculated by  

))()(( lui YFYFNE −=  

where F is the cumulative distribution function for the distribution being tested, Yu is 

the upper limit for class i, Yl is the lower limit for class i, and N is the sample size.      

 

Critical Region:  

Reject H0 if 2
),(

2
ck−> αχχ  where 2

),( ck−αχ  is the chi-square percent point function with 

k - c degrees of freedom and a significance level of α .  k is the number of non-empty 

cells and c = the number of estimated parameters (including location and scale 

parameters and shape parameters) for the distribution + 1.  For example, for a 3-

parameter Weibull distribution, c = 4.  αχ  is the upper critical value from the chi-

square distribution and αχ −1  is the lower critical value from the chi-square 

distribution.  

 



 

 

47

3.4.2 The Kolmogorov Smirnov Test 

 

According to Randles and Wolfe (1979), the Kolmogorov-Smirnov (K-S) test 

is based on the empirical distribution function (ECDF).  The data consist of N 

independent random observations, which are ordinal or interval data.  Given N 

ordered data points Y1, Y2, ..., YN  (the Yi are ordered from smallest to largest value), 

the ECDF is defined as  

 )( iN YF  = proportion of sample observations less than or equal to iY  

  = number of observations less than or equal to iY  / N 

  = 
N
in )(  

This is a step function that increases by 1/N at the value of each ordered data point.  

 

The K-S only applies to continuous distributions and it tends to be more 

sensitive near the center of the distribution than at the tails.  Due to these limitations, 

many analysts prefer to use the Anderson Darling goodness-of-fit test.  However, the 

Anderson-Darling test is only available for a few specific distributions.  

The Kolmogorov-Smirnov test is defined by:  

H0 : The data follow a specified distribution 

H1 : The data do not follow the specified distribution 

 

Test statistic: 

The Kolmogorov-Smirnov test statistic is defined as  

)()(sup 0 iin
x

YFYFremumD −=  

where )(0 iYF  is the theoretical cumulative distribution of the distribution being 

tested which must be a continuous distribution (i.e., no discrete distributions such as 

the binomial or Poisson), and it must be fully specified (i.e., the location, scale, and 

shape parameters cannot be estimated from the data). 

 

Critical Region: 

Reject H0 if the test statistic, D, is greater than the critical value obtained from a table 

( ),( αndD ≥ ), where ),( αnd  is the upper 100th percentile for the H0 distribution        

of D.                                                                  
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3.5 Data Generation 

 

From our literature review, there is no commonly used benchmark for the 

VRPSD, therefore we will generate our own test bed.  We consider several sets of 

randomly generated instances that simulate real problem data from case study of 

solid waste collection.   

 

Based on experiments reported in Gendreau et al. (1995), three factors seem 

to impact the difficulty of a given VRP instances: number of customers n, number of 

vehicles m, and filling coefficient f. In a stochastic environment, the filling 

coefficient can be defined as 

  ∑
=

=
n

i

i

mQ
E

f
1

)(ξ
                (3.1) 

where E( iξ ) is the expected demand of customer i and Q denotes the vehicle 

capacity. This is the measure of the total amount of expected demand relative to 

vehicle capacity and can be approximately interpreted as the expected number of 

loads per vehicle needed to serve all customers. In this experiment, the value of f is 

set to 0.9, as considered by Laporte et al. (2002). 

 

Customer locations will be generated in the [100, 100] square following a 

discrete uniform distribution with the depot fixed at coordinate (50, 50). Each ijc is 

then defined as travel cost from i to j, as a function of distance traveled. Without loss 

of generality, it is assumed that the cost of travel is RM 1 per unit distance. The 

distance between customers location i and j is calculated using Euclidean distance as 

follows: 

22 )()( jijiij yyxxd −+−=  

and it is assumed further that the distance is symmetric, that is dij = dji and dii = 0. 

 

We consider discrete probability distribution.  The problem data will be 

generated using Minitab 14 software package. 
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3.5.1 Single vehicle 

 

For single vehicle, the customers demands are following discrete uniform 

distributions: U(1,5), U(6,10) and U(11,15) respectively. There are four instances 

that will be generated: small instances characterized by a number of customers in the 

set of {10, 15} customers and larger instances in the set of {20, 50} customers. When 

m = 1 then the filling coefficient can be defined as 

∑
=

=
n

i

i

Q
E

f
1

)(ξ
 

 

It follows that for all instances, the a priori expected demand of each 

customer, denoted byξ , is 8 and Qnf /8= . The values of Q for all possible setting 

parameters are computed by rounding fn /8 to the nearest integer. Each possible 

combination of f and n will be generated 10 times, so the reported computational 

results will be the average values over the number of successful problems.  

 

 

 

3.5.2 Multiple homogeneous vehicles 

 

The second experiment consider multiple homogeneous instances by 

employing filling coefficient in equation (3.1) and keeping the same filling 

coefficient as in the single vehicle instance case. In this experiment, we will generate 

three problems: 50 customers (5-6 vehicles), 75 customers (9 or 10 vehicles) and 100 

customers (11 or 12 vehicles). 

 

 

 

3.5.3 Multiple heterogeneous vehicles 

 

Golden et al. (1984) developed test problems for the vehicle fleet size and 

mix routing problem which can be viewed as a special case of the heterogeneous 

VRP where the travel costs are the same for all vehicle types and the number of 
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vehicles of each type is unlimited.  Taillard (1999) has replaced the fixed costs by 

variable costs in the problem instances of Golden et al. (1984) and has specified the 

number of vehicles of each type available.  More precisely, the travel cost ijc  

between customers i and j is replaced by ijkijk cc α=  when the travel is performed by 

a vehicle of type k.  The variable costs have been chosen in such a way that no single 

vehicle type is much better or worse than any of the others.  In this research, we 

adapted Taillard problems with a modification to the stochastic demands 

environment.  The data for Taillard problem number 15, 17 and 20 can be seen in 

Table 3.1 where n is the number of customers n and for each vehicle type k: the 

capacity kQ , the fixed cost kf , the variable cost kα and the number kn of vehicles 

available. 

 

Table 3.1. Data for heterogeneous vehicles instances 
Vehicle type 

A B C D 

No n 

Q f α  n Q f α  n Q f α  n Q f α  n 

15 50 50 100 1 4 100 250 1.6 3 160 450 2 2     

17 75 50 25 1 4 120 80 1.2 4 200 150 1.5 2 350 320 1.8 1 

20 100 60 100 1 6 140 300 1.7 4 200 500 2 3     

 

 

The filling coefficient (as defined in equation (3.1)) used in heterogeneous 

vehicle takes the same value as single and multiple homogeneous vehicles.  This 

filling coefficient and the total vehicle capacity are then used to compute the value of 

expected demand denoted by  

n
Qnf

E kk
i

∑=
.

)(ξ                 (3.2) 

 

Similar to the case of single vehicle and multiple homogeneous vehicles, 

customers demands are divided into three categories with expected demand of each 

customer is computed in (3.2).  For example in Problem number 15, the total vehicle 

capacity is  

CCBBAA
k

kk QnQnQnQn ...
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= (4)(50)+(3)(100)+(2)(160) 

= 820 

It follows that the expected demand of each customer is (0.9)(820)/50 = 14.76, 

rounded to the nearest integer, 15.  For this problem instances, customers demands 

are following discrete uniform distributions: U(5,15), U(10,20) and U(15,25) 

respectively. 10 instances will be generated for each problem number. 

 

 

 

3.6 Genetic Algorithm 

 

Solutions to genetic algorithm are represented by data structures, often a 

fixed length vector, called chromosomes.  Chromosomes are composed of genes 

which have value called alleles, and the position of the gene in the chromosome is 

called locus (Goldberg, 1989).  Chromosomes have been represented by vectors, 

strings, arrays, and tables.  Alleles have been represented by a simple binary system 

of zeroes and ones, integers, real number, and letter of alphabet, or other symbols 

(Gen and Cheng, 1997).  Each chromosome has a fitness value which is indicative of 

the suitability of the chromosome as a solution to the problem (Goldberg, 1989). 

 

A simple genetic algorithm can be summarized as follows. 

1. Representation: Encode the characteristics of each individual in the initial 

population as a chromosome (typically, a chromosome is a bit string). Set the 

current population to this initial population. 

2. Reproduction/ Selection: Select two parent chromosomes from the current 

population and a chromosome with high fitness is more likely to be selected. 

3. Recombination: Generate two offspring from the two parents by exchanging sub 

strings between parent chromosomes (crossover). 

4. Mutation: this is a random change of a bit position in offspring chromosome. 

5. Repeat steps (2), (3) and (4), until the number of chromosomes in the new 

population is the same as in the old population. 

6. Set the current population to the new population of chromosomes. 

This procedure is repeated for a fixed number of generations, or until convergence to 

a population of similar individuals is obtained.  Then, the best chromosome 
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generated during the search is decoded into the corresponding individual (Potvin and 

Bengio, 1996).  The procedure of GA can be described in Figure 3.2 (Gen and 

Cheng, 1997). 

 

 

 
Figure 3.2. Procedure of Genetic Algorithm 

 

 

 

3.6.1 Selection Methods 

 

  In selection process, chromosomes are selected from the population to be 

parents for crossover.  According to Darwin's theory of evolution the best ones 

survive to create new offspring. There are many methods in selecting the best 

chromosomes.  Some of them will be described in following (Obitko, 1998). 

 

a. Roulette Wheel Selection 

Parents are selected according to their fitness.  The better the chromosomes are, the 

more chances to be selected they have.  Imagine a roulette wheel where all the 

chromosomes in the population are placed.  The size of the section in the roulette 

wheel is proportional to the value of the fitness function of every chromosome: the 

bigger the value is, the larger the section is.  For an example, see Figure 3.3 below.  

 

Procedure: Genetic Algorithms
begin 

t 0 

initialize P(t);
  
evaluate P(t);
  
while   (not termination condition) do
  
   recombine P(t) to yield C(t);

  
 evaluate  C(t);

 

 
select P(t + 1) from P(t) and C(t);
  
t   t + 1; 

end
end 
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Figure 3.3. Illustration of Roulette Wheel Selection 

 

A marble is thrown in the roulette wheel and the chromosome where it stops 

is selected.  Clearly, the chromosomes with bigger fitness value will be selected more 

times.  This process can be described by the following algorithm.  

1. [Sum] Calculate the sum of all chromosome fitnesses in population - sum S.  

2. [Select] Generate random number from the interval (θ,S) - r.  

3. [Loop] Go through the population and sum the fitnesses from θ - sum s. 

When the sum s is greater then r, stop and return the chromosome where you 

are.  

Of course, the step 1 is performed only once for each population. 

 

b.  Rank Selection 

The previous type of selection will have problems when they are big differences 

between the fitness values.  For example, if the best chromosome fitness is 90% of 

the sum of all fitnesses then the other chromosomes will have very few chances to be 

selected.  Rank selection ranks the population first and then every chromosome 

receives fitness value determined by this ranking.  The worst will have the fitness 1, 

the second worst 2 etc. and the best will have fitness N (number of chromosomes in 

population).  The following picture describes how the situation changes after 

changing fitness to the numbers determined by the ranking. 

  

 

 
Figure 3.4. Situation before ranking (graph of fitnesses) 
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Figure 3.5. Situation after ranking (graph of order numbers) 

 

Now all the chromosomes have a chance to be selected. However this method can 

lead to slower convergence, because the best chromosomes do not differ so much 

from other ones. 

 

c. Steady-State Selection 

This is not a particular method of selecting parents.  The main idea of this type of 

selecting to the new population is that a big part of chromosomes can survive to next 

generation.  The steady-state selection GA works in the following way.  In every 

generation a few good (with higher fitness) chromosomes are selected for creating 

new offspring.  Then some bad (with lower fitness) chromosomes are removed and 

the new offspring is placed in their place.  The rest of population survives to new 

generation. 

 

d. Elitism 

When creating a new population by crossover and mutation, we have a big chance, 

that we will loose the best chromosome.  Elitism is the name of the method that first 

copies the best chromosome (or few best chromosomes) to the new population.  The 

rest of the population is constructed in ways described above.  Elitism can rapidly 

increase the performance of GA, because it prevents a loss of the best found solution 

(Obitko, 1998). 

 

 

 

3.6.2 Recombination 

 

The simplest type of recombination is one point crossover.  As illustrated in 

Loft and Snow (2006) where chromosomes are strings of symbols (here, 0’s and 1’s), 
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there are two chromosomes; one from Parent A and one from Parent B, both the 

same length. A crossover point is selected randomly.  The two chromosomes are cut 

at this point, and a new chromosome is formed by using the chromosome from 

Parent A before the crossover point and from Parent B after the crossover point.  

This is depicted in Figure 3.6. 

 
Parent A: 0 1 1  0 1 0 1 1 

Parent B: 1 0 1  1 1 0 0 0 

Offspring 0 1 1  1 1 0 0 0 

Figure 3.6. One point crossover 

 

A first generalization of one point crossover is two point crossover. In two 

point crossover, two crossover points are randomly chosen.  Genetic material is 

copied from A before the first crossover point.  Between the crossover points, 

material is taken from Parent B.  After the second crossover point, material is again 

taken from A.  This is depicted in Figure 3.7. 

 
Parent A: 0 1  1 0 1  0 1 1 

Parent B: 1 0  1 1 1  0 0 0 

Offspring 0 1  1 1 1  0 1 1 

Figure 3.7. Two point crossover 

 

From two point crossover, one can imagine three point crossover, four point, 

five point, and so on.  The logical conclusion of this is uniform crossover.  In 

uniform crossover, each symbol in the offspring’s chromosome is chosen randomly 

to be equal to the corresponding symbol of the chromosome of either Parent A or 

Parent B as shown in Figure 3.8. 

 
Parent A: 0 1 1 0 1 0 1 1 

Parent A: 1 0 1 1 1 0 0 0 

Offspring 0 0 1 0 1 0 0 1 

Figure 3.8. Uniform crossover 

  

Loft and Snow (2006) observed that if a pattern appears in the chromosomes 

of both parents, then recombination will preserve that pattern.  For example, both 

parents above have 1’s as the third and fifth symbol in their chromosomes and 0 as 

initial segment of A 

final segment of B 

initial and final 
segments of A 
middle segment of B

(the underlined symbols 
are the ones chosen  
for the offspring) 
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the sixth then in one point, two point, and uniform crossover the offspring has the 

same pattern.  Other crossovers are Partially Match Crossover (PMX), Cycle 

Crossover (CX), Order Crossover (OX), Matrix Crossover (MX) and Modified Order 

Crossover (MOX) (Bryant, 2000). 

 

 

 

3.6.3 Mutation 

 

Mutation is a genetic operator that alters one or more gene values in a 

chromosome from its initial state.  This can result in entirely new gene values being 

added to the gene pool.  With these new gene values, the Genetic Algorithm may be 

able to arrive at a better solution than what was previously possible.  Mutation is an 

important part of the genetic search as helps to prevent the population from 

stagnating at any local optima.  Mutation occurs during evolution according to a 

user-definable mutation probability rate.  This probability rate should usually be set 

low.  If it is set too high, the search will turn into a primitive random search 

(Mitchell, 1996). 

 

The primary purpose of mutation is to increase variation into a population. 

Mutation is the most important in populations where the initial population may be a 

small subset of all possible solutions.  It is possible, for example, that every instance 

of an essential bit might be zero in the initial population.  In such a case, crossover 

could never set that bit to one; mutation, however, can set that bit to one.  Mutation 

takes place after crossover has performed.  Mutation changes randomly the new 

offspring.  For binary encoding it is done by switching a few randomly chosen bits 

from 1 to 0 or from 0 to 1 (Mitchell, 1996). 

 

A variety of mutation methods are used in GAs, e.g. inversion, insertion, 

displacement and reciprocal exchange mutation.  Inversion mutation selects two 

positions within a chromosome at random and then inverts the substring between 

these two positions.  Insertion is where individual is randomly selected and inserted 

in a random position.  Displacement is where a subtour is selected at random and 
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inserted in a random position.  Whereas reciprocal exchange where we select two 

positions at random and swap them (Gen and Cheng, 1997). 

 

Another mutation operators are 2-opt, 3-opt and Or-opt.  In the 2-opt 

operator, two edges (a, b) and (c, d) are randomly selected from the tour and check if 

we can connect these four nodes in a different manner that will give a lower cost.  To 

do this check if cab + ccd > cac + cdb. If this is the case, replace the edges (a, b) and 

(c, d) with the edges (a, c) and (d, b).  Note that it is assumed that a, b, c and d appear 

in that specific order in the tour even if b and c are not connected.  A 3-opt operator 

looks at three random edges instead of two.  If there are edges (a, b), (c, d) and (e, f), 

check if cab + ccd + cef > cac + cbe + cdf.  If it is, replace (a, b), (c, d) and (e, f) with 

the edges (a, c), (b, e) and (d, f).  

 

The Or-opt operator is similar to the 3-opt.  A set of connected nodes are 

randomly chosen and check if this string can be inserted between two other 

connected nodes to give a reduced cost.  We can calculate this by finding the total 

cost of the edges being inserted and the total cost of the edges being removed.  If the 

cost of the edges being removed is greater than the cost of those being inserted the 

switch is made (Bryant, 2000). 

 

 

 

3.7 Tabu Search 

 

TS is founded on three primary themes: 

1. The use of flexible attribute-based memory structures designed to permit 

evaluation criteria and historical search information to be exploited more 

thoroughly than by rigid memory structures (as in branch and bound) or by 

memoryless systems (as in SA and other randomized approach). 

2. An associated mechanism of control – for employing the memory structures – 

based on the interplay between conditions that constrain and free the search 

process (embodied in tabu restriction and aspiration criteria). 

3. The incorporation of memory functions of different time spans, from short term 

to long term, to implement strategies for intensifying and diversifying the 
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search.  (Intensification strategies reinforce move combinations and solution 

features historically found good, while diversification strategies drive the 

search into new regions).                     (Glover, 1990) 

 

Some terminology in Tabu Search: 

i. A move  : a transition from a solution s to another solution s’ in N (s) 

ii. An attribute : the elements that constitute the move 

iii. Tabu list  : a list of moves that are currently tabu 

iv. Tabu list size : the number of iterations for which a recently accepted move 

is not allowed to be reversed 

v. Tabu tenure : an integer number telling for how long a given move will 

remain tabu 

 

The TS features are presented below: 

1. Neighbourhood structures.  The search starts with initial solution and defines a 

subset, N (s), of possible solutions that are neighbours of s (solution) under N.  

Each neighbour is evaluated against the objective function. 

2. Short term memory.  The core of TS is embedded in its short term memory 

process (Glover, 1990).  Tabu is used to prevent cycling when moving away 

from local optima through non-improving moves, it is most common to prohibit 

reverse moves for certain iterations.  Tabu is also useful to help the search 

move away from previously visited portions of the search space and thus 

perform more extensive exploration. (Cordeau and Laporte, 2002)  The 

neighbourhood of the current solution is restricted to the solutions that do not 

belong to the tabu list.  At each iteration the best solution from the allowed set 

is chosen as the new current solution.  Additionally, this solution is added to the 

tabu list and one of the solutions that were already in tabu list is removed 

(usually in FIFO order).  The algorithm stops when a terminate condition is 

met.  It might also terminate if the allowed set is empty, that is, if all the 

solution in N (s) are forbidden by the tabu list.  The use of tabu list prevents 

from returning to recently visited solutions, therefore it prevents from endless 

cycling and forces the search to accept even uphill moves.  The length of tabu 

list (i.e., the tabu tenure) controls the memory of the search process.  With 

small tabu tenures the search will concentrate on small area of the search 
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spaces.  On the opposite, a large tabu tenure forces the search process to 

explore larger regions, because it forbids revisiting a higher number of 

solutions.  (Blum and Roli, 2003) 

3. Aspiration criteria.  Tabu is sometimes too powerful, they may prohibit 

attractive moves, even when there is no danger of cycling, or they may lead to 

an overall stagnation of the searching process.  It is thus necessary to use 

algorithmic devices that will allow one to revoke (cancel) tabus.  These are 

called aspiration criteria.  The simplest and most commonly used aspiration 

criteria consist in allowing a move even if it is tabu, if it results in a solution 

with an objective value better than of the current best-known solution (since the 

new solution has obviously not been previously visited).  (Gendreau, 2002) 

4. Stopping criteria.  In theory, the search could go on forever, unless the optimal 

value of the problem at hand is known beforehand.  In practice, obviously, the 

search has to be stopped at some point.  The most commonly used stopping 

criteria in TS are: 

- after a fixed number of iterations (or a fixed amount of CPU time) 

- after some number of iterations without an improvement in the 

objective function value (the criterion used in most implementations) 

- when the objective reaches a pre-specified threshold value 

In complex tabu schemes, the search is usually stopped after completing a 

sequence of phases, the duration of each phase being determined by one of the 

above criteria.  (Gendreau, 2002) 

5. Intermediate and long-term memory as a basis of strategies for Intensification 

and Diversification.  In fact, the fundamental elements of intensification and 

diversification strategies are already present in the short-term memory 

component of TS, since a short-term memory tabu list has an intensification 

role by temporarily locking in certain locally attractive attributes (those 

belonging to moves recently evaluated to be good), while it also has a 

diversification role by compelling new choices to introduce (or exclude) 

attributes that are not among those recently discarded (or incorporated). 

(Glover, 1990) 

 

According to Crainic et al. (2005), two key concepts in TS are those of search 

intensification and search diversification.  The idea behind search intensification is 
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that regions of the search space that appear “promising” (usually because good 

solutions have been encountered close by) should be explored more thoroughly in 

order to make sure that the best solutions in these regions are found.  Intensification 

is usually based on some type of intermediate-term memory, such as a recency 

memory, in which one would record the number of consecutive iterations that 

various “solution components” have been present without interruption in the current 

solution. Intensification is typically performed periodically restarting the search from 

the best currently known solution and by “freezing” (fixing) in this solution the 

components that seem more attractive.  It is also often involves switching to a more 

powerful neighborhood operator for a short period of time. 

   

  Search diversification addresses the complementary need to perform a broad 

exploration of the search space to make sure that the search trajectory has not been 

confined to regions containing only mediocre solutions.  It is thus a mechanism that 

tries to force the search trajectory into previously unexplored regions of the search 

space.  Diversification is usually based on some form of long-term memory, such as 

frequency memory, in which one would record the total number of iterations (since 

the beginning of the search) that various “solution components” have been present in 

the current solution or have been involved in the selected moves (Crainic, et al., 

2005). 

   

  The basic structure of TS (Glover, 1990) is depicted at Figure 3.9. 
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Figure 3.9. Basic Tabu Search Algorithm 

 

 

 

 

 

 

 

No

Tabu Not Tabu 

Yes

Yes 

No 

Continue Stop

Begin with Starting Current Solution 

Create a Candidate List of Moves 
(each move would generate a new solution from the 

current solution 

Evaluate each Candidate Move 
Does the move yield a higher evaluation than any other move found admissible 

so far from the current candidate list? 

Check Tabu Status 
Is the candidate tabu? 

Check Aspiration Level 
Does move satisfy aspiration criteria? 

Candidate List Check 
Is there a “good probability” of better moves left,  

or should candidate list be extended 

Move is Admissible 
Designate as best admissible candidate 

Make the Chosen Best Admissible Move 

Stopping Criterion 

Terminate Globally or Transfer 
A transfer initiates an intensification or 

diversification phase embodied in an intermediate 
or long term memory component 

Yes 

No

Update Admissibility Conditions 
 

Update Tabu Restrictions and Aspiration Criteria 



 

 

62

3.8 The Ant Colony Algorithm 

 

3.8.1  Behavior of Real Ants 

  

Ant colonies is a kind of social insect societies which presents a highly 

structured of social organization.  Their self-organizing principles which allow the 

highly coordinated behavior of real ants can be exploited to coordinate populations 

of artificial agents that collaborate to solve computational problems.  

  

Different aspects of the behavior of ants such as foraging (search or hunt for 

food and supplies), division of labor, brood sorting and cooperative transport inspired 

the different ant algorithms.  In fact, ants coordinate their activities via stigmergy, 

where it is a form of indirect communication mediated by modifications of 

environment.  Biologists have shown that stigmergic is often sufficient to be 

considered to explain how social insects can achieve self-organization. 

  

In early research of ants’ behavior, there is an important insight on the 

communication among individuals or between individuals and the environment, 

which is the use of chemicals called pheromones produced by ants.  Trail pheromone 

is particularly important for some ant species such as Argentine ant Iridomyrmex 

humilis in the use for marking paths on the ground, for example, paths from food 

source to the nest.  Thus, foragers can follow the path to food discovered by other 

ants just by sensing the pheromone trails. (Dorigo and Stutzle, 2004) 

 

 

 

3.8.2  Double Bridge Experiments 

  

The foraging behavior of many ant species is based on the indirect 

communication mediated by pheromones.  Ants deposit pheromones on the ground 

while walking from nest to food source and vice versa.  The other ants will follow 

the path with pheromone trail and they tend to choose by probabilistically, the paths 

with higher amount of pheromones. 
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 Several researches have run controlled experiments to investigate the 

pheromone trail-laying and pheromone trail-following behavior of ants.  An 

outstanding experiment was designed and run by Deneubourg and colleagues 

(Deneubourg et al., 1989), a double bridge was connected between a nest of ants of 

the Argentina species Iridomyrmex humilis and a food source.  They varied the ratio 

ratio = li / ls between the length of two branches of the double bridge where li was 

the length of longer branch and ls was the length of shorter branch. 

  

In the first experiment, the two branches of the bridge had an equal length 

(ratio = 1: Figure 3.10(a)).  The ants were left free to move between the nest and 

food source and the percentage of ants that chose one or the other of the two 

branches were observed over time.  The outcome was eventually all the ants used the 

same branch.  

 

The results can be explained as follows.  There is no pheromone on the two 

branches when the trial is started and thus the ants chose any of the branches with 

equal probability.  Yet, more ants will select one branch over the other due to random 

fluctuations.  Since ants deposit pheromone while walking, the larger number of ants 

on a branch results in a larger amount of pheromone on that branch.  This larger 

amount of pheromone will stimulate more ants to choose the branch again.  Thus in 

the end, the ants converged to a single path (Figure 3.11(a)).  This is an autocatalytic 

or positive feedback process by the local interactions among the individuals of the 

colony. (Dorigo and Stutzle, 2004)  

   

In the second experiment, the ratio is set to be ratio = 2 (Figure 3.10(b)) 

which means the long branch was twice as long as the short one.  In this case, the 

ants converge to the short branch.  As in the previous experiment, when the ants 

arrive at the decision point, they are free to choose any of the branches since there is 

no preference of pheromone trail on the two branches.  It can be expected that half of 

the ants will go for short branch and another half will choose the long branch 

although random fluctuations may occur.  
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               (a)                            (b) 

Figure 3.10. Experimental setup for the double bridge experiment 

 

However, there is difference in experiment setup between these two 

experiments, which is one branch was twice as long as the short branch in this 

second experiment.  So the ants choosing the short branch will be the first to reach 

the food, when the ants reach the decision point in their way back to nest, they will 

see some pheromone trail on the short branch and therefore, they will choose the 

short branch with higher probability than the long branch.  Hence pheromone starts 

accumulated faster on the short branch until eventually, all the ants end up using the 

short branch because of the autocatalytic process (Figure 3.11(b)). 

 

 
  (a)          (b) 

Figure 3.11. Results obtained with Iridomyrmex humilis ants in the double 
bridge experiment 

 

 

Compared to the first experiment, the influence of initial random fluctuations 

is much reduced in the second experiment since the main mechanisms at work are 

the stigmergy, autocatalysis and differential path length.  Besides, it is interesting 

that even though the long branch is twice as long as the short one, there were still got 
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a small percentage of ants took the long branch.  This may be interpreted as a type of 

“path exploration”. 

 

In an additional experiment, a new shorter connection between nest and food 

is offered after the ant colony is left to use the initial only long branch for 30 minutes 

(Figure 3.12).  In this case, the ants were trapped in the long branch and the short 

branch was only selected sporadically.   

 

 
Figure 3.12. The initial experimental setup and the new situation after 30 minutes, 

when the short branch is added 
 

This can be explained by the high concentration of pheromone on the long 

branch and the slow evaporation of pheromone.  The ants will still choose the long 

branch even though short branch is offered due to the high concentration of 

pheromone on that long branch (Figure 3.13).  This shows evaporation which allows 

the ant colony to “forget” the suboptimal path for exploration of new path is too 

slow.  

 
Figure 3.13.    Results obtained with Iridomyrmex humilis ants in additional  

        experiment 
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3.8.3  Artificial Ants 

  

An artificial ant is an agent which moves from customer to customer on a 

graph.  A variable ),( jiτ  called the artificial pheromone trail is associated with each 

arc (i, j) on the graph, the phrase “pheromone” will be used as shorthand for this in 

the rest of the sections and chapters.  

  

There are some major differences between real ants and artificial ants.  

Artificial ants have some memory to memorize the customers that had been served.  

They are not completely blind as real ants since artificial ants can determine how far 

the customers are.  Besides, artificial ants live in an environment where time is 

discrete instead of continuous.  

  

From real ants’ behavior, there are three ideas that had been transferred to the 

artificial ants.  Firstly, artificial ants prefer the paths with a high pheromone level.  

Secondly, amount of pheromone grow at the higher rate on shorter paths and thirdly, 

communication among the ants is mediated by the pheromone trail. 

  

Basically, artificial ants work as follow; m artificial ants are positioned on 

some randomly selected nodes.  As they move to a customer, they modify the 

pheromone trail on the edges used by local trail updating.  After all the ants have 

completed their tour, artificial ant that gives the shortest tour modifies the edges that 

belonging to its tour by global trail updating.  An example with artificial ants is 

shown as follow: 

 
(a)                                            (b)                                           (c) 

Figure 3.14. Example with artificial ants 
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 Figure 3.14 (a) shows an initial graph with distances while Figure 3.14 (b) 

shows at time t = 0, there is no pheromone trail on edges, hence, 30 ants each at B 

and E choose to go opposite side whether through C or D with equal probability.  So 

it is estimated that on average 15 ants will go toward C and 15 toward D respectively 

from B and E.  Ants who follow the shorter path through C will reach at the opposite 

side faster than ants that follow the longer path through D.  Artificial ants die once it 

complete its task (reach opposite side).  

 

Thus, Figure 3.14 (c) shows at time t = 1 (assume that ant walks for 1 unit 

distance in 1 unit of time will deposit 1 unit of pheromone), 30 new ants that come 

from A to B will find a trail of intensity 15 on path that leads to D deposited by ants 

that went from B to D and a trail of intensity 30 on path that leads to C obtained as a 

sum of trail by those 15 ants went E from B via D and 15 ants went B from E via D.  

This process will continue until all the ants eventually follow the shortest path. 

 

 

 

3.8.4  Ant System 

  

Ant System which is a very simple ant-based algorithm is presented to 

illustrate the basic behavior of Ant Colony System.  Initially, Ant System (AS) works 

as follows: m ants are initially positioned on n nodes chosen according to some 

initialization rule such as choosing by randomly, with at most one ant in each 

customer point.  Each ant builds a tour incrementally by applying a state transition 

rule. Once the ants complete their tour, the pheromone on edges will be updated 

again by applying global updating rule (Dorigo and Caro, 1999).  

  

An exploration mechanism is added to avoid a quick convergence of all the 

ants towards a sub-optimal path, which is artificial pheromone trails “evaporate” 

similar to real pheromone trails.  The coefficient of pheromone decay parameter, ζ  

must be set as a value which less than 1.  Thus, intensity of pheromone trails will 

decrease automatically and this favoring the exploration of other arcs during the 

whole search process (Dorigo and Caro, 1999). 
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 Now, a similar process of real ants’ behavior will be shown on how it can be 

put to work in a simulated world inhabited by artificial ants that try to solve the 

computational problem.  There are m ants positioned on some randomly selected 

customers’ points.  In each time unit, each ants moves from one customer point to an 

un-served customer point.  The time line is shown as below. (Dorigo et al., 1996) 

 

 

 
Figure 3.15. Time line in Ant System 

 

 

 Let ),( jitτ  be the intensity of pheromone trail on edge (i, j) at time t.  At 

time t, each of the ants will choose the next customer to serve.  In other word, m 

moves had been done by m ants in time (t, t + 1).  If this m moves is counted as one 

iteration in Ant System, then after n iterations (t = n), all ants have completed their 

tours respectively.  At this point, the trail intensity is updated according to the 

formula below. 
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where ζ  is pheromone decay parameter such that (1-ζ ) is the evaporation of 

pheromone trail between time t and t + n. ),( jikτ∆  is the quantity per unit of move 

of pheromone trail deposited by k-th ant between time t and t + n.  According to the 

Ant-Cycle algorithm,  
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In order to satisfy the constraint that all the customers had to be served, a data 

structure is associated for each ant called tabu list that saves the customers’ points 

that had been served and forbid the ant from visiting it again before n iterations (a 

tour) is completed.  After a tour is completed, the current solution of the ant is 

computed from its tabu list.  Tabu list is then emptied and the ant can choose again 

the customer to serve.  )(zTabuk  is defined as a dynamically growing vector that 

contains the tabu list, s-element of the list of k-th ant or in other word, s-th customer 

visited by k-th ant in the current tour. 

  

Visibility ),( jiη  is a heuristic function, which was chosen to be the inverse 

of the distance between customer i and customer j, 1/ ijc .  The Euclidean distance ijc , 

is the distance between customer  i and customer  j where 

22 )()( jijiij yyxxc −+−= .  This visibility will not be modified like pheromone 

during the run of Ant System. 

  

The state transition probability for k-th ant from customer point i to customer 

point j is defined as follows 
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            (3.4)  

where ψ and β  are control parameters for the relative importance of the trail and 

visibility respectively, kk tabuN −=allowed , },...,2,1{ nN = and 

),...}(tabu),...,2(tabu),1(tabu{tabu ekkkk = , )1(tabu k  refers to the first customer 

served by the k-th ant and )(tabu ek  refers to the e-th customer served by the k-th ant.  

)(iJk is the set of customers remain un-served by k-th ant after serves customer i.   
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3.8.5  Types of Ant Algorithm 

  

Ant System was designed as a set of three ant algorithms where differing in 

the way the pheromone trail is updated by ants.  Their names were ant-density, ant-

quantity and ant-cycle (Dorigo and Caro, 1999). 

 

 

 

3.8.5.1 Ant-Density Algorithm 

 

Ant-Density algorithm uses local information, each ant deposits its trail at 

each step without waiting for the completion of tour construction.  For Ant-Density 

algorithm, every time an ant goes from customer i to customer j, a quantity C of trail 

is left on edge (i, j).  
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C is the constant related to the quantity of trail deposited by ants and ς  is pheromone 

decay parameter. 

 

 

 

3.8.5.2 Ant-Quantity Algorithm 

 

Ant-Quantity algorithm works similar with Ant-Density algorithm where it 

uses local information and each ant deposits trail at each step without waiting for the 

end of the tour.  Every time an ant goes from customer i to customer j, a quantity 

ijcC /  of trail is left on edge (i, j). 
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where 
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ijc  is the distance between customer i and customer j, C is the a constant related to 

the quantity of trail laid by ants and ς  is pheromone decay parameter.  

  

The different between these two algorithms is the increase of trail in Ant-

Quantity algorithm is independent of ijc  while it is inversely proportional to ijc  in 

Ant-Density algorithm. 

 

 

 

3.8.5.3 Ant-Cycle Algorithm 

 

Ant-Cycle algorithm uses global information instead of local information.  

Artificial ants can forget part of the experience gained in the past move in order to 

obtain better exploration of new incoming global information.  

   

The trail intensity is updated according to the formula after each of the ants 

has completed a tour. 
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kL is tour length of the k ant and ς  is pheromone decay parameter. 

  

Among these three ant algorithms, Ant-Cycle give the best-performing and it 

have later been inspiring a number of ant algorithms which including the Ant Colony 

Algorithm. 
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3.8.6  Our ACS Model for VRPSD 

  

Ant System was efficient in discovering good or optimal solutions for small 

problems with nodes up to 30.  But for larger problems, it requires unreasonable time 

to find such a good result.  Thus, Dorigo and Gambardella (1997b) devised three 

main changes in Ant System to improve its performance which led to the existence 

of Ant Colony System.  

  

Ant Colony System is different from Ant System in three main aspects.  

Firstly, state transition rule gives a direct way to balance between exploration of new 

edges and exploitation of a priori and accumulated information about the problem.  

Secondly, global updating rule is applied only to those edges which belong to the 

best ant tour and lastly, while ants construct the tour, a local pheromone updating 

rule is applied. 

 

Basically, Ant Colony System (ACS) works as follows: m ants are initially 

positioned on n nodes chosen according to some initialization rule such as choosing 

by randomly, with at most one ant in each customer point.  Each ant builds a tour 

incrementally by applying a state transition rule.  While constructing the solution, 

ants also updating the pheromone on the visited edges by local updating rule.  Once 

the ants complete their tour, the pheromone on edges will be updated again by 

applying global updating rule.  

 

During construction of tours, ants are guided by both heuristic information 

and pheromone information. Heuristic information refers to the distances of the 

edges where ants prefer short edges.  An edge with higher amount of pheromone is a 

desirable choice for ants.  The pheromone updating rule is designed so that ants tend 

to leave more pheromone on the edges which should be visited by ants. 

 

The Ant Colony System algorithm is given as follows (Dorigo and 

Gambardella, 1997b). 
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Figure 3.16. Ant Colony System’s algorithm 
 
 
 

3.8.7 Components of Ant Colony System                                                                                           

 

 There are 3 main components which led to the definition of Ant Colony 

System; they are state transition rule, global updating rule and local updating rule. 

Each of these components will be shown in detail as follow. 

 

 

 

3.8.7.1 Ant Colony System Transition Rule 

 

In the ant ACS, an artificial ant k after serves customer r chooses the 

customer s to move to from set of )(rJ k that remain to be served by ant k by applying 

the following state transition rule which is also known as pseudo- random-

proportional-rule: 
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whereβ  is the control parameter of the relative importance of the visibility, ),( urτ is 

the pheromone trail on edge (r, u) and ),( urη is a heuristic function which was 

chosen to be the inverse distance between customers r and u, a is a random number 

uniformly distributed in [0,1], )10( 00 ≤≤ aa  is a parameter and S is a random 

variable selected according to the probability distribution which favors edges which 

Initialize 
Loop //Each loop called an iteration 
 Each ant is placed on a starting customer’s point 
 Loop //Each loop called a step 
 Each ant constructs a solution (tour) by applying a state 

transition rule and a local pheromone updating 
 Until all ants have construct a complete solution. 
 A global pheromone updating rule is applied. 
Until stopping criteria is met 
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is shorter and higher amount of pheromone.  It is same as in Ant system and also 

known as random-proportional-rule given as follow: 

⎪
⎪
⎩

⎪⎪
⎨

⎧
∈

= ∑
∈

otherwise0

)( if
)],()].[,([

)],()].[,([

),(
)(

rJs
urur

srsr

srp
k

rJuk
k

β

β

ητ
ητ

          (3.11) 

where ),( srpk  is the probability of ant k after serves customer r chooses customer s 

to move to. 

 

The parameter of 0a determines the relative importance of exploitation versus 

exploration.  When an ant after serves customer r has to choose the customer s to 

move to, a random number a ( 10 ≤≤ a ) is generated, if 0aa ≤ , the best edge 

according to Equation (3.9) is chosen, otherwise an edge is chosen according to 

Equation (3.11) (Dorigo and Gambardella, 1997a). 

  

 

 

3.8.7.2 Ant Colony System Local Updating Rule 

 

 While building a tour, ants visits edges and change their pheromone level by 

applying local updating rule as follow: 

10),,(.),().1(),( <<∆+−= ρτρτρτ srsrsr                                         (3.11) 

where ρ  is a pheromone decay parameter and 0),( ττ =∆ sr (initial pheromone 

level). 

 

 Local updating makes the desirability of edges change dramatically since 

every time an ant uses an edge will makes its pheromone diminish and makes the 

edge becomes less desirable due to the loss of some of the pheromone.  In other 

word, local updating drives the ants search not only in a neighborhood of the best 

previous tour. 
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3.8.7.3 Ant Colony System Global Updating Rule 

 

Global updating is performed after all the ants have completed their tours.  

Among the tours, only the best ant which produced the best tour is allowed to deposit 

pheromone.  This choice is intended to make the search more directed. The 

pheromone level is updated by global updating rule as follow: 

10),,(.),().1(),( <<∆+−= ατατατ srsrsr                                         (3.13) 

where 
⎩
⎨
⎧ −−∈

=∆
otherwise0

tourbestglobal),( if/1
),(

srL
sr gbτ                          

gbL is the length of the global best tour from the beginning of the trial. (global-best) 

and α  is pheromone decay parameter. 

  

Global updating is intended to provide greater amount of pheromone to 

shorter tours. Equation (3.13) dictates that only those edges belong to globally best 

tour will receive reinforcement.  

 

 

 

3.8.8  Ant Colony System Parameter Settings   

 

From the experiments done by previous researchers, the numerical 

parameters are set as following values:  
1

00 ).(,1.0,9.0,2 −===== nnLna τραβ ,  

where nnL  is the tour length produced by the nearest neighbor heuristic and n is the 

number of customers.  The number of ants used is m = 10. These values were 

obtained by a preliminary optimization phase in which it is found that the 

experimental optimal values of the parameters were largely independent of the 

problem except for 0τ  (Dorigo and Gambardella, 1997b). 
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3.8.9  Pheromone Behavior and Its Relationship to Performance 

 

Pheromone is the chemical substance from ants to leave the trail for other 

ants to follow from the nest to the food source.  In reality, the more of the times that 

an edge is visited by ants, the greater amount of pheromone will be leave on the 

visited edges to direct the subsequent ants, eventually, all the ants end up with using 

the shorter path.  

 

But in ACS, the application of local updating rule in Equation (3.12) makes 

their pheromone diminish, which makes them less attractive.  Therefore, ants 

favoring the exploration of edges that not yet visited.  As a consequence, ants never 

converge to a common path.  The reason behind is given that if ants explore different 

paths, then there is higher probability that one of them will find an improving 

solution instead of all the ants converge to the same tour. 

 

 

 

3.8.10  Ant Colony System with Local Search 

 

 Heuristic approaches to the tour obtained by ants can be classified as tour 

constructive heuristic.  Tour constructive heuristic usually start selecting randomly a 

customer point and build the feasible solution piece-by piece by adding new 

customers’ points chosen according to the selected heuristic rule.  

 

 There is a kind of local optimization heuristic called tour improvement 

heuristics (Dorigo and Gambardella, 1997b).  From a given tour, tour improvement 

heuristics attempt to reduce total distance of the tour by exchanging the edges chosen 

according to some heuristic rule until a local minimum is obtained.  In general, tour 

improvement heuristics produce a better quality results than constructive heuristics.  

A general approach is to use constructive heuristics to generate a solution and then 

optimize locally the solution using tour improvement heuristics.  To improve the 

performance of ACS, tour improvement heuristics had been inserted into ACS.  
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The local search that used in this study is the Descent Method. Descent 

method is known as hill-climbing heuristic or greedy heuristic.  It is an algorithm that 

always takes the best immediate or local solution while finding an answer.  It 

proceeds by examining some neighborhoods of the current solution.  This process is 

repeated until there is no further improvement and the final solution is taken as the 

solution of the problem.   

  

The general procedure of Descent method for minimizing problem is as 

follow: 

Step1:  Select an initial solution; say Sx∈  (where S is the set of feasible solutions). 

Step 2: Choose a solution )(' xNx ∈  such that )()( ' xFxF <  (where )(xN  is the 

neighborhood of x). 

 If there is no such 'x , x  is considered as a local optimum and the method 

stops. 

 Else set 'xx =  and repeat step 2.  

 

The neighborhood of x  is defined as its associated set of neighboring points 

which obtained directly from x  by a symmetric operation called move. The move or 

operation used in obtaining the neighborhood of a solution x  is swapping two 

positions of customers’ points in x .  

 

Thus, the ACS with local search Descent Method algorithm is as follow. 

 

 

 

 

 

 

 

 

 

Figure 3.17. ACS with local search Descent Method algorithm 

  

Initialize 
Loop //Each loop called an iteration 
 Each ant is placed on a starting customer’s point 
 Loop //Each loop called a step 
 Each ant constructs a solution (tour) by applying a 

state transition rule and a local pheromone updating 
 Until all ants have construct a complete solution. 
 Each ants is brought to a local minimum by a tour 

improvement heuristic 
 A global pheromone updating rule is applied. 
Until stopping criteria is met 
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Thus, the complete algorithm together with the flow for the method of study is 

summarized as follow. 

 

 
Figure 3.18. Flow chart of ACS implemented 

 

 

Start 

Each ant positioned on a starting node 

State Transition Rule, 
(Choose next customer to move to)

Set i=1 

Exploration, Eqn (3.9) 

Local Search, Descent Method 

Exploitation, Eqn (3.7)  0qq ≤
Yes

No 

Local Pheromone Updating, Eqn (3.10) 

j = n

Set j=1 

Yes

No 

Global Pheromone Updating, Eqn (3.11) 

Calculate Objective Function Value, Eqn (2.1) 

Stopping
No 

Yes

Set i=i+1

End



 

 

79

3.9 Simulated Annealing 

 

Simulated annealing is a stochastic approach for solving combinatorial 

optimization problems (Hillier and Lieberman, 2005).  It uses local search (iterative 

improvement) technique that allowed accepting non-improving neighboring solutions 

to avoid being trapped at a poor local optimum with a certain probability.   

 

It starts with a feasible initial solution (which is defined as current solution, 

x ) and uses a move selection rule to select the next solution (which is called as 

neighboring solution, 'x ) from the neighborhood of current solution.  In this study, 

the neighboring solution is obtained by switching two customers’ points chosen 

randomly.  If the neighboring solution is better than the current solution, it is 

accepted to be the next solution.  If it is worse than current solution, then it is 

accepted as the current solution with some probability depends on how worse it is to 

allow the search to escape a local optimal solution.    

 

The probability of acceptance is calculated based on Boltzmann distribution 

shown as follow (Kirkpatrick et al., 1983). 

)/||exp()( kTP δδ −=                         (3.14) 

where kT  is the current temperature and δ is the change in total cost (i.e. the cost of 

the neighboring solution minus the cost of the current solution, )()( ' xFxF − ).           

If )(δPa < where a is the randomly generated number between 0 and 1, the non-

improving neighboring solution 'x  is accepted as the current solution.  In other 

words, the move selection rule usually will accept a step that is only slightly 

downhill, but seldom will accept a steep downward step.  

 

The probability of accepting a non-improving solution is controlled by two 

factors which are the different of the objective functions and the temperature.  The 

higher the value of δ , the lower is the probability to accept the non-improving 

solution as current solution.  On the other hand, with a higher kT , the higher is the 

probability for accepting the non-improving solution as the current solution.  
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The value of temperature varies from a relatively large value to a small value 

close to zero.  These values are controlled by a cooling schedule that specifies the 

initial and incremental temperature values at each stage of the algorithm.  One 

common example for cooling schedule is as follow. 

kk TT ×=+ γ1  

where kT  is the current temperature and γ  is the cooling rate.  The temperature will 

be reduced after a certain number of moves.  

 

Lastly, iterations of SA stop when the stopping criterion is being met.  There 

are a few types of stopping criteria.  For example, when the desired number of 

iterations has been performed or when the iteration has been performed at the 

smallest value of T in the temperature schedule, the best trial solution is accepted as 

the final solution.  

 

The illustration of the SA algorithm which will be used in this study is as 

follows. 

Step 1: Generate an initial solution, x  by using perturbation.  

 Determine the total distance for the tour, )(xF .      

Step 2: Set the initial temperature parameter TCCT  where TCC = 0.  

             Set i = 1, j = 1. 

 Define cooling rate, γ  and number of maximum iteration. 

 Set repetition counter = RC. 

 Set Best Solution = x  and Best Distance = )(xF . 

Step 3: Choose two cities randomly and swap the two cities in x   

 to form a new tour, 'x .  

 Determine the total distance for the tour, )( 'xF . 

Step 4: If )( 'xF  < Best Distance,  

  Update Best Solution = 'x and  

Best Distance = )( 'xF   

 If )()( ' xFxF < , 

  Update 'xx = , )()( 'xFxF =  
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 Else check the probability of acceptance, 

  If random number (0,1),  a ⎥
⎦

⎤
⎢
⎣

⎡
<

TCCT
δ-

exp   

  Update 'xx = , )()( 'xFxF =  

Step 5: If i = number of maximum iterations  

Stop the iteration. 

  Set the best solution as final solution. 

 Else set i = i + 1 and go to step 6. 

Step 6: If  j = CR 

  Reset j = 1, 

  Update TCC = TCC + 1 and temperature by cooling schedule 

1−×= TCCTCC TT γ  and go to step 3. 

 Else j = j + 1 and go to step 3. 

 

 

 

 Illustration of Ant Colony Algorithm 

 

The procedure and calculations for ACS algorithm will be shown in detail 

through a numerical example with a small size of problem.  Each of the steps will be 

clearly shown in both sections.   

 

Example 3.1: Suppose that there are 5 customers and the data set is shown in         

Table 3.2. 

 

Table 3.2. Data set for the numerical example 

Nodes Coordinate x Coordinate y Demands 

Depot 14 11 - 

1 8 12 0 – 6 

2 11 18 0 – 5 

3 20 13 2 – 5 

4 14 5 2 – 4 

5 20 2 2 – 6 
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The parameter setting for this example is shown in Table 3.3. 

 

Table 3.3. Parameter settings for numerical example 

Number of ants 2 

Capacity of vehicle 10 

0a  0.7 

ρα ,  0.1 

β  2 

Penalty for route failure, b 2 

Maximum iterations (ACS) 10 

Num. of consecutive non-improving solutions allowed (ACS) 5 

 

STEP 1: Initial Pheromone Declaration 

nnL  is the tour length produced by the nearest neighbor heuristic.  For this example, 

55LLnn = = 46.7948 units, 

004274.0)7948.465().( 11
0 =×== −−

nnLnτ  units. 

 

STEP 2: Generate starting position for each ants. 

Ants’ starting positions are generated randomly by computer and it can be 

represented by notations below: 

m = 2, 0,1m = 1, 0,2m  = 4. 

 

STEP 3: Choose next customer point to be visited 

Both ants have to build their tour incrementally as follow. 

Iteration 1: (first customer point to be visited) 

For first ant, the random number generated by computer, 7.01109.0 <=a , it will 

search for next customer location s to move to by Exploitation using Equation (3.9). 

})],()].[,({[maxarg
)(

βητ ururs
rJu k∈

=  , where )1(1J = {0, 2, 3, 4, 5} and  

})]5,1()].[5,1([,)]4,1()].[4,1([
,)]3,1()].[3,1([,)]2,1()].[2,1([,)]0,1()].[0,1(max{[})],()].[,(max{[

22

222

ητητ

ητητητητ β =urur
 

}000018.0,00005.0,000029.0,000095.0,0001155.0max{=
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                                         = 0.0001155 

Thus, s = 0 or 1,1m = 0  

 

For the second ant, 7.08337.0 >=a , it will search for next customer location s to 

move to by Exploration using Equation (3.11).  

⎪
⎪
⎩

⎪⎪
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⎧
∈

= ∑
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otherwise0

)( if
)],()].[,([

)],()].[,([
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k
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β
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ητ
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where )4(2J  = {0, 1, 2, 3, 5} and  

22

222

)(

)]5,4()].[5,4([)]3,4()].[3,4([

)]2,4()].[2,4([)]1,4()].[1,4([)]0,4()].[0,4([)],()].[,([

ητητ

ητητητητ β

++

++=∑
∈ rJu k

urur
 

   000095.00000427.0000024.000005.00001187.0 ++++=  

   0003304.0=  

Thus,   35926.00003304.0/0001187.0)0,4(2 ==P  

 15133.0)1,4(2 =P  

 07264.0)2,4(2 =P  

 12924.0)3,4(2 =P  

 28753.0)5,4(2 =P  

A line is drawn based on the accumulation of probability as in Figure 3.18. 

 

 
Figure 3.19. Roulette wheel for selecting next customer to move to 

 

A random number generated, a = 0.695425 falls in the forth interval which represents 

customer 3.  Thus, s = 3 or 1,2m = 3. 

 

STEP 4: Local pheromone updating 

0.359260 0.51059 0.58323 0.0.712 1

Cust. 0 Cust. 5 Cust. 1 Cust. 3 Cust. 2 
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After all ants move to their next customers’ points, the pheromone on edges that the 

ants pass by will be updated by local pheromone updating rule using Equation (3.12) 

as follow. 

10),,(.),().1(),( <<∆+−= ρτρτρτ srsrsr  

For first ant,  

1.0,1.0)0,1()9.0()0,1( 0 =×+×= ρτττ  

          004274.0)1.0(004274.0)9.0( ×+×=  

          = 0.004274 units. 

 

Pheromone on edge (4, 3) in which second ant had passed by is updated by the same 

way as above.  The initial pheromone for all edges is 0τ , thus, first round of local 

pheromone gives no changes for the pheromones on edges.  The pheromones will be 

various for all edges after global pheromone updating rule is applied. 

 

STEP 3 is followed by STEP 4 are repeated for n times until all ants have 

built their complete tour respectively.  The complete tours for both ants after n 

iterations for STEP 3 followed by STEP 4 are as follow.   

Ant 1:  1 - 0 - 4 - 5 - 2 - 3 - 1   

Ant 2:  4 - 3 - 0 - 1 - 2 - 5 - 4   

 

Before the total expected costs for all tours are evaluated, the customers’ 

points sequence are rearranged such that they start and end at node 0 as follow for 

total expected cost calculation purpose.    

Ant 1:  0 - 4 - 5 - 2 - 3 - 1 - 0,  Total expected cost = 59.8349 units 

Ant 2:  0 - 1 - 2 - 5 - 4 - 3 - 0,  Total expected cost = 56.5243 units 

 

STEP 5: Local Search (Descent Method) 

After all ants have completed their tour, all ants will be brought to a local minimum 

by a local search called Descent Method.  For each of the iteration, two customers’ 

points are randomly chosen for swapping their positions in the given sequence in 

accepted tour and its total expected cost is computed.  The iterations will be stopped 

after 10 consecutive non-improving solutions and the final best solution is recorded.  

Local minima for both ants are as follow. 
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Ant 1:  0 - 4 - 5 - 3 - 2 - 1 - 0,  Total expected cost = 54.6327 units 

Ant 2:  0 - 2 - 1 - 4 - 5 - 3 - 0,  Total expected cost = 55.0749 units 

 

STEP 6: Global pheromone updating 

The global best tour is the globally best tour from the beginning of the trial, the one 

and only ant that produces the global best tour is allowed to deposit the pheromone 

on the edges that belonging to that global best tour using Equation (3.13) as follow. 

10),,(.),().1(),( <<∆+−= ατατατ srsrsr  

where 
⎩
⎨
⎧ −−∈

=∆
otherwise0

tourbestglobal),( if/1
),(

srL
sr gbτ                          

Global best tour = 0 - 4 - 5 - 3 - 2 - 1 - 0, Total expected cost = 54.6327 units 

 1.0),6327.54/1()1.0()4,0()9.0()4,0( =×+×= αττ  

)6327.54/1()1.0(004274.0)9.0( ×+×=  

 0.005677=  

By the same way, the rest of )0,1(),1,2(),2,3(),3,5(),5,4( τττττ can be obtained.   

 

After global pheromone updating is applied, one loop or iteration is said to be 

completed.  The next iteration is started again from STEP 2 to STEP 6 until the 

stopping criteria is met.  Stopping criteria for this example is either obtained 5 

consecutive non-improving solutions or the iterations reach the predetermined 

number of maximum iteration depending on which criteria is being met first.   

  

For this example, the iterations stop after 7 iterations.  The final solution is 0 - 1 - 2 - 

3 - 5 - 4 - 0 with Total Expected Cost = 54.4587 units.  The complete result can be 

found in Appendix A. 

 

 

 

 

 llustration of the Calculation of VRPSD Objective Function 

Example 3.2 : Consider 5 customers where customers’ coordinates and demands, 

and its distance matrix are shown at Table 3.2 and 3.3, respectively.  Set route to be 

follows is  0  2  4  5  3  1  0 as described in Figure 3.19. 
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Table 3.4. Eample of customer coordinates and demands 

I x y demand 

0 50 50 0 

1 82 23 U(1,3) 

2 21 63 U(2,6) 

3 79 46 U(0,2) 

4 6 80 U(0,2) 

5 35 33 U(1,3) 

 

 

Table 3.5. Distance matrix: 

Node 0 1 2 3 4 5 

0 0 42 32 29 53 23 

1 42 0 73 23 95 48 

2 32 73 0 60 23 33 

3 29 23 60 0 81 46 

4 53 95 23 81 0 55 

5 23 48 33 46 55 0 

 

 

Let f = 1.1, then the quantity of garbage is 

f

E
Q n

i∑
=

)(ξ
 = 

1.1
)3/]142)([5( ++ = 11, vehicle’s quantity Q = 11 

 

 
Figure 3.20. 5 customers network (depot excluded) 

 

 

0
2 (j = 1)4 (j = 2)

1 (j = 5)

3 (j = 4)

5 (j = 3)

Route: 0 – 2 – 4 – 5 – 3 – 1 – 0 
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On above figure,  j represents the order/ sequence to be visited.  For example: j = 1 

means 1st location to be visited, that is node 2.  j = 2 means 2nd visited, that is node 4, 

and so on.  

 

Iteration 1 : j = 5 

Set 0,55 )( == = jj cqf  = 42 

note that j = 5 doesn’t mean that node 5, but the customer no 5th visited, that 

is node 1.  So 5f  represents travel cost from node 1 and node 0 that is 42.  

  

Iteration 2 : j = 4 

j = 5-1 = 4  4th visited  node 3,  

a. Calculate )(4 qf r  based on Eq. 2.3. 

∑
=

+++ −++=
K

k
kj

k
jjj

r
j pQfccqf

1
,111,00, )()( ξ  

∑
=

+++ −++=
3

1
,141414,00,44 )11()(

k
k

kr pfccqf ξ ,  

where 

• 0,4c  travel cost from node 4th visited (node3) to node 0 is 29 

(see distance matrix) 

• kp ,5  represents probability for node 5th visited (node 1). Node 1 

follows U(1,3), so k = 1, 2, 3. kp ,5 =1/3, since there are 3 outcomes 

(1,2 and 3) 

for the 2nd  iteration, set 5f (q) = 42 for all q. 

 

thus:     )]311()211()111([4229)( 555,54 −+−+−++= fffpqf k
r  

)]8()9()10([4229 5553
1 fff ++++=  

)]()3[(4229 53
1 fx++=  

)]42()3[(4229 3
1 x++=  = 113 

 

The value )(4 qf r  is the same for all q, )(4 qf r  = 113. 
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b. Calculate )(4 qf p  based on Eq. 2.2 

set b = 0, ∑
=

++ −+=
3

1
,14145,44 )11()11(

k
k

p pkfcf  

]})311([])211([])111({[23 1,5521,551,55 pfpfpf −+−+−+=

     )]}8([)]9([)]10({[23 5553
1 fff +++=  

                         )42)(3)((23 3
1+=  = 65 

65)3(...)10()11( 444 ==== ppp fff  

∑∑
==

−+++−+=
3

3
,550,5,5

2

1
55,44 )112(2)2()2(

k
kk

k

p pkfcpkfcf  

 = ])3112()42).(2[(]})211([])111({[23 3,552,551,55 pfpfpf −+++−+−+  

)]}10([84)]9([)]10({[23 5553
1 fff ++++=  

}42844242{23 3
1 ++++=  

= 93 

∑∑
==

−+++−+=
3

2
,550,5,5

1

1
55,44 )111(2)1()1(

k
kk

k

p pkfcpkfcf  

 = ])})312(2[])212(2{[]})11({[23 3,550,52,550,51,55 pfcpfcpf −++−++−+  

)]}10()42)(2()11()42)(2[()]0({[23 5553
1 fff +++++=  

]}42)42)(2(42)42)(2[(42{23 3
1 +++++=  

= 120.9 

∑
=

−+++=
3

1
,550,55,44 )110(2)0(

k
k

p pkfccf  

= ])})311(2[)211(2[])111(2{[23 3,550,52,550,51,550,5 pfcpfcpfc −++−++−++  

= )]}10()42)(2()11()42)(2[()]10({[23 5553
1 fff +++++  

= ]}42)42)(2(42)42)(2[(42{23 3
1 +++++  

= 149 

 

c. Compare (.)4
rf  with )(4 qf p  for finding threshold 4h  and )(4 qf .  

4h  is the last value of q when (.)4
rf  ≤  )(4 qf p , so 4h =2. 

)}(),(min{)( 444 qfqfqf rp=  

thus 65)3(...)10()11( 444 ==== fff , )2(4f =93, )1(4f =113, )0(4f =113 
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These values of )(4 qf  will be used for the next iteration. 
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Figure 3.21. Illustration of hj determination 

 

 

Iteration 3 : j = 3 

j = 5-2 = 3  3rd  visited  node 5,  

a. Calculate )(3 qf r  

∑
=

+++ −++=
2

0
,131313,00,33 )11()(

k
k

r pkfccqf ,  

where 

• 0,3c  travel cost from node 3th visited (node5) and node 0 is 

23 (see distance matrix) 

• kp ,4  represents probability for node 4th visited (node 3).         

Node 3 follows U(0,2), so k = 0,1, 2. kp ,4 =1/3, since there are 

3 outcomes (0,1,2) 

 

thus:     )]211()111()011([2923)( 444,43 −+−+−++= fffpqf k
r  

)]9()10()11([2923 4443
1 fff ++++= , use result from 2nd iteration for 

)(qf j values 

]656565[52 3
1 +++=  

= 117 

h4
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The value )(3 qf r  is the same for all q, )(3 qf r  = 117. 

 

b. Calculate )(3 qf p  

∑
=

++ −+=
2

0
,13134,33 )11()11(

k
k

p pkfcf  

]})211([])111([])011({[46 3,442,441,44 pfpfpf −+−+−+=  

)]}9([)]10([)]11({[46 4443
1 fff +++=  

)656565)((46 3
1 +++=  = 111 

111)2(...)10()11( 333 ==== ppp fff  

∑∑
==

−+++−+=
2

2
,140,4,4

1

0
44,33 )111(2)1()1(

k
kk

k

p pkfcpkfcf  

 )]}10()29)(2[()]0()1({[46 4443
1 fff ++++=  

}6558113113{46 3
1 ++++=  

= 162.33 

∑∑
==

−+++−+=
2

1
,440,4,4

0

0
44,33 )110(2)0()0(

k
kk

k

p pkfcpkfcf  

 )]}11()10()29)(2)(2[()]0({[46 4443
1 fff ++++=  

}6565116113{46 3
1 ++++=  

= 165.67 

 

c. Compare (.)3
rf  with )(3 qf p  for finding threshold 3h  and )(3 qf .  

3h  is the last value of q when (.)3
rf  ≤  )(3 qf p , 3h =2. 

 

)}(),(min{)( 333 qfqfqf rp=  

so 111)2(...)10()11( 333 ==== fff ,  )1(3f =162.33, )0(3f =165.67 

These values of )(3 qf  will be used for the next iteration. 

 

These procedures are repeated until )(0 Qf is found.  The )(0 Qf  = 221 and the 

values of threshold are 4h  = 2, 3h   = 2, 2h  = 2 and 1h  = 1. 
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CHAPTER 4 

 

 

 

 

TABU SEARCH FOR SINGLE VRPSD 

 

 

 

 

4.1 Introduction 

 

In this section we give brief description of the Tabu Search algorithm that 

was implemented on the single VRPSD, followed by the experimental results and 

discussion. 

 

 

 

4.2 Tabu Search for Single VRPSD 

 

4.2.1 Initial Solution 

 

It is necessary to generate a number of solutions to initialize the main search 

process.  The choice of the initial solution is well known to be important, usually if 

the initial solution is quite good, it will leads to faster convergence to the optimum 

solution.  Here two simple and fast methods were used to generate initial solution: 

Nearest Neighbour (NN) and Farthest Insertion (FI) heuristics.  The best among them 

was chosen as the starting solution to the main body of the search itself, based on 

which heuristic that yields lower cost from the calculation of VRPSD objective 
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function.  The first node to be visited from the depot is the node that has largest 

demand. 

 

a. Nearest Neighbour 

The nearest neighbour algorithm is easy to implement and executes quickly, but 

usually not the optimal one.  It can sometimes miss shorter routes which are easily 

noticed with human insight, due to its "greedy" nature.  

These are the steps of the algorithm: 

1. Start from the depot, form tour with next depot to be visited is node that has 

largest demand. 

2. Scan remaining cities for the city nearest to last node added in the tour.  Add 

this node to the existing tour. 

3. Repeat step 2 until all nodes are added.  Close path to form a tour. 

 

b. Farthest Insertion 

These are the steps of the algorithm: 

1. Start with a subtour made of the depot and the largest demand node. 

2. Select a node k that farthest from largest demand node.  Add this node to 

form subtour depot - largest demand node - k – depot. 

3. Scan remaining nodes for the node k farthest from any nodes in tour.  

4. Find edge (i,j) that minimize cik + cjk - cij where i and j are in the tour.  Insert 

k between i and j, except for edge (i,j) that represents (depot, largest demand 

node). 

5. Repeat step 3 and 4 until all cities are in the tour. 

 

 

 

4.2.2 Neighbourhood Exploration 

 

The neighbourhood of a solution contains all solutions that can be reached by 

applying two local search methods, namely 2-opt and modified Lin-Kernighan (LK).  

LK algorithm was published in 1973, and from 1973 to 1989 this was the “world 

champion” heuristic.  An LK search is based on 2-Opt moves, although a 
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significantly restricted subset of them and it has many ideas in common with tabu 

search. 

The operation of the inner loop of the LK algorithm is as follows: 

1. Start with a tour 1, 2,… N. 

2. If the cost of the tour 1, 2,… N,1 is better than the best tour found so far, 

make it the best tour. 

3. Add an edge (N,k) where 1≤k<(N-1) to make tour into δ-tour. 

4. Add the edge (N,k) to the added-list. 

5. Remove the edge (k,k+1). Note that the last part of the new tour is traversed 

backwards from the old tour.  

6. Add the edge (k,k+1) to the deleted-list. 

7. Go back to step 3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1.  Illustration of LK algorithm 

 

There is a restriction that the total edge cost of the spanning tree plus edge 

(N,k) in step 3 above must be less than the cost of the best tour found so far.  

In this study the move was derived from the original one of LK algorithm, but it 

differs in such way that we omit this restriction to allow more moves to be 

considered and we defined k as 1<k<(N-1) since in this study we set the node that has 

largest demand as the first node to be visited from the depot.  The LK algorithm can 

be illustrated in Figure 4.1. 

 

v0 v1 vk vk+1 vN  

v0 v1 vk vNvk+1  

v0 v1 vk vNvk+1  
 
 

v0 v1 vk vN vk+1vN-1
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4.2.3 Tabu Moves 

 

To avoid going back to solutions that have been visited in the last few 

iterations (cycling), solutions that were recently examined are forbidden or declared 

tabu for a certain number of iterations.  Tabu list is a list of moves that are currently 

tabu.  Thus the tabu list is an ordered queue containing forbidden moves; whenever a 

move is made, it is inserted to the end of the tabu list and the first element from the 

list is removed.  For the first iteration, set tabu tenure for all edges is 0.  Two types of 

tabu duration (or tabu list size) are implemented in this study, the first is static tabu 

list size, which is 3, and dynamic tabu list size.  In dynamic tabu list size, if an edge 

is moved at iteration v, its addition or deletion is tabu until iteration v + θ, where θ is 

randomly selected in the interval [N-3, N].  The idea of using random tabu list size 

was introduced by Taillard in 1991 in the context of the quadratic assignment 

problem and was shown to reduce significantly the probability of cycling.     

 

The best admissible move is then chosen as the highest evaluation move in 

the neighbourhood of the current solution in terms of the objective function value 

and the tabu restrictions.  In some studies the whole neighbourhood is explored and 

the best non-tabu move is selected; however, in this study we also considering the 

feasible tabu improving move.  An improving move is not accepted if it is forbidden 

in the tabu list unless it satisfies the aspiration criterion.  Intensification strategies can 

be applied to accentuate the search in a promising region of the solution space, so 

that the moves to the local optimum are intensified.  Diversification, on the other 

hand, can be used to broaden the search into less explored regions by forcing the 

moves out of the local optimum.   

 

The concept of tabu move is: 

1. It is tabu to add an edge which is on the deleted-list. 

2. It is tabu to delete an edge which is on the added-list.  
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4.2.4 Aspiration Criterion 

 

The aspiration criterion is a measure solely designed to override the tabu 

status of a move if this move leads to a solution better than the best found by the 

search so far.  As a rule, the search process moves at each iteration from the current 

solution to the best non tabu solution in neighbourhood solutions. However, a tabu 

solution may be selected if the value of objective function decreased upon the best 

value of a solution (aspiration criterion) so far encountered.  We also used aspiration 

by default that were: 

- free the “least tabu tenure” move 

- if there are more than one “least tabu tenure” moves that have same tabu 

tenure values, free the one with smallest objective value 

 

 

 

4.2.5 Stopping Criteria 

 

In our implementation, the number of iteration is equal to 10. 

 

The Tabu Search Algorithm described above can be summarized in Figure 4.2. 
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Figure 4.2. Tabu Search Algorithm for Single VRPSD 
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4.3 Illustration of the Tabu Search for Single VRPSD 

 

Consider Example 3.2 at sub section 3.11.  Let f = 1.1 thus Q is equal to 11 

(based on equation 3.1).   

STEP 1 (Initialization).  Firstly we generate a tour from Nearest Neighbour heuristic.  

It follows that node 2 is the node that has largest demand.  Nearest Neighbour results 

a deterministic tour as: 

 0  2  4  5  3  1  0  

The second heuristic that is Farthest Insertion also results the same tour.  In this case, 

we randomly chose one of them.  A priori route is depicted in Figure 4.4 with the 

VRPSD objective function is 269.  Set this value as aspiration cost. 

 

 
Figure 4.3. Initial Solution  

 

STEP 2 (Neighbourhood search).  Set iteration v = v +1, tabu tenure = 0, aspiration 

cost = 269. Consider all candidate moves in the neighbourhood by using 2-opt and 

modified LK.  Evaluate it to determine the best admissible move. 

STEP 3 (Coefficient update).  Update the tabu list. 

STEP 4 (Termination). Repeat the search process until stopping criteria is met. 

  

Detail results on move, aspiration criteria, and tabu list are presented in 

Figure 4.4 and 4.5 for 2-opt and Figure 4.6 and 4.7 for modified LK.  This section 

only considered static tabu list size.  The comparison between result from static and 

dynamic tabu list size were discussed at Section 4.4. 

 

 

 

 

0
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Route: 0 – 2 – 4 – 5 – 3 – 0 – 1 – 0 
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Figure 4.4. 2-opt Move Process at Iteration 1 to 3  

Iteration 1   
                                                                  

Delete Add Route VRPSD cost 

24 & 53 25 & 43 0 2 5 4 3 1 0 315 

 24 & 31 23 & 41 0 2 3 5 4 1 0 330 

24 & 10 21 & 40 0 2 1 3 5 4 0 292 

45 & 31 43 & 51 0 2 4 3 5 1 0 289 

45 & 10 41 & 50 0 2 4 1 3 5 0 248 

53 & 01 51 & 30 0 2 4 5 1 3 0 258 

 
 

0
2  

4 

5  

3 

Route: 0 – 2 – 4 – 1 – 3 – 0 – 5 – 0 

1 
 

 
 
Iteration 2   
                                                                  

Delete Add Route VRPSD cost 

24 & 13 21 & 43 0 2 1 4 3 5 0 356 

 24 & 35 23 & 45* 0 2 3 1 4 5 0 309 

24 & 50* 25 & 40 0 2 5 3 1 4 0 282 

41* & 35 43 & 15 0 2 4 3 1 5 0 247 

41 & 50* 45* & 10* 0 2 4 5 3 1 0 269 

13 & 50* 15 & 30 0 2 4 1 5 3 0 279 

 
Iteration 3   
                                                                  

Delete Add Route VRPSD cost 

24 & 31 23 & 41 0 2 3 4 1 5 0 356 

 24 & 15 21 & 45 0 2 1 3 4 5 0 308 

24 & 50 25 & 40 0 2 5 1 3 4 0 271 

43* & 15 41 & 35 0 2 4 1 3 5 0 248 

43 & 50 45 & 30 0 2 4 5 1 3 0 258 

31 & 50 35 & 10 0 2 4 3 5 1 0 289 

Aspiration cost = 247 
 
Current solution : 0 2 4 3 1 0 5 0 
 
Tabu list : 45(0)  10(2)  

 41(2)  50(2) 
 43(3)  15(3) 
 35(3) 
 
 
 
 
 
 
 
 
 
 

 
Aspiration cost = 247 
 
Current solution : 0 2 3 4 1 0 5 0 
 
Tabu list : 10(1) 
   41(1) 50(1) 

 43(2) 15(2) 
 35(2) 24(3) 
 31(3) 23(3) 
 41(3) 

Aspiration cost = 248 
 
Current solution : 0 2 4 1 3 0 5 0 
 
Tabu list : 45 (3)  10 (3)  

 41 (3)  50 (3) 
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Figure 4.5. 2-opt Move Process at Iteration 4 to 10 

 

Aspiration cost = 248 
 
Current solution : 0 2 3 5 1 0 4 0 
 
Tabu list : 40 (3)  34 (3)  

 24 (2)  31 (2) 
 23 (2)  41 (2) 
 35 (1)  43 (1) 
 15 (1) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
Aspiration cost = 247 
 
Current solution : 0 2 5 1 3 0 4 0 
 

 
 
 
 
 
 
 
 
 

Iteration 4   
                                                                  

Delete Add Route VRPSD 
cost 

Σ tabu 
tenure 

23* & 41* 24* & 31* 0 2 4 3 1 5 0 247 12 

23* & 15* 21 & 35* 0 2 1 4 3 5 0 356 7 

23* & 50* 25 & 30 0 2 5 1 4 3 0 318 4 

34* & 15* 31* & 45* 0 2 3 1 4 5 0 309 6 

34* & 50* 35* & 40 0 2 3 5 1 4 0 334 3 

41* & 50* 45* & 10* 0 2 3 4 5 1 0 335 6 

 
  
 
The process is repeated until iteration = 10 
 
Iteration 5  : 0 2 3 1 5 4 0  [292) 
 
Iteration 6  : 0 2 4 1 5 3 0  [279] 
 
Iteration 7  : 0 2 4 5 1 3 0  [258] 
 
Iteration 8  : 0 2 3 5 1 4 0  [334] 
 
Iteration 9  : 0 2 3 1 5 4 0  [271] 
 
 
Iteration 10   
                                                                  

Delete Add Route VRPSD 
cost 

Σ tabu 
tenure 

23* & 15 21 & 35* 0 2 1 3 5 4 0 292 5 

23* & 54 25 & 34 0 2 5 1 3 4 0 271 2 

23* & 40* 24* & 30 0 2 4 1 5 3 0 279 6 

31* & 54 35* & 14* 0 2 3 5 1 4 0 334 9 

31* & 40* 34 & 10 0 2 3 4 5 1 0 335 5 

15 & 40* 14* & 50 0 2 3 1 4 5 0 309 5 

 
   

4   

5  
1  

3  

Final Route: 0 – 2 – 4 – 3 – 1 – 0 – 5 – 0  
  

2  

0 
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 The results of 2-opt are presented in Figure 4.4 and 4.5.  Tabu Search starts 

from aspiration cost of 269 yields by initial solution.  After that all neighbourhood 

that can be reached from initial solution is examined in iteration 1.  Among the 

neighbourhood, route 0 2 4 1 3 5 0 gives the least cost (248) and it is less than 

aspiration cost, thus we accept it as current solution and override the aspiration cost.  

From the current solution, we continue to iteration 2 and examine again the 

neighbourhood and find that route 0 2 4 3 1 5 0 produces least cost (247).  Although 

this move is tabu, we accept this as new current solution and override the aspiration 

cost since this cost is less than aspiration cost, the aspiration cost becomes 247 and 

we freeing the tabu status of this move.   

 

At iteration 3, the least cost (248) is gained by route 0 2 4 1 3 5 0.  Since this 

cost is not lower than aspiration cost and this move is tabu, thus we go to the 2nd best.  

This process repeat until non tabu move is found.  Finally the process stop at route 0 

2 3 4 1 5 0 produced from drop 24 and 31 and add 23 and 41 which are non tabu 

moves, so we accept it as current solution but we do not need to update the aspiration 

cost.  When it comes to iteration 4, the entire move is tabu.  So one of the 

neighbourhood had to be free with aspiration by default (freeing the least tabu 

tenure) to be the current solution for next iteration.  The least tabu tenure is 2, 

provided by 0 2 5 1 3 4 0.  These search process is repeated until stopping criteria 

(maximum number of iteration is equal to 10) is met.  Note that at iteration 8, the 

current solution is cycling back to previous current solution at iteration 4, and the 

next iteration (iteration = 9) still produces the same route as obtained in iteration 5.     

 

The TS results from Modified LK can be seen in Figure 4.6 and 4.7 below. 
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Figure 4.6.  Modified LK Move Process at iteration 1 to 5 

 

 

 

 

 

 

 

 

 

Figure 4.6 .  Modified LK Move Process at iteration 1 to 5 

 

 

 

 

Iteration 1   
                                                                  

Delete Add Route VRPSD cost 

21 24 0 2 1 3 5 4 0 303 

41 45 0 2 4 1 3 5 0 248 

51 53 0 2 4 5 1 3 0 258 

 
Iteration 2   
                                                                  

Delete Add Route VRPSD cost 

24 25 0 2 5 3 1 4 0 282 

41* 45* 0 2 4 5 3 1 0 269 

13 15 0 2 4 1 5 3 0 279 

 
Iteration 3   
                                                                  

Delete Add Route VRPSD cost 

24 23 0 2 3 5 1 4 0 334 

41* 43 0 2 4 3 5 1 0 289 

15* 13* 0 2 4 1 3 5 0 248 

 
Iteration 4   
                                                                  

Delete Add Route VRPSD cost 

23* 24* 0 2 4 1 5 3 0 279 

35 34 0 2 3 4 1 5 0 356 

51 54 0 2 3 5 4 1 0 330 

 
Iteration 5   
                                                                  

Delete Add Route VRPSD cost 

23* 21 0 2 1 4 5 3 0 336 

35 31 0 2 3 1 4 5 0 309 

54* 51* 0 2 3 5 1 4 0 334 

Aspiration cost = 248 
 
Current solution : 0 2 4 1 3 5 0 
 
Tabu list : 41(3) and 45(3) 
 
 
 
 
 
 
 
Aspiration cost = 248 
 
Current solution : 0 2 4 1 5 3 0 
 
Tabu list : 41(2)  45(2) 
  13(3) 15(3) 
 
 
 
 
 
 
 
Aspiration cost = 248 
 
Current solution : 0 2 3 5 1 4 0 
 
Tabu list : 41(1)  45(1) 
  13(2) 15(2) 
  24(3) 23(3) 
 
 
 
 
 
Aspiration cost = 248 
 
Current solution : 0 2 3 5 4 1 0 
 
Tabu list : 13(1) 15(1) 
  24(2) 23(2) 
  51(3) 54(3) 
 
 
 
 
 
Aspiration cost = 248 
 
Current solution : 0 2 3 1 4 0 
 
Tabu list :  24(1) 23(1) 
  51(2) 54(2) 
  35(3) 31(3) 
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Figure 4.7 .  Modified LK Move Process at iteration 6 to 10 

 

 

 

Iteration 6   
                                                                  

Delete Add Route VRPSD cost 

23* 25 0 2 5 4 1 3 0 315 

31* 35* 0 2 3 5 4 1 0 330 

14 15 0 2 3 1 5 4 0 292 

 
Iteration 7   
                                                                  

Delete Add Route VRPSD cost 

23 24 0 2 4 5 1 3 0 258 

31* 34 0 2 3 4 5 1 0 335 

15* 14* 0 2 3 1 4 5 0 309 

 
Iteration 8   
                                                                  

Delete Add Route VRPSD cost 

24* 23* 0 2 3 1 5 4 0 292 

45 43 0 2 4 3 1 5 0 247 

51 53 0 2 4 5 3 1 0 269 

 
Iteration 9   
                                                                  

Delete Add Route VRPSD cost 

24* 25 0 2 5 1 3 4 0 271 

43* 45* 0 2 4 5 1 3 0 258 

31 35 0 2 4 3 5 1 0 289 

 
Iteration 10   
                                                                  

Delete Add Σ tabu 
tenure 

Route VRPSD 
cost 

24* 21 1 0 2 1 5 3 4 0 333 

43* 41 2 0 2 4 1 5 3 0 279 

35* 31* 6 0 2 4 3 1 5 0 247 

Aspiration cost = 248 
 
Current solution : 0 2 3 1 4 5 0 
 
Tabu list :  51(1) 54(1) 
  35(2) 31(2) 
  14(3) 15(3) 
 
 
 
 
 
Aspiration cost = 248 
 
Current solution : 0 2 3 1 5 4 0 
 
Tabu list :  35(1) 31(1) 
  14(2) 15(2) 
  23(3) 24(3) 
 
 
 
 
 
 
Aspiration cost = 247 
 
Current solution : 0 2 4 5 1 3 0 
 
Tabu list :  14(1) 15(1) 
  23(2) 24(2) 

 45(3) 43(3) 
 
 
 
 
 
Aspiration cost = 247 
 
Current solution : 0 2 4 3 1 5 0 
 
Tabu list :  23(1) 24(1) 

 45(2) 43(2) 
  31(3) 35(3) 
 
 
 
 
 
Aspiration cost = 247 
 
Current solution : 0 2 4 3 5 1 0 
 
Tabu list :  45(1) 43(1) 
  31(2) 35(2) 
  24(3) 21(3) 
 



 

 

103

4.4 Discussion 

Figure 4.4 to 4.7 present the neighbourhood structure of 2-opt and Modified 

LK.  Compared to 2-opt, LK has several advantages: 

- easier to implement 

- less number of move to be examined at each iteration 

but it has disadvantage since it need longer iteration than 2-opt to reach the global 

optimum.  2-opt reaches the best solution at iteration 3 whereas Modified LK reaches 

the same best cost value as 2-opt at iteration 8.  This condition is depicted in        

Figure 4.8. 
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Figure 4.8. Aspiration Cost versus Iteration 

 

 

As shown in Figure 4.9, TS allows the search to accept non improving move 

as long as it is not tabu, and at the other side it also allows tabu move as long it can 

give an improvement to the aspiration cost.  The results obtained by 2-opt and 

Modified LK are compared.  The 2-opt and Modified LK gave the same optimal 

value of 247.     
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Figure 4.9. Cost versus Iteration  

 

In this section we have explain the result of the use of two different moves 

that were 2-opt and modified Lin and Kernighan.  From the previous discussion, 

Tabu Search is proven to be able to yield a good quality solution.  Further, we 

compared the use of static and dynamic tabu list size, and the effect to the search 

process was investigated.   
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Figure 4.10. The comparison between static and dynamic tabu list size 

 

 Although the best result from both types of tabu list size was the same, but it 

was quite different in the search process values.  Actually tabu list was used to 

prevent the search from cycling, but static tabu list size shows weakness since we can 

still find solutions that have been reached from a few last iterations.  By using 

dynamic tabu list size, the probability of cycling can be reduced significantly as 

depicted in Figure 4.10.  Please note that in Figure 4.10b, the objective function at 

iteration 10 was the same like the one at iteration 3.  It does not mean that cycling 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

a. The use of static tabu list size 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

b. The use of dynamic tabu list size 

Cycling Cycling
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was occurred since the routes produced from those two iterations were different but 

they produce the same objective value. 
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CHAPTER 5 

 

 

 

 

GENETIC ALGORITHM FOR SOLVING SINGLE VRPSD 

 

 

 

 

5.1 Introduction 

 

Genetic Algorithm (GA) is a search method based on principles of natural 

selection and genetics.  Once the problem is encoded in a chromosomal manner and a 

fitness measure for discriminating good solutions from bad ones has been chosen, we 

can start to evolve solutions to the search problem using selection, recombination, 

and mutation.  Limited number of research using GA in VRPSD has opened a new 

direction to develop GA for solving VRPSD quickly and reliably.  We give brief 

description of GA that was implemented, the experimental results and the discussion.   

 

 

 

5.2 Genetic Algorithm for Single VRPSD 

 

5.2.1 Chromosome Representation 

 

In developing the algorithm, the permutation representation or the path 

representation or order representation is used since the typical approach using binary 

strings will simply make coding more difficult.  Order representation is perhaps the 

most natural and useful representation of a VRP tour, where customers are listed in 
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the order in which they are visited.  A chromosome represents a route and a gene 

represents a customer and the values of genes are called alleles.  The search space for 

this representation is the set of permutations of the customers; every chromosome is 

a string of numbers that represent a position in a sequence. 

 

 

 

5.2.2 Initialization  

 

Usually the initial population of candidate solutions is generated randomly 

across the search space.  However, other information can be easily incorporated to 

yield better results.  In this study, the inclusion of Nearest Neighbour and Farthest 

Insertion to the initial population was implemented to give the GA a good starting 

point.  The population is an array P of N (population size) chromosomes.  Each 

chromosome Pk is initialized as a permutation of customers.  Clones (identical 

solutions) are forbidden in P to ensure a better dispersal of solutions and to diminish 

the risk of premature convergence.   

 

The population size is one of the important factors affecting the performance 

of genetic algorithm.  Small population size might lead to premature convergence.  

On the other hand, large population size leads to unnecessary expenditure of valuable 

computational time.  The population size in this study was the multiplication of 

number of customers, that was two times the number of customers, in order to 

remain diversify the population.  

 

 

 

5.2.3 Evaluation 

 

Once the population is initialized or an offspring population is created, the 

fitness values of candidate solutions are evaluated.  The fitness value is the function 

of VRPSD objective function.  
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5.2.4 Roulette Wheel Selection with elitism 

 

This research employs the combination of two types of GA selection 

techniques, namely roulette wheel and elitism.  The roulette wheel selection works 

by selecting the chromosome by looking at their proportional fitness rank.  This is 

where the evolution concept survival of the fittest comes into plays.  Some 

researchers found that this technique will lead to only the best chromosome been 

selected in the population.  It because the fittest chromosome rank is bigger 

compared to the less fit chromosome and in probability of course chromosome with 

the highest rate will have a big chance to be selected, while the elitism technique is a 

simple selection operator, which reserved the best found chromosome in the current 

population to rebirth for the next generation.  

  

Mitchell (1996) said that elitism could increase rapidly the performance of 

genetic algorithm, because it prevents losing the best-found solution.  When creating 

a new generation using the reproduction operator, we could have a chance of losing 

the best-found chromosome in the current population.  This is where elitism plays 

their role in preventing the lost of this chromosome.  In this example, after the 

calculation for each selection chromosome probability has been done, the elitism 

operator will automatically reserved the chromosome that produce the lowest 

expected cost. 

 

 

 

5.2.5 Order Crossover (OX) 

 

In Oliver et al. (1987), Partially Match Crossover (PMX), Cycle Crossover 

(CX) and Order Crossover (OX) were applied to the 30-city problem of Hopfield and 

Tank.  They found that the best tour generated with OX was 11% shorter than the 

best PMX tour, and 15% shorter than the best CX tour.  In a later study by 

Starkweather et al. (1991), six different crossover operators were tested on the 

problem of Hopfield and Tank.  Thirty different runs were performed with each 

operator.  In this experiment, OX found the optimum 25 times (out of 30), while 

PMX found the optimum only once, and CX never found the optimum.  
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Thus in this study, OX was employed in generation of offspring.  OX was 

first proposed by Oliver et al. in 1987.  This crossover operator extends the modified 

crossover of Davis by allowing two cut points to be randomly chosen on the parent 

chromosomes.  In order to create an offspring, the string between the two cut points 

in the first parent is first copied to the offspring.  Then, the remaining positions are 

filled by considering the sequence of cities in the second parent, starting after the 

second cut point (when the end of the chromosome is reached, the sequence 

continues at position 1). 

 

In Figure 5.1, the substring 564 in parent 1 is first copied to the offspring 

(step 1). Then, the remaining positions are filled one by one after the second cut 

point, by considering the corresponding sequence of customers in parent 2, namely 

57814236 (step 2).  Hence, customer 5 is first considered to occupy position 6, but it 

is discarded because it is already included in the offspring.  Customer 7 is the next 

customer to be considered, and it is inserted at position 6.  Then, customerity 8 is 

inserted a t position 7, city 1 is inserted at position 8, city 4 is discarded, city 2 is 

inserted at position 1, city 3 is inserted at position 2, and city 6 is discarded. 

 

 

 

 

 

 

Figure 5.1. The Order Crossover 

 

 

 

Clearly, OX tries to preserve the relative order of the cities in parent 2, rather 

than their absolute position.  In Figure 11, the offspring does not preserve the 

position of any city in parent 2.  However, city 7 still appears before city 8, and city 2 

before city 3 in the resulting offspring.  

 

 

 

parent 1 :  1 2 | 5 6 4 | 3 8 7 

parent 2 :  1 4 | 2 3 6 | 5 7 8 

 
    offspring: (step 1)  :  -  -   5 6 4   - - - 

(step 2)  :  2 3   5 6 4   7 8 1 
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5.2.6 Mutation 

 

Mutation alters one or more genes (positions) of a selected chromosome 

(solution) to reintroduce lost genetic material and introduce some extra variability 

into the population.  Mutation operators are aimed at randomly generating new 

permutations of the cities.  As opposed to the classical mutation operator, which 

introduces small perturbations into the chromosome, the permutation operators for 

the VRP and or TSP often greatly modify the original tour.  In this study, we 

implement two (2) mutation methods that were swap mutation and displacement 

mutation.  In swap mutation, two customer locations are swapped, and their positions 

are exchanged.  This mutation operator is the closest in philosophy to the original 

mutation operator, because it only slightly modifies the original tour.  For example, 

choose two random positions, i.e. position 2 and 7 and swap entries from tour  

7,4,0,3,2,1,5,6 

and the tour becomes 

7,5,0,3,2,1,4,6 

In displacement mutation, firstly we select two random points, grab the chunk 

between them and move it somewhere else, for example: 

0,1,2,3,4,5,6,7 becomes 0,3,4,5,1,2,6,7. 

 

 

 

5.2.7 Stopping criterion 

 

In our implementation, the GA procedure is repeated until the maximum 

number of generation. 

 

 The Genetic Algorithm is depicted in Figure 5.2. 
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Figure 5.2. Structure of Genetic Algorithm 

 

 

 

 



 

 

113

5.3       Illustration of Genetic Algorithm 

 

In this study, the GA parameters were set at the following values:  

- population size N = 10 

- probability of crossover = 0.75 

- probability of mutation = 0.05 

- number of generation = 10 

 

The initial population generated by Nearest Neighbour and Farthest Insertion 

heuristics and randomly generated candidate solutions were listed in Table 5.1.  

Chromosome that identical to the other chromosomes was replaced by generating 

candidate solution randomly until there are no clones.  

 

Table 5.1. Population in the initial Generation (Generation = 0) 
Chromosome 

No 

Generated 

by 

Route Route without 

clones 

1 FI 0 2 4 5 3 1 0 0 2 4 5 3 1 0 

2 NN 0 2 4 5 3 1 0 0 2 1 5 3 4 0 

3 Random 0 2 1 3 5 4 0 0 2 1 3 5 4 0 

4 Random 0 2 3 1 5 4 0 0 2 3 1 5 4 0 

5 Random 0 2 4 1 3 5 0 0 2 4 1 3 5 0 

6 Random 0 2 4 5 3 1 0 0 2 1 4 5 3 0 

7 Random 0 2 3 5 1 4 0 0 2 3 5 1 4 0 

8 Random 0 2 3 5 4 1 0 0 2 3 5 4 1 0 

9 Random 0 2 5 1 4 3 0 0 2 5 1 4 3 0 

10 Random 0 2 5 1 3 4 0 0 2 5 1 3 4 0 

 

 

After the population was built, the evaluation and selection took place.  

VRPSD objective function is a evaluation measure for discriminating good solutions 

and bad solutions.  The smaller the VRPSD objective function, the better the 

solution.  In roulette wheel selection, each individual in the population is assigned a 

roulette wheel slot sized in proportion to its fitness.  That is, good solutions have a 

larger slot size than the less fit solution.  Set VRPSD objective function to be f.  

Thus, we use 1-(fi/sum (fi)) as fitness function rather than VRPSD objective function 
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itself.  The larger the fitness value, the higher probability of the chromosome to be 

chosen as parent.  It is possible for a chromosome to be selected multiple times.  The 

evaluation and selection process can be seen in Table 5.2.  

 

Table 5.2. Evaluation and Selection in the 1st generation 
Chro 

mosome  

number 

Population VRPSD 

objective 

function (fi) 

1- 

(fi/sum(fi)) 

cumulative Random 

number for 

selection 

Chrom. 

selected 

(1) (2) (3) (4) (5) (6) (7) 

1 0 2 4 5 3 1 0 269 0.911338 0.911338 5.1548 6 

2 0 2 1 5 3 4 0 333 0.890244 1.801582 4.12938 5 

3 0 2 1 3 5 4 0 303 0.900132 2.701714 4.54941 6 

4 0 2 3 1 5 4 0 292 0.903757 3.605471 6.3577 8 

5 0 2 4 1 3 5 0 248 0.918260 4.523731 5.81892 7 

6 0 2 1 4 5 3 0 336 0.889255 5.412986 2.41511 3 

7 0 2 3 5 1 4 0 334 0.889914 6.3029 6.78034 8 

8 0 2 3 5 4 1 0 330 0.891233 7.194133 4.85327 6 

9 0 2 5 1 4 3 0 318 0.895188 8.089321 2.07099 3 

10 0 2 5 1 3 4 0 271 0.910679 9 3.14572 4 

SUM 3034     

AVERAGE 303.4     

 

 

 Once the evaluation and selection were done, crossover and mutation were 

applied (as shown in Table 5.3) in order to create new, possibly better solution.  For 

each chromosome, a random number between 0 and 1 is generated.  If the random 

number is less than the crossover probability input parameter (=0.75), the 

chromosome is picked for crossover.  Each time two chromosomes have been picked 

up, OX crossover is applied and the population is listed.  There are three pairs of 

chromosome to be recombined and the population size became 13: 10 parents and 3 

offspring.  Each chromosome in the population listed after crossover operation is 

now given the chance to mutate by generating random number between 0 and 1.  If 

the random number is less than the mutation rate, the chromosome is then picked for 

mutation.  The offspring then replaced the worst parents until the population size is 

equal to 10.  If none of the offspring is better than the parents, than the population 
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just remains the same.  These procedures were repeated until the number of 

generation is equal to 10. 

 

Table 5.3. Crossover and Swap Mutation Process in the 1st generation 
MATING 

POOL 

Random 

No for 

crossover 

Parent and 

Offspring 

Random 

No for 

mutation 

After 

crossover & 

mutation 

Cost Cost 

Rank 

New 

Population 

(1) (2) (3) (4) (5) (6) (7) (8) 

0 2 1 4 5 3 0 0.853103 0 2 1 4 5 3 0 0.04655 0 2 4 1 5 3 0 279 3 0 2 4 1 5 3 0 

0 2 4 1 3 5 0 0.125565 0 2 4 1 3 5 0 0.60446 0 2 4 1 3 5 0 248 1 0 2 4 1 3 5 0 

0 2 1 4 5 3 0 0.391876 0 2 1 4 5 3 0 0.92949 0 2 1 4 5 3 0 336  0 2 3 5 4 1 0 

0 2 3 5 4 1 0 0.600514 0 2 3 5 4 1 0 0.31041 0 2 3 5 4 1 0 330 9 0 2 1 3 5 4 0 

0 2 3 5 1 4 0 0.340618 0 2 3 5 1 4 0 0.88872 0 2 3 5 1 4 0 334  0 2 3 5 4 1 0 

0 2 1 3 5 4 0 0.524349 0 2 1 3 5 4 0 0.71238 0 2 1 3 5 4 0 303 7 0 2 1 3 5 4 0 

0 2 3 5 4 1 0 0.979810 0 2 3 5 4 1 0 0.93372 0 2 3 5 4 1 0 330 10 0 2 3 1 5 4 0 

0 2 1 4 5 3 0 0.948004 0 2 1 4 5 3 0 0.20853 0 2 1 4 5 3 0 336  0 2 5 1 3 4 0 

0 2 1 3 5 4 0 0.878514 0 2 1 3 5 4 0 0.24742 0 2 1 3 5 4 0 303 6 0 2 1 5 4 3 0 

0 2 3 1 5 4 0 0.230942 0 2 3 1 5 4 0 0.19517 0 2 3 1 5 4 0 292 4 0 2 1 3 5 4 0 

  0 2 5 1 3 4 0 0.60567 0 2 5 1 3 4 0 271 2  

  0 2 1 5 4 3 0 0.16681 0 2 1 5 4 3 0 319 8  

  0 2 1 3 5 4 0 0.29362 0 2 1 3 5 4 0 303 5  

AVERAGE       297.8 

BEST COST       248 

  

  

From generation to generation, we may get better and better chromosomes in 

the population as shown in Table 5.4.  The parent chromosomes have already been 

selected according to their fitness, so the next population (which included the parents 

which did not undergo crossover) is among the fittest in the population and the 

population was gradually, on average, increase its fitness (which mean the VRPSD 

objective function is decreasing).  The problem is the condition when the two parents 

have the same allele at a given gene then OX crossover will not change that.  In other 

words, the offspring remains the same like their parents and it caused the average of 

the fitness was not changed.  Mutation is designed to overcome this problem in order 

to add diversity to the population and ensure that it is possible to explore the entire 

search space.  But in fact, using swap mutation with the probability of 0.05 did not 
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make any substantial change that could create a new better chromosome.  So, better 

mutation operator is needed to explore more the search region.   

 

Table 5.4. GA Results from Swap Mutation 

 

 

 

5.4. Comparison between GA and TS 

 

Table 5.5.  GA and TS Results 

 

  

The GA results were compared to the TS results from previous chapter.  For 

single run and the number of iteration is equal to 10, TS with 2-opt and Mod-LK 

seems to reach optimal solution, although they were different from the iteration 

number when they got optimal solution.  The interesting thing was GA could not 

reach an optimal solution for the same number of iteration.  It is possibly since the 

very simple swap mutation with probability = 0.05 used could not add diversity in 

the solution and could not explore more the search region.  Better mutation operator 

was suggested for the further study.   

 

 

 

Generation 0 1 2 3 4 5 6 7 8 9 1 0 

Best 2 6 9 2 4 8 2 4 8 2 4 8 2 4 8 2 4 8 2 4 8 2 4 8 2 4 8 2 4 8 2 4 8 

Average 303.4 297.8 276.9 264.1 261.8 261.8 261.8 261.8 261.8 261.8 261.8 

Generation/ 

I t e r a t i o n 

0 1 2 3 4 5 6 7 8 9 10 

B e s t  G A 2 6 9 2 4 8 2 4 8 2 4 8 2 4 8 2 4 8 2 4 8 2 4 8 2 4 8 2 4 8 2 4 8 

B e s t  T S  

( 2 - o p t ) 

2 6 9 2 4 8 2 4 7 2 4 7 2 4 7 2 4 7 2 4 7 2 4 7 2 4 7 2 4 7 2 4 7 

B e s t  T S 

(Mod-LK) 

2 6 9 2 4 8 2 4 8 2 4 8 2 4 8 2 4 8 2 4 8 2 4 8 2 4 7 2 4 7 2 4 7 
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CHAPTER 6 

 

 

 

 

SOFTWARE DEVELOPMENT FOR SOLVING SINGLE VRPSD 

 

 

 

 

6.1  Introduction 

  

This chapter explains the Vehicle Routing Problem with Stochastic Demands’ 

program operation which built using Microsoft Visual studio C++ 6.0.   It is a user 

friendly program developed to assist the users in deciding the route to take to 

accomplish the task of waste collection in the least total expected cost by following 

the simple policy as mentioned in Chapter 2.  Each of the part and its function will be 

described in details.   

 

Besides, this chapter provides information about the implementation of 

Visual Studio C++ 6.0 and some main functions used in developing this program.   

 

 

 

 

6.2  Scope and Parameter Setting of the Designed Program 

 

This designed program has been scoped for some aspects.  Problem set with 

maximum number of customers that can be solved by this program is 100 units of 

customers.  Demands of customers are recorded as a range where total number of 
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possible demands for each customer cannot exceed 100 units.  Capacity of vehicle 

used can be determined by user up to 100 units.  The scope and parameter settings of 

this designed program are summarized in Table 6.1 and Table 6.2 respectively.   

 

Table 6.1. Scope of program 

Maximum number of customers, n 100 

Maximum capacity of vehicle, Q 100 

Total possible demands for each customer 100 

  

 

Table 6.2. Parameter setting for program 

Penalty for route failure, b 2 

0a  0.9 

ρα ,  0.1 

β  2  

Number of ants, m (for n > 10) 10 

Maximum iterations (ACS) 100 

Num. of consecutive non-improving 

solutions allowed (ACS) 
50 

Initial temperature (SA) 1000 

Number of repetitions (SA) 20  

Cooling Rate (SA) 0.98 

Total of Iterations (SA) 1500 

 

 

 

 

 

6.3  Operation of the Designed Program 

 

In this section, the graphic user interface of the program is shown in Figure 

6.1.  There are three main parts on this interface.   
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Figure 6.1. Main GUI (Graphical User Interface) of designed program 

 

 

The first part is the menu bar which made up of three pull-down menus which 

are File, Edit and Help.  A few items can be found in each of the pull-down menus of 

File, Edit and Help as shown in Figure 6.2(a), (b) and (c) respectively.  

 

 

 

 

 

 

 

       (a)                                      (b)                                                (c) 

Figure 6.2. Pull-down menus and its items in menu bar 
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In File pull-down menu, there are common choices of Open, Save As and 

Exit items.  While in Edit pull-down menu, there have Data Input item for user to 

key in the data to the notepad and Clear item for delete or clear all the information 

used and shown.  Lastly, in Help pull-down menu, there have Instruction item which 

provides the procedure for data key-in and program using in detail as shown in 

Figure 6.3 while About item shows the information of this designed program.  

 

 

 
Figure 6.3. Message box in Instruction item 

 

The main role for second part of the designed program is displaying the 

information of data and result.  The graphical display region displays the customers’ 

locations and route of the result.  At the right hand side on the interface, there have 

two list controls.  The upper one displays the data information which includes 

coordinate x and y for the customers’ locations and demands for each of the 

customers while the lower one displays the result.  Result information includes the a 
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priori tour, demands of customers, capacity threshold value wh , expected demand for 

every customer and the capacity left q in the vehicle after servicing customer w.  

 

After user open an input file from Open item in File pull-down menu, 

graphical display region will displays the customers’ points and total number of 

customer will be shown through the static box.  An edit box at top of right hand side 

on interface is created for user to key in the maximum capacity of the vehicle used.  

Once the program is run, the total expected cost for the data set will be shown in the 

static box under the list control.  All of the components in second part of program are 

shown in Figure 6.4. 

 

 

 
Figure 6.4. Components for data and result displaying 

 

 

 Lastly, third part of the program is the result computation.  After open a file 

of data set, the user just needs to click the ACS or SA button to run the program.  

ACS button is used to solve the problem using Ant Colony Program while SA button 

A 

Graphical Display Region

Edit box
Static box 

    List  
Control 

Static box
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solves the problem using Simulated Annealing Method.  At the end of each search, 

the program will display the a priori tour and its total expected cost.  A progress bar 

is created to show the progress of computation process. 

 

Expected demand can be calculated using ‘Exp. Dmd.’ button based on the a 

priori tour to obtain the result for route with recourse action and its total expected 

cost.  Route with recourse action will be shown in the region labeled with capital A in 

Figure 6.4 while its graphical tour will be displayed in the graphical display region.  

The a priori tour and its total expected cost of the result can be obtained again by just 

having a click on ‘a priori’ button.   

 

 

 
Figure 6.5 Third part of the designed program 

 

 

 

6.4  Programming with Microsoft Visual C++ 6.0 

 

6.4.1  Introduction  

 

C is a computer programming language that can be used to create 

applications that control the computer and allow a person interact with the machine.  

To enhance it, another language, named C++ was developed from it by adding the 

concept of object-oriented programming.  Object-oriented programming is a 

programming paradigm that uses "objects" and their interactions to design 

applications and computer programs.  

 

Progress bar 
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Microsoft Visual C++ is a graphical programming environment used to create 

computer applications for the Microsoft Windows family of operating programs and 

it allows designing Windows objects and writing code to implement their behavior.  

To assist it, the Microsoft Foundation Class Library, or MFC, was created as an 

adaptation of Win32 in MS Visual Studio.  The MFC is a library and can be used to 

manually develop programs (Waters, 1994).  

 

 

6.4.2  The Visual C++ Application 

 

When starting to do a program, an application is the first thing to be created. 

In MFC, this process has been resumed in a class called CWinApp (Class-For-A-

Windows-Application).  Based on this, one must derive a class from CWinApp to 

create an application.   

 

An application by itself is an empty thing that only lets the operating program 

knows a program which will executed on the computer are created.  It doesn't display 

anything on the screen.  If you want to display something, the CWinApp class 

provides the InitApplication(), a Boolean method that must be overrided in that class. 

If it succeeds in creating the application, it returns TRUE.  If something went wrong 

in creating the application, it would return FALSE.  The minimum skeleton of an 

application would appear as follows: 

 

class CExerciseApp : public CWinApp 

{ 

public: 

 virtual BOOL InitInstance(); 

}; 

 

BOOL CExerciseApp::InitInstance() 

{ 

 return TRUE; 

} 
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After creating the application, a global variable of the class must be declared 

to make it available to other parts of the program.  It is usually called theApp but it 

can be named as anything as programmer wish.   

 

The fundamental classes of MFC are declared in the afxwin.h header file.  

Therefore, this is the primary header that programmer may have to add to each one 

of applications.  Based on this, a basic application can be created as follows:  

#include<afxwin.h> 

class CExerciseApp : public CWinApp 

{ 

public: 

 virtual BOOL InitInstance(); 

}; 

 

BOOL CExerciseApp::InitInstance() 

{ 

 return TRUE; 

} 

CExerciseApp theApp; 

 

 

 

6.4.3  Main Functions in ACS Code 

 

A complete code is made up of some Functions with different tasks.  The 

main functions that used in developing the designed program are summarized 

together with its description in Table 6.3.  The complete functions and descriptions 

are reflected in the ACS code which can be found in Appendix A.  
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Table 6.3. Main functions in ACS code 

Function Description 

CACS() The constructer that initializes the variables and 

arrays.  The function also creates the push buttons, 

edit boxes, static boxes and list controls. 

~CACS() The destructor. 

OnPaint() Set up the initial display. 

DrawPoint() Draws the points for customers’ locations 

DescentMethod() Computes the local minima for each ant. 

AntColonySystem() Compute optimal solution using Ant Colony 

System algorithm by calling up function 

DescentMethod(). 

Swap_Customer() Swap any two randomly chosen customers’ 

position. 

Simulated_Annealing() Compute optimal solution using Simulated 

Annealing algorithm by calling up the function 

Swap_Customer().  

OnClickCalc_ACS() Activates the push button ACS. 

OnClickCalc_SA() Activates the push button SA. 

OnClickShow 

_A_PRIORI() 

Shows the a priori tour and its total expected cost. 

OnClickCalc_ 

EXPDEMAND() 

Calculates the expected demands and shows the 

result. 

ObjFunction() Computes the expected objective function value 

using Equation (2.1-2.4) 

Expected_Demands() Generate expected demands and calculate the 

expected objective function value 

DescentMethod() Compute the local minima for each ant. 

OnFileOpen() Read information from an existing file 

OnFileSave() Save the information and result to an output file. 
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6.5  Summary 

 

This chapter presents the development of the ACS and SA’s Program for 

solving VRPSD by using Microsoft Visual Studio C++ 6.0 and goes into details 

about program implementation.  This program was built to solve a simple vehicle 

routing problem with stochastic demands based on Ant Colony Program with local 

search.  It is also includes the instructions of program using for users.   

 

The advantages of this program are it provides a choice for user to choose 

either solving the VRPSD by ACS or SA algorithm and user may compare the 

efficiency between ACS and SA algorithm.  By using the designed program, the 

operator may has a good planning for the pre-planned a priori tour in solid waste 

collection problem or delivery problem. 

 

Finally, this chapter provides the introduction and applications of 

Programming with Microsoft Visual Studio C++ 6.0. 
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CHAPTER 7 

 

 

 

 

THE EMULATION OF ANT COLONY SYSTEM AND                        

SIMULATED ANNEALING FOR SINGLE VRPSD 

 

 

 

 

Introduction 

 

This chapter presents the development of ACS and SA for solving single 

VRPSD.  In verifying the metaheuristics, a set of data is used 

 

 

 

The Data 

 

The customers’ locations are in form of Cartesian coordinate where each 

point appears uniquely in a plane through two numbers, called x-coordinate and y-

coordinate while demands of customers which are stochastic are recorded in a range 

form.  Since there is no open source data for VRPSD problem, thus the data is 

adopted from a set of data modified from the well known 50-customer problem in 

Eilon et al. (1971) as in Table 7.1. 
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Table 7.1. Data from Elion et al. (1971) 

 

 

The customers’ locations are shown on a plane by designed program as in 

Figure 7.1 to show the positions of all customers graphically.   

 

 

Customers’ Locations 
i 

x-Coor. y-Coor. 
ξi 

0 5.00 4.00 – 

1 1.89 0.77 4 – 7 

2 9.27 1.49 2 – 9 

3 9.46 9.36 3 – 5 

4 9.20 8.69 0 – 4 

5 7.43 1.61 5 – 7 

6 6.08 1.34 0 – 8 

7 5.57 4.60 3 – 5 

8 6.10 2.77 3 – 6 

9 8.99 2.45 1 – 7 

10 8.93 7.00 6 – 7 

11 8.60 0.53 5 – 7 

12 4.01 0.31 1 – 6 

13 3.34 4.01 3 – 7 

14 6.75 5.57 4 – 7 

15 7.36 4.03 1 – 2 

16 1.24 6.69 1 – 3 

17 7.13 1.92 1 – 7 

18 7.86 8.74 4 – 6 

19 4.18 3.74 5 – 9 

20 2.22 4.35 5 – 6 

21 0.88 7.02 5 – 8 

22 8.53 7.04 1 – 5 

23 6.49 6.22 1 – 8 

24 4.53 7.87 1 – 3 

Customers’ Locations 
i 

x-Coor. y-Coor. 
ξi 

25 4.46 7.91 0 – 4 

26 2.83 9.88 3 – 5 

27 3.39 5.65 1 – 6 

28 0.75 4.98 0 – 5 

29 7.55 5.79 1 – 4 

30 8.45 0.69 1 – 6 

31 3.33 5.78 3 – 7 

32 6.27 3.66 3 – 8 

33 7.31 1.61 0 – 6 

34 6.37 7.02 1 – 6 

35 7.23 7.05 0 – 7 

36 1.68 6.45 1 – 4 

37 3.54 7.06 2 – 8 

38 7.67 4.17 0 – 6 

39 2.2 1.12 3 – 7 

40 3.57 1.99 2 – 8 

41 7.34 1.38 0 – 4 

42 6.58 4.49 1 – 6 

43 5.00 9.00 1 – 4 

44 6.63 5.23 3 – 4 

45 5.89 8.06 1 – 8 

46 1.13 5.25 2 – 6 

47 1.90 8.35 3 – 7 

48 1.74 1.37 2 – 9 
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Figure 7.1. Positions of customers’ locations 

 

 For this case study, the stopping criterion for ACS algorithm is in dynamic 

form where either number of consecutive non-improving solutions reaching 50 or 

number of iteration reaches the maximum level.  For SA algorithm, the stopping 

criterion used is in static form where the iteration stops after a predetermined number 

of maximum iteration is reached.  The move that is used in SA algorithm to obtain 

the neighboring solution is the swapping of position of any two randomly chosen 

customers’ positions.   Parameter settings of ACS and SA algorithm for this case 

study are summarized in Table 7.2 and Table 7.3 respectively.  
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Table 7.2. Parameter setting of ACS algorithm 

Number of ants 10 

Capacity of vehicle 10 – 50  

0a  0.9 

ρα ,  0.1 

β  2 

0τ  1).( −
nnLn  

Maximum iterations 100 

Num. of consecutive non-improving solutions allowed 50 

 

 

Table 7.3. Parameter setting of SA algorithm 

Initial temperature 1000 

Number of repetition 20  

Cooling Rate 0.98 

Maximum iteration 1500 

 

 

 

7.3  Comparison of Algorithms over Problem Sizes 

 

For this case study, the proposed ACS with local search algorithm and 

Simulated Annealing algorithm are tested for problems ranging in size from 12 to 48 

customers.  The program is run for 10 trials for each algorithm under different 

vehicle capacity values from ten to forty.  Best cost refers to the best cost found from 

the 10 trials for comparison purpose.  Table 5.4 summarizes the computational 

results for algorithm ACS and SA under different problem sizes.   
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Table 7.4. Comparison of algorithm ACS and SA for different problem sizes 

Total Expected Cost of a priori 

ACS SA 

Problem 

sizes, 

N 

Capacity, 

Q 
Best Average Best Average 

Difference 

(Best ACS 

– Best SA) 

10 69.4358 69.5276 69.4358 69.9263 0 

20 42.7758 42.7825 42.8547 43.2857 - 0.0789 

30 37.2618 37.3537 37.3588 37.6974 - 0.0970 

12 

(Model 1) 

40 33.8966 33.9691 34.0416 34.7209 - 0.1450 

10 114.7422 114.8451 116.6947 117.9591 - 1.9525 

20 70.1857 70.5992 70.7853 72.9933 - 0.5996 

30 55.0705 55.5264 55.4437 58.4765 - 0.3732 

24 

(Model 2) 

40 50.4478 50.9085 51.0495 53.1760 - 0.6017 

10 154.1018 154.8055 156.9437 159.3486 - 2.8419 

20 94.1029 94.9249 97.4506 99.4608 -3.3477 

30 73.5592 74.2729 77.1142 79.7676 - 3.5550 

36 

(Model 3) 

40 62.6947 63.2958 68.7049 71.6983 - 6.0102 

10 199.2149 200.2451 209.8118 212.2541 - 10.5969 

20 118.7979 119.5347 126.0159 127.6119 - 7.2180 

30 91.1003 91.6274 96.3949 100.2883 - 5.2946 

48 

(Model 4) 

40 76.9768 78.0332 84.0350 87.9365 - 7.0582 

 

 The results indicate that proposed ACS with local search algorithm produces 

better solutions compared to SA algorithm.  For smaller size of problem, deviation 

between the best cost results from both ACS and SA algorithm is relatively small.  

For the problem size with 12 customers with vehicle capacity 10 units, both 

algorithms obtained the same best cost which is 69.4358 units.  But the percentage 

deviations of averages from the associated best cost are 0.1322 and 0.7064 for ACS 

and SA.  This indicates that ACS gives the results in a more consistent manner 

compared to SA.  

 

The deviation for SA’s solution compared to solutions obtained by ACS is 

increasing with the problem sizes.  For problem size with 12 customers, the best 

solutions of SA deviated from best solutions of ACS for not more than 0.5 percent.  

When it comes to the problem sizes with 48 customers, the best solutions of SA 

deviated from best solutions of ACS for more than 5 percent.  This indicates that 
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ACS performs much better than SA algorithm in bigger size of problem.  However, 

ACS requires more computational effort or time over SA algorithm.     

 

For each of the problem size, the larger of vehicle capacity gives the lower 

total expected cost.  The reason behind is, the larger capacity of vehicle is able to 

satisfy more customers’ demands in which it reduces the occurring times for 

preventive restocking and route failure.  

 

In short, ACS showed better performance than SA under all of the problem 

sizes with various vehicle capacities tested.  In next section, both algorithms will be 

tested over demand ranges.  The complete set of result can be found in Appendix B. 

 

 

 

7.4  Comparison of Algorithms over Demand Ranges  

 

To access the robustness of ACS algorithm, both ACS and SA algorithms are 

further compared for different demand ranges.  The customers’ demands are 

generated ranged from 5 to 20. Again, the program is run for 10 trials for each 

algorithm under different demand ranges and problem sizes.  The capacity of vehicle 

is set to be 30 units for every trial for this comparison.  Table 7.5 summarizes the 

computational results for comparison.   

 

Table 7.5. Comparison of algorithm ACS and SA for different demand ranges 

Total Expected Cost of a priori 

ACS SA 
Problem 

sizes, 

N 

Demand 

Ranges 

(max-

min) 
Best Average Best Average 

Difference 

(Best ACS 

– Best SA) 

5 37.8309 37.8309 37.8309 37.8946 0 

10 46.5176 46.5233 46.5176 46.6858 0 

15 55.9193 55.9193 55.9193 56.4056 0 

12 

(Model 1) 

20 66.3211 66.3906 66.4080 66.7586 - 0.0869 
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Table 7.5. Comparison of algorithm ACS and SA for different demand ranges  

(continued) 

Total Expected Cost of a priori 

ACS SA 
Problem 

sizes, 

N 

Demand 

Ranges 

(max-

min) 
Best Average Best Average 

Difference 

(Best ACS 

– Best SA) 

5 60.6567 60.8200 62.1815 63.3988 - 1.5248 

10 79.9053 80.0058 81.5747 80.6062 - 1.6694 

15 97.5548 97.6098 99.4316 101.3428 - 1.8768 

24 

(Model 2) 

20 116.1023 116.1148 117.3202 119.0287 - 1.2179 

5 80.1849 80.8623 84.1031 85.5617 - 3.9182 

10 106.9875 107.3627 110.6752 112.5322 - 3.6877 

15 133.3562 133.5786 137.9571 141.2781 - 4.6009 

36 

(Model 3) 

20 160.7067 161.0139 161.1994 166.7799 - 0.4927 

5 97.9829 98.7263 103.2490 105.2380 - 5.2661 

10 133.5311 134.0055 140.2354 143.1984 - 6.7043 

15 168.1742 168.8197 175.8930 179.7441 - 7.7188 

48 

(Model 4) 

20 205.0472 205.5534 214.8841 218.3807 - 9.8369 

 

 

The results indicate that for all demand ranges, proposed ACS algorithm 

showed better performance than SA algorithm.  From table above, it can be noted 

that ACS gives the more consistent solutions compared to SA algorithm.  The 

average total expected cost given by ACS does not deviate too far from its best cost.   

 

With a fixed capacity, the deviation of best costs for SA algorithm from the 

best cost of ACS is increasing as the demand ranges increases.  Further more, for 

problem size with 12 customers, the best solutions for SA deviated from best 

solutions of ACS for not more than 0.2 percent.  However, for problem size with 48 

customers, the best solutions of SA deviated from best solutions of ACS for more 

than 4.5 percent.  This shows that ACS algorithm can reach a good solution for 

larger problem size compare to SA algorithm.   

 

Apparently, SA is able to obtain good solutions for small ranges especially 

small size of problem.  For ACS, it is always provide good results for all tested 
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ranges and problems sizes of the tested problem.  The complete set of result can be 

found in Appendix C. 

 

 

 

7.5  Summary 

 

 The proposed ACS with local search algorithm and Simulated Annealing 

algorithm are tested for problems ranging in size from 12 to 48 customers.  The 

results indicate that proposed ACS with local search algorithm produces better 

solutions compare to SA algorithm.  Deviation of SA algorithm’s best cost from the 

best cost results of ACS algorithm is increasing as the problem size increases. 

 

 In the second part of comparison, both ACS and SA algorithms are further 

compared for different demand ranges from 5 to 20 units.  Again, the results indicate 

that proposed ACS algorithm showed better performance than SA algorithm.  With a 

fixed capacity, the deviation of best costs for SA algorithm from the best cost of 

ACS is increasing as the demand ranges increases.   

 

From the results of case study above, it can be known that the ACS algorithm 

always finds very good solutions for all tested problems in the aspects of various 

problem sizes and demand ranges.  The algorithm finds the good solutions efficiently 

and consistently compare with other heuristic methods such as Simulated Annealing 

and it does not exhibit stagnation behavior where the ants continue to search for new 

possibly better tours.  Stagnation behavior is the situation in which all ants make the 

same tour.   
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CHAPTER 8 

 

 

 

 

CONCLUSIONS AND RECOMMENDATIONS 

 

 

 

 

8.1  Introduction 

 

 This chapter provides a conclusion for this study based on the use of 

metaheuristics namely Tabu Search (TS), Genetic Algorithm (GA), Ant Colony 

System (ACS) and Simulated Annealing (SA) in solving Vehicle Routing Problem 

with Stochastic Demands (VRPSD).  Some recommendations for future work and 

program improvements are included in this chapter. 

 

 

 

8.2  Conclusions 

 

 The main purpose in this study is to study the applications of several 

metaheuristics in solving VRPSD.  As this problem cannot be solved by optimal 

(exact) methods in practice, heuristics are used for this purpose.  

 

The ACS exploits the nature phenomenon of ants to solve such stochastic 

optimization problem.  A local search algorithm (Descent Method) is proposed to be 

added in the ACS algorithm.  The concept of this method is to find the a priori tour 
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that gives the minimum total expected cost.  The ACS has been shown the ability in 

obtaining good solution for VRPSD problem.  

 

Generally, Genetic Algorithm gives a pool of solutions rather than just one. 

The process of finding superior solutions mimics the evolution process, with 

solutions being combined or mutated to find out the pool of solutions.  Simulated 

Annealing is a global optimization technique which traverses the search space by 

generating neighboring solutions of the current solution. A superior neighbor is 

always accepted and an inferior neighbor is accepted with some probability.   

 

Tabu Search is similar to Simulated Annealing, in that both traverse the 

solution space by testing mutations of an individual solution.  However, simulated 

annealing generates only one mutated solution but tabu search generates many 

mutated solutions and moves to the solution with the lowest fitness of those 

generated. 

 

Ant Colony System is the extension from Ant System.  Both algorithms are 

categorized as Ant Colony Optimization (ACO) algorithms.  In particular, it can be 

observed that ACS is the most aggressive of the AS algorithms and it returns the best 

solution quality for very short computation times (Dorigo and Stutzle, 2004).  ACS 

has an advantage over Simulated Annealing and Genetic Algorithm approaches 

when the graph may change dynamically where the Ant Colony algorithm can be run 

continuously and adapt to changes in real time.   

 

 

 

8.3  Recommendations for Future Work 

 

 There are some aspects of this study can be improved such as metaheuristics 

approach, VRPSD objective function, and the program improvement.  For Ant 

colony approach, it may be improved by letting more than one ant to contribute to 

the global updating rule to reduce the probability of being trapped in a local 

minimum and allowing the ants which produce very bad tours to subtract 

pheromone.  
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Besides, the current parallel local updating of pheromone may be changed to 

a sequential one.  In ACS, all ants apply the local updating rule in parallel while they 

are building their tours.  For the modified ACS, the first ant in the sequence starts 

builds its tour and it changes the pheromone on visited edges.  After that, the second 

ant starts and so on until the last ant has built its tour.  At this point, the global 

updating rule is applied. In this scheme, the preferred tour will tend to remain the 

same for all ants unlike in the ACS where local updating shuffles the tours.  

However, the search will be diversified since the later ant will search in a bigger 

neighborhood of the preferred tour (in fact, pheromone on the preferred tour 

decreases due to the evaporation as ants pass by, making it become less desirable for 

ants).  

 

For further study, we may develop hybrid metaheuristics scheme that 

combine the strength of trajectory methods like Tabu Search and Simulated 

Annealing with population-based methods like Genetic Algorithm and Ant Colony 

Optimization in order to increase the effectiveness in getting optimal solution.  

 

 

 

8.4 Suggestions for Program Improvement 

 

1. The program may be improved by adding a “call form” that can guide 

users in step by step data key in. 

2. The list controls which display the data information and result may be 

placed in another tab page for a wider display screen.  

3. The compute button may add in the refinement ability so that the 

solution obtained may be improved by a second or few more clicks. 
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Appendix A 
Computational results for numerical example 

 
 

Iteration 1 City 0 City 1 City 2 City 3 City 4 City 5 City 0 Expected Cost

Ant 1 1 0 4 5 2 3 1
Phe[1][0] Phe[0][4] Phe[4][5] Phe[5][2] Phe[2][3] Phe[3][1]
0.004274 0.004274 0.004274 0.004274 0.004274 0.004274

Ant 2 4 3 0 1 2 5 4
Phe[4][3] Phe[3][0] Phe[0][1] Phe[1][2] Phe[2][5] Phe[5][4]
0.004274 0.004274 0.004274 0.004274 0.004274 0.004274

After Sorting
Ant 1 0 4 5 2 3 1 0 59.8349
Ant 2 0 1 2 5 4 3 0 56.5243

Descent Method
Ant 1 0 4 5 3 2 1 0 54.6327
Ant 2 0 2 1 4 5 3 0 55.0749

Global Best 0 4 5 3 2 1 0 54.6327
Route Phe[0][4] Phe[4][5] Phe[5][3] Phe[3][2] Phe[2][1] Phe[1][0]

0.005677 0.005677 0.005677 0.005677 0.005677 0.005677

Iteration 2 City 0 City 1 City 2 City 3 City 4 City 5 City 0 Expected Cost

Ant 1 4 0 1 2 3 5 4
Phe[4][0] Phe[0][1] Phe[1][2] Phe[2][3] Phe[3][5] Phe[5][4]
0.005537 0.005410 0.005537 0.005537 0.005537 0.005410

Ant 2 3 1 0 4 5 2 3
Phe[3][1] Phe[1][0] Phe[0][4] Phe[4][5] Phe[5][2] Phe[2][3]
0.004274 0.005410 0.005410 0.005537 0.004274 0.005410

After Sorting
Ant 1 0 1 2 3 5 4 0 54.4578
Ant 2 0 4 5 2 3 1 0 59.8349

Descent Method
Ant 1 0 1 2 3 5 4 0 54.4587
Ant 2 0 4 5 3 2 1 0 54.6327

Global Best 0 1 2 3 5 4 0 54.4587
Route Phe[0][1] Phe[1][2] Phe[2][3] Phe[3][5] Phe[5][4] Phe[4][0]

0.006706 0.006819 0.006706 0.006819 0.006706 0.006706

Iteration 3 City 0 City 1 City 2 City 3 City 4 City 5 City 0 Expected Cost

Ant 1 3 0 1 5 4 2 3
Phe[3][0] Phe[0][1] Phe[1][5] Phe[5][4] Phe[4][2] Phe[2][3]
0.004274 0.006243 0.004274 0.006462 0.004274 0.006462

Ant 2 4 0 1 2 5 3 4
Phe[4][0] Phe[0][1] Phe[1][2] Phe[2][5] Phe[5][3] Phe[3][4]
0.006462 0.006244 0.006565 0.004274 0.006565 0.004274

After Sorting
Ant 1 0 1 5 4 2 3 0 59.6943
Ant 2 0 1 2 5 3 4 0 60.8753

Descent Method
Ant 1 0 4 5 3 2 1 0 54.6327
Ant 2 0 2 1 4 5 3 0 55.0749

Global Best 0 1 2 3 5 4 0 54.4587
Route Phe[0][1] Phe[1][2] Phe[2][3] Phe[3][5] Phe[5][4] Phe[4][0]

0.007456 0.007745 0.007652 0.007745 0.007652 0.007652  
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Iteration 4 City 0 City 1 City 2 City 3 City 4 City 5 City 0 Expected Cost

Ant 1 2 0 4 5 3 1 2
Phe[2][0] Phe[0][4] Phe[4][5] Phe[5][3] Phe[3][1] Phe[1][2]
0.004274 0.007011 0.007315 0.007397 0.004274 0.007085

Ant 2 0 4 1 2 3 5 0
Phe[0][4] Phe[4][1] Phe[1][2] Phe[2][3] Phe[3][5] Phe[5][0]
0.007315 0.004274 0.007397 0.007314 0.007085 0.004274

After Sorting
Ant 1 0 4 5 3 1 2 0 55.2670
Ant 2 0 4 1 2 3 5 0 61.4526

Descent Method
Ant 1 0 4 5 3 2 1 0 54.6327
Ant 2 0 2 1 4 5 3 0 55.0749

Global Best 0 1 2 3 5 4 0 54.4587
Route Phe[0][1] Phe[1][2] Phe[2][3] Phe[3][5] Phe[5][4] Phe[4][0]

0.008546 0.008213 0.008419 0.008213 0.008419 0.008146

Iteration 5 City 0 City 1 City 2 City 3 City 4 City 5 City 0 Expected Cost

Ant 1 0 4 2 3 5 1 0
Phe[0][4] Phe[4][2] Phe[2][3] Phe[3][5] Phe[5][1] Phe[1][0]
0.007759 0.004274 0.008005 0.007819 0.004274 0.007734

Ant 2 5 4 0 1 2 3 5
Phe[5][4] Phe[4][0] Phe[0][1] Phe[1][2] Phe[2][3] Phe[3][5]
0.008005 0.007410 0.008119 0.007819 0.007632 0.007464

After Sorting
Ant 1 0 4 2 3 5 1 0 67.4628
Ant 2 0 1 2 3 5 4 0 54.4587

Descent Method
Ant 1 0 4 5 3 2 1 0 54.6327
Ant 2 0 1 2 3 5 4 0 54.4587

Global Best 0 1 2 3 5 4 0 54.4587
Route Phe[0][1] Phe[1][2] Phe[2][3] Phe[3][5] Phe[5][4] Phe[4][0]

0.008797 0.008873 0.008705 0.008554 0.009041 0.008505

Iteration 6 City 0 City 1 City 2 City 3 City 4 City 5 City 0 Expected Cost

Ant 1 4 0 1 2 5 3 4
Phe[4][0] Phe[0][1] Phe[1][2] Phe[2][5] Phe[5][3] Phe[3][4]
0.008082 0.008345 0.008413 0.004274 0.008126 0.004274

Ant 2 5 4 0 1 2 3 5
Phe[5][4] Phe[4][0] Phe[0][1] Phe[1][2] Phe[2][3] Phe[3][5]
0.008564 0.007701 0.007938 0.007999 0.008262 0.007741

After Sorting
Ant 1 0 1 2 5 3 4 0 60.8753
Ant 2 0 1 2 3 5 4 0 54.4587

Descent Method
Ant 1 0 2 1 4 5 3 0 55.0749
Ant 2 0 1 2 3 5 4 0 54.4587

Global Best 0 1 2 3 5 4 0 54.4587
Route Phe[0][1] Phe[1][2] Phe[2][3] Phe[3][5] Phe[5][4] Phe[4][0]

0.008980 0.009036 0.009272 0.008803 0.009544 0.008768  
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Iteration 7 City 0 City 1 City 2 City 3 City 4 City 5 City 0 Expected Cost

Ant 1 3 0 1 2 4 5 3
Phe[3][0] Phe[0][1] Phe[1][2] Phe[2][4] Phe[4][5] Phe[5][3]
0.004274 0.008086 0.008560 0.004274 0.008543 0.007943

Ant 2 1 0 4 5 3 2 1
Phe[1][0] Phe[0][4] Phe[4][5] Phe[5][3] Phe[3][2] Phe[2][1]
0.008510 0.008318 0.009017 0.008350 0.008772 0.008131

After Sorting
Ant 1 0 1 2 4 5 3 0 55.2604
Ant 2 0 4 5 3 2 1 0 54.6327

Descent Method
Ant 1 0 1 2 3 5 4 0 54.4587
Ant 2 0 4 5 3 2 1 0 54.6327

Global Best 0 1 2 3 5 4 0 54.4587
Route Phe[0][1] Phe[1][2] Phe[2][3] Phe[3][5] Phe[5][4] Phe[4][0]

0.009114 0.009154 0.009731 0.008985 0.009525 0.009323

FINAL SOLUTION

Global Best Route (a priori):
0 1 2 3 5 4 0

Total Expected Cost = 54.4587

Global Best Route with Expected Demands
0 1 2 3 0 5 4 0

Total Expected Cost = 52.936
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Appendix B 

Computational result for different problem sizes 
Capacity (10) ACS SA Capacity (20) ACS SA

1 69.4358 69.8700 1 42.7758 42.8589
2 69.6467 69.9069 2 42.7850 43.8863
3 69.5435 69.4385 3 42.7850 43.8628
4 69.4575 70.4907 4 42.7758 42.8874
5 69.5435 69.9069 5 42.7850 43.8830
6 69.4575 69.5435 6 42.7850 42.8589
7 69.6467 69.5435 7 42.7785 42.8547
8 69.5435 70.0882 8 42.7850 42.8547
9 69.5435 70.3869 9 42.7850 42.9326
10 69.4575 70.0882 10 42.7850 43.9773

Average 69.5276 69.9263 Average 42.7825 43.2857
Best 69.4358 69.4385 Best 42.7758 42.8547

Capacity (30) ACS SA Capacity (40) ACS SA
1 37.2618 37.8461 1 33.8966 34.0416
2 37.2618 37.6607 2 34.0416 34.4675
3 37.6209 37.8466 3 34.0416 34.4337
4 37.5149 37.6761 4 33.8966 34.6327
5 37.2618 37.7998 5 34.0416 34.6327
6 37.5683 37.6607 6 33.8966 35.2914
7 37.2618 37.3588 7 33.8966 35.0907
8 37.2618 37.8461 8 34.0416 35.4416
9 37.2618 37.7643 9 34.0416 34.6327
10 37.2618 37.5149 10 33.8966 34.5439

Average 37.3537 37.6974 Average 33.9691 34.7209
Best 37.2618 37.3588 Best 33.8966 34.0416

Capacity (10) ACS SA Capacity (20) ACS SA
1 115.6314 116.7344 1 70.6635 72.0196
2 114.7622 117.5800 2 70.1857 72.1466
3 114.7622 117.8070 3 70.6635 73.8640
4 114.7622 118.2235 4 70.6635 74.8441
5 114.7422 116.9303 5 70.6524 73.0754
6 114.7622 116.6947 6 70.5987 72.5846
7 114.7622 117.7313 7 70.5833 70.7853
8 114.7622 119.6937 8 70.6635 73.4832
9 114.7622 119.5678 9 70.7217 74.8438
10 114.7422 118.6287 10 70.5959 72.2866

Average 114.8451 117.9591 Average 70.5992 72.9933
Best 114.7422 116.6947 Best 70.1857 70.7853

Capacity (30) ACS SA Capacity (40) ACS SA
1 55.8752 56.5617 1 50.8439 52.3562
2 55.3715 59.7675 2 50.8439 51.4846
3 55.0907 61.7211 3 51.3761 54.3662
4 55.2055 59.0000 4 51.3761 53.7147
5 55.0705 59.5702 5 50.8439 55.1644
6 55.7971 57.4225 6 50.4478 53.0544
7 56.2181 57.2364 7 50.7826 51.0495
8 55.0907 60.0380 8 50.8439 52.9504
9 55.8752 57.0041 9 50.9149 55.6137
10 55.6693 56.4437 10 50.8122 52.0059

Average 55.5264 58.4765 Average 50.9085 53.1760
Best 55.0705 56.4437 Best 50.4478 51.0495

n  = 12

n  = 24
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Capacity (10) ACS SA Capacity (20) ACS SA
1 154.6367 160.1961 1 94.6839 99.8777
2 154.9405 158.6371 2 94.9025 100.9168
3 154.2722 158.7943 3 94.9767 97.4506
4 155.5823 159.4611 4 94.7980 98.5450
5 154.1018 159.3102 5 95.4961 100.0834
6 154.8023 159.2105 6 95.5011 98.3040
7 155.0519 159.5609 7 94.1231 99.9228
8 154.4073 162.9857 8 95.1888 98.4287
9 155.0003 158.3868 9 94.1029 99.5134
10 155.2596 156.9437 10 95.4760 101.5651

Average 154.8055 159.3486 Average 94.9249 99.4608
Best 154.1018 156.9437 Best 94.1029 97.4506

Capacity (30) ACS SA Capacity (40) ACS SA
1 74.3692 83.7802 1 63.2139 68.7835
2 74.5966 77.3196 2 63.2328 70.5108
3 73.9676 77.6087 3 63.0388 68.7049
4 74.1547 79.6420 4 63.1630 75.7079
5 73.5592 78.6749 5 64.1176 72.9964
6 74.1825 80.6051 6 62.6947 73.4751
7 75.0294 80.6868 7 63.6378 73.8138
8 73.8329 81.1141 8 63.2508 71.9439
9 74.4678 77.1142 9 63.5032 69.2949
10 74.5686 81.1299 10 63.1055 71.7519

Average 74.2729 79.7676 Average 63.2958 71.6983
Best 73.5592 77.1142 Best 62.6947 68.7049

Capacity (10) ACS SA Capacity (20) ACS SA
1 200.7342 216.2808 1 118.7979 129.4671
2 200.0541 213.1050 2 119.8071 126.2883
3 199.2149 213.6705 3 119.5007 126.0159
4 200.3239 211.9459 4 119.3693 128.2230
5 200.4473 213.4700 5 119.4437 126.4835
6 200.1959 211.7568 6 119.7060 127.6128
7 199.8048 209.8118 7 119.2933 129.2605
8 200.4827 211.1829 8 119.5128 127.0783
9 200.0273 211.0323 9 119.5641 126.7557
10 201.1663 210.2848 10 120.3522 128.9342

Average 200.2451 212.2541 Average 119.5347 127.6119
Best 199.2149 209.8118 Best 118.7979 126.0159

Capacity (30) ACS SA Capacity (40) ACS SA
1 91.2987 100.7316 1 78.1829 84.0867
2 91.5189 97.0785 2 79.3764 86.3547
3 91.7264 100.4024 3 79.0092 92.8496
4 92.2051 101.1812 4 76.9768 89.0924
5 91.3195 100.8146 5 77.4840 85.0039
6 91.1003 101.4224 6 77.6929 88.2642
7 91.3816 96.3949 7 77.2585 88.7771
8 91.7970 98.9237 8 77.6946 84.0350
9 91.7830 101.0227 9 78.1219 89.4476
10 92.1431 104.9112 10 78.5346 91.4540

Average 91.6274 100.2883 Average 78.0332 87.9365
Best 91.1003 96.3949 Best 76.9768 84.0350

n  = 36

n  = 48
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Appendix C 
Computational result for different demand ranges 

 
Dmd Range (5) ACS SA Dmd Range (10) ACS SA

1 37.8309 37.8309 1 46.5206 46.8988
2 37.8309 37.8488 2 46.5206 46.5206
3 37.8309 37.8630 3 46.5176 46.6386
4 37.8309 37.9658 4 46.5176 46.6898
5 37.8309 37.8345 5 46.5206 46.6386
6 37.8309 37.9292 6 46.5206 46.5176
7 37.8309 37.9591 7 46.5206 46.6577
8 37.8309 37.9457 8 46.5386 46.5176
9 37.8309 37.9271 9 46.5176 46.9898
10 37.8309 37.8414 10 46.5386 46.7891

Average 37.8309 37.8946 Average 46.5233 46.6858
Best 37.8309 37.8309 Best 46.5176 46.5176

Dmd Range (15) ACS SA Dmd Range (20) ACS SA
1 55.9193 56.0396 1 66.4080 67.0337
2 55.9193 56.8359 2 66.3211 66.5212
3 55.9193 56.3900 3 66.4080 66.4080
4 55.9193 56.3800 4 66.4080 66.4080
5 55.9193 56.2987 5 66.4080 66.4641
6 55.9193 56.1189 6 66.3211 67.4146
7 55.9193 55.9193 7 66.4080 66.7276
8 55.9193 57.1906 8 66.4080 67.6057
9 55.9193 55.9193 9 66.4080 66.5949
10 55.9193 56.9635 10 66.4080 66.4080

Average 55.9193 56.4056 Average 66.3906 66.7586
Best 55.9193 55.9193 Best 66.3211 66.4080

Dmd Range (5) ACS SA Dmd Range (10) ACS SA
1 60.6733 63.2559 1 79.9689 81.7906
2 60.6567 64.4601 2 80.1622 81.5747
3 60.6567 63.9817 3 80.0595 82.2676
4 61.1208 62.5469 4 79.9053 82.9661
5 60.6567 62.9075 5 79.9589 82.2295
6 60.6567 62.1815 6 79.9589 83.5011
7 60.6567 63.3900 7 80.0149 83.9647
8 60.9831 64.1865 8 79.9053 82.0714
9 61.4777 63.8513 9 80.1086 83.0139
10 60.6611 63.2263 10 80.0159 82.6824

Average 60.8200 63.3988 Average 80.0058 82.6062
Best 60.6567 62.1815 Best 79.9053 81.5747

Dmd Range (15) ACS SA Dmd Range (20) ACS SA
1 97.5562 100.7251 1 116.1232 120.2019
2 97.6145 101.9586 2 116.1023 119.7339
3 97.6145 100.3302 3 116.1023 118.8899
4 97.6145 101.9371 4 116.1023 118.1318
5 97.6145 99.4316 5 116.1023 118.0793
6 97.6145 102.1688 6 116.1438 119.9205
7 97.5548 100.7495 7 116.1023 119.5699
8 97.6858 102.1522 8 116.1023 119.5374
9 97.6145 101.0403 9 116.1438 118.9024
10 97.6145 102.9346 10 116.1232 117.3202

Average 97.6098 101.3428 Average 116.1148 119.0287
Best 97.5548 99.4316 Best 116.1023 117.3202

n  = 12

n  = 24
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Dmd Range (5) ACS SA Dmd Range (10) ACS SA
1 37.8309 37.8309 1 46.5206 46.8988
2 37.8309 37.8488 2 46.5206 46.5206
3 37.8309 37.8630 3 46.5176 46.6386
4 37.8309 37.9658 4 46.5176 46.6898
5 37.8309 37.8345 5 46.5206 46.6386
6 37.8309 37.9292 6 46.5206 46.5176
7 37.8309 37.9591 7 46.5206 46.6577
8 37.8309 37.9457 8 46.5386 46.5176
9 37.8309 37.9271 9 46.5176 46.9898
10 37.8309 37.8414 10 46.5386 46.7891

Average 37.8309 37.8946 Average 46.5233 46.6858
Best 37.8309 37.8309 Best 46.5176 46.5176

Dmd Range (15) ACS SA Dmd Range (20) ACS SA
1 55.9193 56.0396 1 66.4080 67.0337
2 55.9193 56.8359 2 66.3211 66.5212
3 55.9193 56.3900 3 66.4080 66.4080
4 55.9193 56.3800 4 66.4080 66.4080
5 55.9193 56.2987 5 66.4080 66.4641
6 55.9193 56.1189 6 66.3211 67.4146
7 55.9193 55.9193 7 66.4080 66.7276
8 55.9193 57.1906 8 66.4080 67.6057
9 55.9193 55.9193 9 66.4080 66.5949
10 55.9193 56.9635 10 66.4080 66.4080

Average 55.9193 56.4056 Average 66.3906 66.7586
Best 55.9193 55.9193 Best 66.3211 66.4080

Dmd Range (5) ACS SA Dmd Range (10) ACS SA
1 60.6733 63.2559 1 79.9689 81.7906
2 60.6567 64.4601 2 80.1622 81.5747
3 60.6567 63.9817 3 80.0595 82.2676
4 61.1208 62.5469 4 79.9053 82.9661
5 60.6567 62.9075 5 79.9589 82.2295
6 60.6567 62.1815 6 79.9589 83.5011
7 60.6567 63.3900 7 80.0149 83.9647
8 60.9831 64.1865 8 79.9053 82.0714
9 61.4777 63.8513 9 80.1086 83.0139
10 60.6611 63.2263 10 80.0159 82.6824

Average 60.8200 63.3988 Average 80.0058 82.6062
Best 60.6567 62.1815 Best 79.9053 81.5747

Dmd Range (15) ACS SA Dmd Range (20) ACS SA
1 97.5562 100.7251 1 116.1232 120.2019
2 97.6145 101.9586 2 116.1023 119.7339
3 97.6145 100.3302 3 116.1023 118.8899
4 97.6145 101.9371 4 116.1023 118.1318
5 97.6145 99.4316 5 116.1023 118.0793
6 97.6145 102.1688 6 116.1438 119.9205
7 97.5548 100.7495 7 116.1023 119.5699
8 97.6858 102.1522 8 116.1023 119.5374
9 97.6145 101.0403 9 116.1438 118.9024
10 97.6145 102.9346 10 116.1232 117.3202

Average 97.6098 101.3428 Average 116.1148 119.0287
Best 97.5548 99.4316 Best 116.1023 117.3202

n  = 12

n  = 24

 


