DESIGN AND DEVELOPMENT OF A MULTISTAGE SYMMETRICAL

WOBBLE COMPRESSOR

ARDIYANSYAH BIN SYAHROM

Faculty of Mechanical Engineering Universiti Teknologi Malaysia

UNIVERSITI TEK	INOLOGI MALAYSIA
-----------------------	------------------

BORANG PENGESAHAN STATUS TESIS *							
JUDUL: DESIGN AND DE	JUDUL: DESIGN AND DEVELOPMENT OF MULTISTAGE SYMMETRICAL						
WOBBLE PLATE	COMPRESSOR						
SESI	I PENGAJIAN : 2006 / 2007						
Saya	ARDIYANSYAH BIN SYAHROM						
mengaku membenarkan tesis (PSA	M/Sarjana/Doktor Falsafah)* ini disimpan di Perpustakaan						
Universiti Teknologi Malaysia der	ngan syarat-syarat kegunaan seperti berikut :						
 Tesis adalah hakmilik Universiti Teknologi Malaysia. Perpustakaan Universiti Teknologi Malaysia dibenarkan membuat salinan untuk tujuan pengajian sahaja. Perpustakaan dibenarkan membuat salinan tesis ini sebagai bahan pertukaran antara institusi pengajian tinggi. **Sila tandakan (√) 							
SULIT	(Mengandungi maklumat yang berdarjah keselamatan atau kepentingan Malaysia seperti yang termaktub di dalam AKTA RAHSIA RASMI 1972)						
TERHAD	(Mengandungi maklumat TERHAD yang telah ditentukan oleh Organisasi/badan di mana penyelidikan dijalankan)						
TIDAK TERHAD	Disahkan oleh						
(TANDATANGAN PEI	NULIS) (TANDATANGAN PENYELIA)						
~	Junh 5 - (Mohafulu						
Alamat Tetap: Jl. Rd. Saleh gg.	Cimpago No. 12 PROF. DR MD. NOR MUSA						
Padang – Sumato	Tarikh : 27 Desember 2006						
Tarikh · 27 Dese	ember 2006						

CATATAN :

- Potong yang tidak berkenaan. Jika tesis ini SULIT atau TERHAD, sila lampirkan surat daripada pihak berkuasa/organisasi berkenaan dengan menyatakan sekali sebab dan tempoh tesis ini perlu dikelaskan sebagai ** SULIT atau TERHAD.
- Tesis dimaksudkan sebagai tesis bagi Ijazah Doktor Falsafah dan Sarjana secara penyelidikan, atau disertasi bagi pengajian secara kerja kursus dan penyelidikan, atau Laporan Projek Sarjana Muda (PSM).

"We hereby declare that we have read this thesis and in our opinion this thesis is sufficient in terms of scope and quality for the award of the degree of Master of engineering (thermo-fluid)"

> Signature Name of supervisor I Date

mohstunk

: Prof. DR. Md Nor Musa : 27 December 2006

Signature Name of supervisor II Date

: Prof. Ir. DR. Wan Ali Bin Wan Mat

: 27 December 2006

BAHAGIAN A – Pengesahan Kerjasama*

Adalah disahkan bahawa projek penyelidikan tesis ini telah dilaksanakan melalui

kerjasama antara ______ dengan ______

Disahkan oleh:

Tandatangan :

Nama :

Jawatan :

(Cop rasmi)

* Jika penyediaan tesis/projek melibatkan kerjasama.

BAHAGIAN B – Untuk Kegunaan Pejabat Fakulti Kejuruteraan Mekanikal

Tesis ini telah diperiksa dan diakui oleh:

Nama dan Alamat Pemeriksa Luar	Prof. Dr.Masjuki bin Hassan : Jabatan Kejuruteraan Mekanikal Fakulti Kejuruteraan Universiti Malaya 50603 Kuala Lumpur
Nama dan Alamat Pemeriksa Dalam I	Prof. Dr. Farid Nasir bin Hj. Ani [:] Jabatan Termo-Bendalir Fakulti Kejuruteraan Mekanikal UTM, Skudai.
Pemeriksa Dalam II (Tiada)	:
Nama Penyelia Lain (jika ada)	:

Disahkan oleh	Tiı	nbalan Pendaftar di Fakulti Kejuruteraan Mel	kanikal:	
Tandatangan	:		Tarikh :	
Nama	:	MOHAMED TAJUDDIN BIN OSMAN		

DESIGN AND DEVELOPMENT OF MULTISTAGE SYMMETRICAL WOBBLE COMPRESSOR

ARDIYANSYAH BIN SYAHROM

A thesis submitted in fulfilment of the requirements for the award of the degree of

Master of Engineering

Faculty of Mechanical Engineering Universiti Teknologi Malaysia

DECEMBER 2006

I declare that this thesis entitled, "The Design and Development of Multistage Symmetrical Wobble Plate Compressor" is the result of my own research except as cited in references. The thesis has not been accepted for any degree and is not concurrently submitted in candidature of any other degree.

4 sh' Signature :

Name Date

Ardiyansyah Bin Syahrom 27 December 2006

Specially Dedicated to My Beloved :

Wife (Harisaweni. ST), Daughter (Nanila Salwa Ardiyansyah), Parent (Syahrom) and (Rosni), Parent-in-law (M. Nasir) and (Dra. Hernita Rais), and also My Sweet and Brother Sister (Chrisnawati) and (Heri Yanto) (Hersi Oliva, S.Si), and (M. Fadli Arif) Nephew (Deca Rizky Fahlefi) and (Gita Suci Aulia)

ACKNOWLEDGEMENT

Vision, values and courage are the main gift of this thesis. I am grateful for the inspiration and wisdom of many thoughts that have been instrumental in its formulation.

First of all, I have readily acknowledged and thank to Allah SWT, the Omnipotent and Omniscient who created everything and in giving me the ability to begin and complete this project. I also wish to express my sincere appreciation to my supervisor, Prof. Dr. Md. Nor Musa and Prof. Ir. DR. Wan Ali bin Wan mat, for his guidance, advice, motivation, critics and friendship. Without his help, this thesis would not have been the same as presented here.

I would like to thank En. Ainullotfi Abd Latif, Assoc. Prof. DR. Amran Ayob. P.Eng, Prof. DR. Mohd Nasir Tamin, Prof. DR. Mat Nawi Wan Hassan group NGV team (M. Zair Asrar, Mohd. Nor Ilham, Hamdi, DR. Ong Kian Liong, and Andril Arafat), Mohd Sofian, Rahim and Imran for the many useful discussions and help in NGV Project. I am also indebted to Universiti Teknologi Malaysia (UTM) for support in providing the research grant for this project entitled "NGV Refueling Facilities and Equipment" (IRPA Vot 74536).

My sincere appreciation is also extended to Pak DR. Ir. Henry Nasution, MT, Pak Ir. M.Okta Viandri, MT, and Pak Ir. Saiful Jamaan. M.Eng for help and kindness, so that I can pursue my study here.

Last but certainly not least, I want to thank my wife, my daughter, mama, papa, my sister, my brother and all of my big family, for their affection, prayer and support throughout my study. I love you all.

ABSTRACT

There are many types of compressor design based on variation applications from the low pressure to the high pressure compression. For the high pressure application, the horizontal opposed reciprocating compressor is the most popular. However, for the smaller flow-rate natural gas refueling appliance compressors, scotch-yoke type has just been introduced into the market. Judging from the advantages and disadvantages from these compressor types, the wobble-plate and swash-plate compressor were chosen to be the combined concept for development of the new compressor. Both compressor concepts are currently used only for low pressure application with single stage compression. For this new compressor design development, both compressor types were combined to develop into a new symmetrical multi-stage wobble-plate compressor. The new compressor design operates with the suction pressure of 3 bar and discharge pressure of 206 bar. This new compressor design inherits the advantages of the wobble-plate and the swashplate compressor which are compact and able to operate at high operating speed. Main improvement in this new compressor design is the introduction of the symmetrical wobble-plate configuration which allows for higher compressor capacity and balanced horizontal forces. The rotor concept from the swash-plate compressor has also been adopted in this new design. The normal connecting rod with the two ended ball joints has been replaced by the connecting rod with standard end-joints at both ends. This has eased the manufacturing process as the end-joints are available on the shelves. However, this standard universal end joint has limit the tilting angle of the wobble plate to a maximum of 16°.

Against this limitation and for the compressor to operate with minimum possible operating torque and optimum pressure ratio, analysis conducted concludes that the optimum number of stages is five. Flow analysis was conducted to simulate pressure and gas velocity distributions. This has helped in the conceptual development and this design of the suction and discharge port, the value and the cylinder of each stage. Heat transfer analysis was also conducted to simulate the temperature distribution on the cylinder block. The predicted temperature is about 302°C at the first stage. Temperature rise due to compression of the air for both prototypes was found to be insignificant. As such the inter-cooler and after-cooler provided were found unnecessary and were not used. Both prototypes operated with good stability at all speeds and noise generated was acceptably low. The 1.00 m³/hr prototype compressor was run at 1100 rpm producing a discharge pressure of 260 bar and for flow rates of 10 m³/hr was run at 400 rpm producing a discharge pressure of 180 bar.

ABSTRAK

Kebanyakan pemampat direkabentuk berdasarkan aplikasi bermula dari pemampat bertekanan rendah hinggalah ke pemampat bertekanan tinggi. Bagi aplikasi bertekanan tinggi, pemampat salingan berkedudukan mendatar adalah yang paling popular. Walaubagaimanapun, untuk kadaralir yang kecil pemampat jenis scotch-voke lebih sesuai dan telah berada di pasaran. Setelah semua kebaikan dan keburukan bagi semua pemampat diambil kira, konsep pemampat jenis plat wobal dan plat swash telah digabungkan dan dipilih sebagai pemampat baru yang akan dibangunkan. Pada masa kini, kedua-dua konsep pemampat digunakan untuk aplikasi satu peringkat dan bertekanan rendah. Kedua-dua konsep pemampat ini digabungkan untuk membentuk satu konsep pemampat baru iaitu pemampat salingan plat wobal simetri berbilang peringkat. Pemampat baru ini direkabentuk untuk beroperasi dalam keadaan tekanan masukan 3 bar dan tekanan keluaran 206 bar. Pemampat baru ini lebih kecil dan boleh beroperasi dalam kelajuan tinggi. Penambahbaikan utama pemampat baru ini ialah dengan pengenalan ciri plat wobal simetri yang mana akan dapat menambahkan kapasiti pemampat dan mengimbangkan daya mendatar yang terhasil. Konsep rotor bagi pemampat jenis plat *swash* juga telah diadaptasi di dalam rekabentuk baru ini. Rod penyambung asal yang berbentuk bebola di kedua-dua hujung telah ditukar dengan dua *end-joint* piawai di kedua-dua hujung. Penggunaan komponen piawai ini akan memudahkan lagi proses pembuatan. Namun demikian komponen piawai ini mempunyai had sudut kemiringan maksimum tersendiri iaitu 16 darjah.

Bagi membolehkan pemampat beroperasi dengan daya kilas yang minimum dan nisbah tekanan yang optimum, analisis telah dijalankan dan didapati bilangan peringkat yang sesuai ialah pada 5 peringkat. Selain itu, analisa aliran juga dibuat untuk mensimulasikan tekanan dan pengagihan halaju gas. Ini telah membantu dalam membangunkan konsep yang baik terutamanya dalam merekabentuk bahagian masukan dan keluaran pada setiap blok silinder. Analisis pemindahan haba juga dijalankan untuk mensimulasi taburan suhu pada blok silinder. Suhu anggaran pada blok silinder pertama adalah setinggi 302 darjah Celsius. Bagi kedua-dua prototaip, didapati peningkatan suhu tidak disebabkan oleh tekanan. Oleh itu penggunaan penyejuk (*inter-cooler/after-cooler*)tidak diperlukan. Kedua-dua prototaip beroperasi dengan stabil dan pada kelajuan 1100 ppm dan menghasilkan tekanan keluaran 260 bar dan bagi prototaip pemampat 10m³/jam pula yang beroperasi pada 400 ppm telah menghasilkan tekanan keluaran setinggi 180 bar.

TABLE OF CONTENT

DECLARATION	ii
DEDICATION	iii
ACKNOWLEDGEMENT	iv
ABSTRACT	v
ABSTRAK	vi
TABLE OF CONTENTS	vii
LIST OF TABLES	xi
LIST OF FIGURES	xii
NOMENCLATURES	xviii
LIST OF APPENDICES	xxi

1 INTRODUCTION

2

CHAPTER CONTENT

LITI	LITERATURE REVIEW					
1.6	Research Design and Methodology	5				
1.5	Research Problem	3				
1.4	Importance of Research	2				
1.3	Objectives	2				
1.2	Research Scopes	2				
1.1	Background	1				

2.1	Introduction	6
2.2	Compressor Design	6
2.3	Performance of Compressor	10
2.4	Summary	14

PAGE

3 PRINCIPLE OPERATION OF SYMMETRICAL WOBBLE PLATE COMPRESSOR

3.1	Introduction	15
3.2	Positive Displacement Compressors	16
3.3	Advantages of Symmetrical Wobble Plate Compressor	17
3.4	General Description of Symmetrical Wobble Plate Compressor	18
3.5	Principle of Operation	20

4 SYMMETRICAL WOBBLE PLATE COMPRESSOR ENGINEERING ANALYSIS

4.1	Introdu	uction		23
4.2	Optimi	ized Numb	per of Stages	24
	4.2.1	Pressure	Ratio	25
	4.2.2	Kinemat	cics of Symmetrical Wobble Plate Compressor	29
		4.2.2.1	Wobble Plate Motion	29
		4.2.2.2	Determination of Cylinders Volume	32
		4.2.2.3	Force Acting on the Piston	34
		4.2.2.4	Torque in Compressor	35
4.3	Tilting	Angle of	the Wobble Plate	39
4.4	Design	Design of Compressor Valves		
	4.4.1	The Bas	ic Requirements of Compressor Valves	39
	4.4.2	Basic Fu	inctions of a Valve	40
	4.4.3	Fundam	entals of Compressor Valve Operation	41
		4.4.3.1	The Essential Function	41
		4.4.3.2	Gas Intake	41
		4.4.3.3	Compression	42
		4.4.3.4	Gas Discharge	42
		4.4.3.5	Schematic of Suction and Discharge Valves	43
		4.4.3.6	A Pressure Differential is Necessary	43
		4.4.3.7	The Flow of the Gas	43
	4.4.4	Determi	nation of Geometry of Valve Compressor	44
		4.4.4.1	Thermodynamic Consideration	44

		4.4.4.2	Construction of Indicator Diagram, Valve Timing, and Velocity Estimates	45
		4.4.4.3	Sizing of Port Area	48
		4.4.4.4	Determination of Desirable Valve Lift	49
		4.4.4.5	Expected Flow Force on the Valve and Selection of the Effective Stiffness	50
4.5	Result	and Discu	ission	51
	4.5.1	Optimur	n Design Symmetrical Wobble Plate Compressor	56
	4.5.2	Optimur Plate Co	n Number of Stage Design Symmetrical Wobble	68
	4.5.3	Optimur	n Tilting Angle Symmetrical Wobble Plate	78
		Compres	SSOr	
4.6	Conclu	ision		83

5 THERMODYNAMIC ANALYSIS FOR SYMMETRICALL WOBBLE PLATE COMPRESSOR

Introdu	iction		84	
Thermodynamic Properties Within the Cylinder Block			84	
5.2.1	Suction Process			
	5.2.1.1	Suction Mass Flow Rate	86	
	5.2.1.2	The Average Rate of Heat Transfer at Suction	88	
5.2.2	Compres	ssion Process	91	
	5.2.2.1	Pressure and Temperature in Closed Process	93	
5.2.3	Discharg	ge Process	95	
	5.2.3.1	Discharge Spring Loaded Valve Flow	97	
		5.2.3.1.1 Discussion on Flow Analysis and	98	
		Simulation		
Heat Transfer				
5.3.1	Convect	ion Heat Transfer	121	
5.3.2	The Wal	l Heat Transfer	123	
	5.3.2.1	Conduction	124	
	5.3.2.2	Kissing Heat Transfer	125	
5.3.3	Tempera	ture Estimation	127	
	5.3.3.1	The Suction Start Temperature	127	
	5.3.3.2	The Compression Inlet Temperature	128	
	5.3.3.3	The Suction Wall Temperature	128	
	Introdu Thermo 5.2.1 5.2.2 5.2.3 Heat T 5.3.1 5.3.2 5.3.3	Introduction Thermodynamic 5.2.1 Suction 1 5.2.1.1 $5.2.1.2$ 5.2.2 Compression 5.2.3 Discharge 5.2.3 Discharge 5.2.3.1 Solution Heat Transfer Solution 5.3.2 The Wall 5.3.2 The Wall 5.3.3 Temperation 5.3.3.1 Solution 5.3.3.2 Solution	Introduction Thermodynamic Properties Within the Cylinder Block 5.2.1 Suction Process 5.2.1.1 Suction Mass Flow Rate 5.2.2 The Average Rate of Heat Transfer at Suction 5.2.2 Compression Process 5.2.3 Discharge Process 5.2.3 Discharge Process 5.2.3.1 Discharge Spring Loaded Valve Flow 5.2.3.1 Discussion on Flow Analysis and Simulation Heat Transfer 5.3.1 Convection Heat Transfer 5.3.2 The Wall Heat Transfer 5.3.2 The Wall Heat Transfer 5.3.2 Kissing Heat Transfer 5.3.3 Temperature Estimation 5.3.3.1 The Suction Start Temperature 5.3.3.2 The Compression Inlet Temperature 5.3.3.3 The Suction Wall Temperature	

		5.3.3.4	The Wall Temperature after Discharge	130
		5.3.3.5	The Gas Discharge Temperature	130
	5.3.4	Discussi	on on Heat Transfer and Simulation	131
5.4	Discus	sion of Th	ermodynamic Analysis	136

6 EXPERIMENTAL AND RESULT INVESTIGATION

6.1	Introduction			138	
6.2	Experim	mental Set	Up		138
	6.2.1	Data Acc	quisition "D	AQ" System	145
	6.2.2	Compon	ents of Exp	erimental Rig	149
		6.2.2.1	Compress	or	149
		6.2.2.2	Electric M	lotor	150
		6.2.2.3	Flow Met	er	150
		6.2.2.4	Pressure I	Regulator	150
		6.2.2.5	Inverter		150
		6.2.2.6	Pressure M	Measurement	151
			6.2.2.6.1	Pressure Gauge	151
			6.2.2.6.2	Piezo-Electric Pressure Transducers	151
			6.2.2.6.3	Mounting of Pressure Sensor	153
		6.2.2.7	Temperat	ure	153
6.3	Experimental Procedure			154	
6.4	Experi	mental Res	sult and Dis	cussion	154
	6.4.1	Experime	ent Result		155
	6.4.2	Discussio	on		162

7 CONCLUSION, RECOMMENDATION AND FUTURE RESEARCH

APPENI	177-250	
REFERENCES		169
7.2	Recommendations for Future Research Work	167
7.1	Conclusions	166

177-250

LIST OF TABLES

Title

No

4.1	Pressure ratio and pressure each stages	52
4.2	Suction and discharge temperature for each stages	53
4.3	Design input parameter for symmetrical wobble plate compressor	53
4.4	Geometry of symmetrical wobble plate compressor	55
4.5	Specification symmetrical wobble plate compressor for 3 to 7 stage	56
4.6	Data for analysis of symmetrical wobble plate compressor (3 Stage)	58
4.7	Data for analysis of symmetrical wobble plate compressor (4 stage)	58
4.8	Data for analysis of symmetrical wobble plate compressor (5 stage)	59
4.9	Data for analysis of symmetrical wobble plate compressor (6 stage)	59
4.10	Data for analysis of symmetrical wobble plate compressor (7 stage)	60
4.11	The maximum force every stage and every cylinder	68
4.12	The maximum and total one rotation shaft: force, torque and work of symmetrical wobble plate compressor	69
4.13	The maximum force every position of symmetrical wobble plate compressor for any stage with shaft angle rotation	70
4.14	The maximum torque of symmetrical wobble plate compressor for any stage with shaft angle rotation	72
4.15	Optimum specification of symmetrical wobble plate compressor	83
5.1	Material of cylinder accessories	132
5.2	Thermal result of cylinder block	133
5.3	Properties of aluminum alloy 6061	133
5.4	Properties of gray cast iron	133
6.1	The comparison of the pressure on the design with the test	164
62	The comparison of dimension on the design and the results of the	165

6.2 The comparison of dimension on the design and the results of the 165 cylinder block machining

Page

LIST OF FIGURES

No	Title	Page
11	Methodology of research	5
3.1	Symmetrical wabble plate compressor	17
3.1	Description symmetrical wobble plate compressor	18
2.2	Cylinder block occombly	10
5.5 2.4		19
3.4	Multistage arrangement of cylinder block	19
3.5	Working cycle of the symmetrical wobble plate reciprocating	20
	compressor	
3.6	Working mechanism of the symmetrical wobble plate compressor	21
3.7	Simplified P-V diagram of ideal compressor cycle	22
4.1	Effect of multi staging	24
4.2	Theoretical pressure volume diagram of two stages compressor	26
4.3	Inter-cooling and after-cooling between compressor stages	28
4.4	Adiabatic four-stage compression on the T-s diagram	29
4.5	Geometric relationship that exist in wobble plate	30
4.6	Location of connecting rod ball on piston side	30
4.7	Location of connecting rod ball on piston and wobble plate side	31
4.8	Cylinder configuration	33
4.9	Force and torque diagram for loads exerted on the shaft	36
4.10	Piston pressure profile	37
4.11	Essential functions of a compressor valve	41
4.12	Schematic of suction and discharge valve	43
4.13	Sketch of compressor valve	43
4.14	Idealized pressure-volume diagram for reciprocating compressor	46
4.15	Pressure-shaft rotation angle diagram for valve opening time	47

determination

4.16	Angle shaft rotation vs stroke of compressor for 3 stage	61
4.17	Angle shaft rotation vs stroke of compressor for 4 Stage	61
4.18	Angle shaft rotation vs stroke of compressor for 5 Stage	61
4.19	Angle shaft rotation vs stroke of compressor for 6 Stage	62
4.20	Angle shaft rotation vs stroke of compressor for 7 Stage	62
4.21	Pressure distribution of shaft angle rotation for 3 stage	63
4.22	Pressure distribution of angle shaft rotation for 4 stage	63
4.23	Pressure distribution of angle shaft rotation for 5 stage	63
4.24	Pressure distribution of angle shaft rotation for 6 stage	64
4.25	Pressure distribution of angle shaft rotation for 7 stage	64
4.26	Force distribution of angle shaft rotation for 3 stage	65
4.27	Force distribution of angle shaft rotation for 4 stage	65
4.28	Force distribution of angle shaft rotation for 5 stage	65
4.29	Force distribution of angle shaft rotation for 6 stage	66
4.30	Force distribution of angle shaft rotation for 7 stage	66
4.31	Torque distribution of angle shaft rotation for 3 stage	66
4.32	Torque distribution of angle shaft rotation for 4 stage	67
4.33	Torque distribution of angle shaft rotation for 5 stage	67
4.34	Torque distribution of angle shaft rotation for 6 stage	67
4.35	Torque distribution of angle shaft rotation for 7 stage	68
4.36	Load in each piston for each number of stages	73
4.37	Compressor total force in each shaft angle rotation with the number	73
	stage of compressor	
4.38	Total torque at the compressor in each shaft angle rotation with	74
	number of compressor stage	
4.39	Correlation diameter of piston, radius wobble plate, and number of	75
	stage of compressor	
4.40	Maximum force on the compressor	76
4.41	Maximum torque on the compressor	76
4.42	Work of compressor vs pressure ratio	77
4.43	Variation torque of compressor with shaft angle rotation	79
4.44	Tilting angle of compressor vs torque of compressor	80

4.45	Load in each piston for each number of stages at tilting angle 16°	80
4.46	Compressor total force in each shaft angle rotation with the number	81
	stage of compressor at tilting angle 16°	
4.47	Total torque at the compressor in each shaft angle rotation with number	82
	of compressor stage at tilting angle 16°	
5.1	Suction volume	86
5.2	Schematic diagram for suction process	89
5.3	Compression volume	92
5.4	Equilibrium process	93
5.5	Schematic diagram for compression process	95
5.6	Schematic diagram for discharge process	96
5.7	Discharge volume	96
5.8	Spring loaded valve	98
5.9	Flow analysis of cylinder 1 (suction) (a). Pressure (b). Velocity	100
	(c). Mach number (d). Fluid temperature (e). Flow Trajectories	
	(f). Isometric view Flow Trajectories	
5.10	Graph of flow analysis of cylinder 1 (suction) (a). Pressure (b).	101
	Velocity (c). Mach number (d). Fluid temperature	
5.11	Flow analysis of cylinder 1 (discharge) (a). Pressure (b). Velocity	102
	(c). Mach number (d). Fluid temperature (e). Isometric view Flow	
	Trajectories (f). Flow Trajectories	
5.12	Graph of flow analysis of cylinder 1 (discharge) (a). Pressure	103
	(b). Velocity (c). Mach number	
5.13	Flow analysis of cylinder 2 (suction) (a). Pressure (b). Velocity	104
	(c). Mach number (d). Fluid temperature (e). Flow Trajectories	
	(f). Isometric view Flow Trajectories	
5.14	Graph of flow analysis of cylinder 2 (suction) (a). Pressure (b).	105
	Velocity (c). Mach number (d). Fluid temperature	
5.15	Flow analysis of cylinder 2 (discharge) (a). Pressure (b). Velocity	106
	(c). Mach number (d). Fluid temperature (e). Flow Trajectories	
	(f). Isometric view Surface Plot	
5.16	Graph of flow analysis of cylinder 2 (discharge) (a). Pressure	107
	(b). Velocity (c). Mach number (d). Fluid temperature	

5.17	Flow analysis of cylinder 3 (suction) (a). Pressure (b). Velocity	108
	(c). Mach number (d). Fluid temperature (e). Flow Trajectories	
	(f). Isometric view Flow Trajectories	
5.18	Graph of flow analysis of cylinder 3 (suction) (a). Pressure (b).	109
	Velocity (c). Mach number (d). Fluid temperature	
5.19	Flow analysis of cylinder 3 (discharge) (a). Pressure (b). Velocity	110
	(c). Mach number (d). Fluid temperature (e). Flow Trajectories	
	(f). Isometric view Surface Plot	
5.20	Graph of flow analysis of cylinder 3 (discharge) (a). Pressure	111
	(b). Velocity (c). Mach number (d). Fluid temperature	
5.21	Flow analysis of cylinder 4 (suction) (a). Pressure (b). Velocity	112
	(c). Mach number (d). Fluid temperature (e). Flow Trajectories	
	(f). Isometric view Flow Trajectories	
5.22	Graph of flow analysis of cylinder 4 (suction) (a). Pressure (b).	113
	Velocity (c). Mach number	
5.23	Flow analysis of cylinder 4 (discharge) (a). Pressure (b). Velocity	114
	(c). Mach number (d). Fluid temperature (e). Isometric view Surface	
	Plot	
5.24	Graph of flow analysis of cylinder 4 (discharge) (a). Pressure	115
	(b). Velocity (c). Mach number (d). Fluid temperature	
5.25	Flow analysis of cylinder 5 (suction) (a). Pressure (b). Velocity	116
	(c). Mach number (d). Fluid temperature (e). Flow Trajectories	
	(f). Isometric view Flow Trajectories	
5.26	Graph of flow analysis of cylinder 5 (suction) (a). Pressure (b).	117
	Velocity (c). Mach number (d). Fluid temperature	
5.27	Flow analysis of cylinder 5 (discharge) (a). Pressure (b). Velocity (c).	118
	Mach number (d). Fluid temperature (e). Flow Trajectories	
	(f). Isometric view Surface Plot	
5.28	Graph of flow analysis of cylinder 5 (discharge) (a). Pressure (b).	119
	Velocity (c). Mach number (d). Fluid temperature	
5.29	Source of heat transfer	120
5.30	Contact "kissing" heat transfer	125
5.31	Mixing area	131

xv

5.32	Boundary condition of simulation	132
5.33	Heat transfer analysis of cylinder 1 (a). Suction (b). Discharge	134
5.34	Heat transfer analysis of cylinder 2 (a). Suction (b). Discharge	134
5.35	Heat transfer analysis of cylinder 3 (a). Suction (b). Discharge	135
5.36	Heat transfer analysis of cylinder 4 (a). Suction (b). Discharge	135
5.37	Heat transfer analysis of cylinder 5 (a). Suction (b). Discharge	136
5.38	The variation pressure with every angle shaft rotation	137
5.39	P-V diagram of compressor	137
6.1	The experimental set-up	140
6.2	General rig assembly	141
6.3	Inverter	141
6.4	Electric motor	141
6.5	Rubber coupling (direct coupling)	142
6.6	Symmetrical wobble plate mechanism	142
6.7	Data acquisition system	142
6.8	Air compressor	143
6.9	Flow meter	143
6.10	Pressure regulator	143
6.11	Pressure transducer & thermocouple	144
6.12	Torque transducer	144
6.13	Relief valve	144
6.14	Storage tank	145
6.15	Data acquisition system "DAQ"	146
6.16	Scan of the pressure and temperature modules setting	148
6.17	Sample of the pressure module setting sensor	148
6.18	Sample of display desired meter	149
6.19	Graph of pressure vs time at (Suction pressure 1 bar and at speed 600 rpm)	155
6.20	Graph of torque of compressor with variation speed at (Suction pressure 1 bar and at speed 600 rpm)	156
6.21	Graph of gas temperature of compressor with variation speed at (Suction pressure 1 bar and at speed 600 rpm)	156
6.22	Graph pressure vs time at (Suction pressure 3 bars and at speed 400 rpm)	157
6.23	Graph of torque of compressor with variation speed at (Suction pressure 3 bars and at speed 400 rpm)	157
6.24	Graph of gas temperature of compressor with variation speed at	158

	(Suction pressure 3 bars and at speed 400 rpm)	
6.25	Graph of pressure vs time at (Suction pressure 3 bars and at speed 250	158
6.26	Ipili) Create after and a fear and a constant	150
0.20	pressure 3 bars and at speed 250 rpm)	139
6.27	Graph of gas temperature of compressor with variation speed at	159
	(Suction pressure 3 bars and max speed 250 rpm)	
6.28	Graph of pressure vs time at (Suction pressure 3 bars and at speed 400	160
6 20	(Suction Cranb of torque of compressor with variation speed at (Suction	160
0.29	pressure 3 bars and at speed 400 rpm)	100
6.30	Graph of gas temperature of compressor with variation speed at	161
	(Suction pressure 3 bars and at speed 400 rpm)	
6.31	Pressure vs time at (Suction pressure 3 bars and at speed 400 rpm)	161

CHAPTER 1

INTRODUCTION

1.1 Background

Malaysia has a huge reserve of natural gas as compared to that of oil. Most of the natural gas is exported to Japan and Korea, while the remaining substantial amount is consumed by local industries. A pipeline network has been installed by Gas Malaysia a subsidiary of national petroleum agency, PETRONAS, throughout the peninsular running through major industrial areas. This infrastructure is put in place to encourage industries to use natural gas as an alternative fuel.

To encourage automotive vehicles to use natural gas, PETRONAS has been instructed to build NGV refueling stations throughout the country. So far, 24 stations have been built in Klang Valley, 1 station in Negeri Sembilan and 4 stations in Johor.

Petronas is also embarking into developing domestic natural gas refueling facilities. The concept is that of slow refueling over a fairly long period of time. Petronas has drawn up a set of specifications where by the design is relatively small, light and produces low levels of noise and vibration. This challenge is now partly translated into a scope of the present work. A symmetrical swash wobble plate multistage reciprocating compressor is found to fulfil the specification and will be the subject of the research.

1.2 Research Scopes

The scope of this research which can be summarized as follows:

- i. Review on literature, patents and existing models of wobble plate reciprocating gas compressor.
- ii. Develop the new concept of a wobble plate compressor.
- iii. Set the operating specification and conduct thermodynamic, heat transfer and flow analyses on wobble plate compressor.
- iv. Design compressor and conduct design analysis
- v. Analytical Simulation.
- vi. Fabrication and testing
- vii. Write report (thesis).

1.3 Objectives

The objectives of this study are as follows:

- i. To develop a new concept of "Symmetrical Wobble Plate Multistage Reciprocating Compressor".
- ii. To design a Symmetrical wobble plate multistage reciprocating compressor for compression natural gas from pressure 3 bar to 206 bar.
- iii. To design a reciprocating compressor that is effective and efficient to the application of home Refueling.

1.4 Importance of Research

- i. Malaysia has to fully utilize compressed natural gas.
- ii. Universiti Teknologi Malaysia (UTM) together with Petronas Research & Scientific Services (PRSS) and Universiti Teknologi Petronas (UTP) are to

develop domestic natural gas refueling facilities. UTM is to develop the compression system.

iii. The compression system has to be small, compact, light and of low noise and vibration levels.

1.5 Research Problem

The problems of energy supply shortage, polluted and poor air quality and high energy costs have contributed to the importance of natural gas as an alternative to fossil oil based fuels. As a transportation fuel, the gas must be compressed to increase its storage capacity in order for the vehicle to travel a much longer distance but still using the standard size tank. The compressor therefore becomes important primary equipment to the natural gas (CNG) refueling station.

The present design of reciprocating compressor that is used in the NGV refueling station is relatively huge, heavy, and occupies a lot of space ^[22]. Alternative to this is a smaller, compact and low noise vibration levels compressors when installed in a modular arrangement which can also meet the specification of the present model large compressor. If a concept of home refueling is to be implemented a single module of this small compressor may be sufficient to meet the requirement of a slow refueling rate.

After exhaustive review of the open literature which includes journal, conference proceedings and patent it is concluded that more research should be carried out to develop a compressor which is small in size, compact in the assembly and stable in the operation. A scotch-yoke concept has already been developed but the compressors are still not available in the market probably because of the problem of stability.

Many wobble or swash plate compressors are used in the automotive sector especially for air conditioners, where the maximum operating pressure is relatively low at about 14 bar. The normal wobble plate or swash plate compressor models are designed with only one side compression mechanism which creates instability especially running at high speed. The design of the compressor is to achieve smaller size, compact and stable. Instability problem at the existing compressor can be solved by developing the same system on the opposite side. The symmetrical wobble plate piston-cylinder assembly is thought to produce a dynamically balance compression machine and further development work on the piston, piston rings and cylinder liner should be able to produce a system that can compress and discharge a natural gas up to a very high pressure of 206 bar.

However, it was expected that there would be a number of parameters needed to be investigated during the development of this new concept. These parameters are interdependent on each other that finding an optimum design will be a problematical but challenging task.

1.6 Research Design and Methodology

The work involved design and development new concept high pressure compressor, analysis and simulation, and experimental. The methodology of research showed Figure 1.1.

Figure 1.1 Methodology of research

REFERENCES

- Adam Weisz-Margulescu (2001). Compressed Natural Gas For Vehicle Fueling. In: Paul C. Hanlon. *Compressor Handbook*. New York: McGraw-Hill. 10.1-10.15.
- Ahn Hew Nam (2003). *Piston-Rotation Preventing Structure for Variable Displacement Swash Plate Type Compressor*. (EP1167758).
- A. longo Giovanni., and Gasparella Andrea (2003). Unsteady state analysis of the compression cycle of a hermetic reciprocating compressor. *International journal of refrigeration 26*.
- American Petroleum Institute Standard (1995). Reciprocating Compressors for Petroleum, Chemical, and Gas Industry Service. 4th ed. Washington, D.C, API Standard 618.
- ASME (1995). Safety Standard for Air Compressor System. New York: The American Society of Mechanical Engineerings, ASME B19.1-1995.
- Azlir Darisun (1992). *Pemampat Salingan*. Kuala Lumpur: Dewan Bahasa dan Pustaka Kementrian Pendidikan Malaysia.
- Boyd Gary Lewis (2001). *Non-lubricated rolling element ball bearing*. (US6318899).
- British Standards Institution (1987). *Testing of Positive Displacement Compressos & Exhausters*. Milton Keynes, BS 1571 : Part 1.

- Cliffort Matheus (2002). *Engineers' to Rotating Equipment*. London: Professional Engineering Publishing Limited.
- Damson, Daniel, and Schwarzkopf Otfried (2003). Swash or Wobble Plate Compressors. (EP1333176).
- Eastop. T.D., and McConkey. (1995). *Applied Thermodynamics For Engineering Technologists*. 5th ed. New York: John Wiley & sons, INC.
- Edwin M. Tal Bott (1993). *Compressed Air System A GuideBook on Energy and Cost Savings*. 2th ed. Atlanta: Published by The Fairmont Press, Inc.
- Eric Winandy., Claudio SaavedraO., and Jean Lebrun (2002). Simplified modeling of an open-type reciprocating compressor. *International journal thermal sciences.* 41: 183-192.
- Frank P. Inclopera and David P. Dewitt (1990). *Introduction to Heat Transfer*.2th ed. New York: John Wiley & Sons.
- Hans-Georg G. Pressel (2003). Shuttle Piston Assembly With Dynamic Valve. (US2003072654).
- Harvey Nix. (2001). Compressor Analysis. In: Paul C. Hanlon. Compressor Handbook. New York: McGraw-Hill. 5.1-5.34.
- Heidorn John H (1962). *Refrigerating apparatus with compressor output modulating means*. (US3062020).
- Heinz Baumann. (1998). Design and Development of an Oilfree, Hermatic High Pressure Compressor. *International Compressor Engineering Conference at Purdue University*. July 14-17, 1998. West Lafayette: Purdue University. 171-176.

- Higuchi Teruo., Kikuchi Sei., Takai Kazuhiko., Kobayashi Hideto., and Terauchi Kiyoshi. (1998). *Wobble plate compressor*. (EP0280479).
- Hiraga Masaharu and Shimizu Shigemi (1977). Lubrication system for compressor unit. (US4005948).
- Hiroshi Ishii., Yoshikazu Abe., Tatsuhisa Taguchi., Teruo Maruyana., and Takeo Kitamura (1990). Dynamic Behavior of variable Displacement wobble plate compressor Automotive Air Conditioners. *International Compressor Engineering Conference at Purdue*. July 17-20 1990. West Lafayette: Purdue University. 345-353.
- Hiroshi Toyada., and Masaharu Hiraga. (1990). Historical Review of The Wobble Plate and Scroll Type Compressors. *SAE Congress Paper*.
- Hoerbiger Corporation Of America, Inc. *Valve Theory and Design*. America: Compressor Technology Valve. 1989.
- Ikeda Hayato., Onomura Hiroshi., and Kitahama Satoshi (1988). *Shoe-and-Socket Joint In A Swash Plate Type Compressor*. (US4762468).
- Jean Donea and Antonio Huerta (2003). *Finite Element Methods for Flow Problem*. New York: John Wiley & Sons.
- John F. Below., and David A. Miloslavich (1984). Dynamics of The Swash Plate Mechanism. 1984 International Compressor Engineering Conference at Purdue. July 11-13-1984. West Lafayette: Purdue University. 76-81.
- Kato Takayuki., Katayama Seiji., Enokijima Fuminobu., and Hoshida Takahiro (2001). *Swash Plate Compressor Piston*. (EP 1134411).
- Kayukawa Hiroaki., Takenaka Kenji., Okamoto Takashi., and Hyodo Akihiko (1991). Wobble Plate Type Refrigerant Compressor Having A Thrust Bearing Assembly for A Wobble Plate Support. (US4981419).

- Kenji Tojo., Kunihiko Takao., Masaru Ito and Isao Hayase., and Yukito Takahashi. (1990). Dynamic Behavior of variable Displacement Compressor for Automotive Air Conditioners. SAE Congress Paper.
- Kenji Tojo, Kunihiko Takao, Youzou Nakamura, kenichi Kawasima and Yukio Takahashi. (1988). A Study on The Kinematics of A Variable Displacement Compressor For Automotive Air Conditioning. 1988 International Compressor Engineering Conference at Purdue. July 18-21-1988. West Lafayette: Purdue University. 496-504.
- Kimura Kazuya., Takenaka Kenji., Fujisawa Yoshihiro., and Kayukawa Hiroaki (1996) *Compressor with rotation detecting mechanism*. (US5540560).
- Kimura Kazuya., Kayukawa Hiroaki (1994). Variable Capacity Swash Plate Type Refrigerant Compressor Having A Double Fulcrum Hinge Mechanism. (US5336056).
- KiyoshiTerauchi (1990). Wobble Plate Type Compressor With Variable Displacement. (US4913626).
- KiyoshiTerauchi (1990). Wobble Plate Compressor with Suction-Discharge Differential Pressure Control of Displacement. (US4850811).
- Kurakake Hirotaka., Inaji Satoshi., Adaniya Taku., and Ota Masaki (2000). Bearing for Swash Plate Compressor (EP1052403).
- Loy Christoph., Droese Heiko., Gebauer Klaus., Reske Thomas., and Nissen Harry (2003). *Plunger Used In A Wobble Plate Compressor In An Air Conditioner Comprises Jaws for Receiving A Sliding Block.* (DE10231212).
- Manring Noah D (2000). Designing the Shaft Diameterfor Acceptable Levels of Stress Within an Axial-Piston Swash-Plate Type Hydrostatic Pump. Journal of mechanical design (ASME) Vol 122 / 553

- Masaharu Hiraga (1981). *Fluid suction and discharge apparatus*. (US4283166).
- Todescat, M. L., Fagotti. F., Prata. A.T., and Ferreira, R.T.S., (1992). Thermal Energy An Analysis in Reciprocating Hermetic Compressor. 1992 International Compressor Engineering Conference at Purdue. July 14-17 1992. West Lafayette: Purdue University. 1419-1428.
- Mohd Shafawi Mohd Tahir, Mohd Yunus Abdullah and Md Nor Musa, "Kajian Dinamik bagi Pemampat Plat Swash-Wobble", Kongres dan Seminar S & T, Kuala Lumpur 2003

Musa M.N (2005). Wobble plate compressor. (PI 2005 5456).

- Suryanarayana, N.V., and öner Arici (2003). Design & Simulation of Thermal Systems. New York: Mc Graw Hill.
- New Zealand Standard (1994). Code of Practice for CNG Compressor and Refueling Stations Part 1 – On Site Storage and Location of Equipment.. New Zealand, NZS 5425.
- Olson John W JR (1971). Compressor Unit With Self-Contained Drive Means. (US3552886).
- Ong, K. L., Musa, M. N., and Abdul-Latif, A. "A State Space Approach to the Management of Concurrent Design Tasks in the Design of a Symmetrical Wobble Plate Compressor" EdiProD International Conference Rydzyna, Poland, 7-9 Oct 2004
- Ong, K. L., Musa, M. N., and Abdul-Latif, A. "Improving the Performance of a Natural Gas Compressor Design Process", Int'l Conf on Engg Design (ICED 2005), 15-18 Aug 2005, Melbourne, Australia

P.C. Bevis (1950). *Air Compressors Control and Installation*. London: SIR ISAAC PITMAN & SONS, LTD.

Pokorny F. (1974) Refrigeration Compressor. (US3838942).

- Richard E. Sonntag and Gardon J. Van Wylen (1991). *Introduction to Thermodynamics Classical and Statistical.* 3th ed. New York: John Wiley & Sons.
- Ren Shen. On The Design, Construction, and Testing of A Two Stage, Reciprocating Air Compressor Test Stand. Master. Thesis. Albert Nerken School Of Engineering; 1997.
- Robert L. Norton. *Design of Machinery An Introduction to The Synthesis and Analysis of Mechanisms and Machines.* 3th ed. Boston: Mc Graw Hill. 2004.
- Robert W. Fox and Alan T. McDonald (1994). *Introduction to Fluid Mechanic*.4th ed. New York: John Wiley & Sons.
- Roycas N. Brown (1986). *Compressor Selection and Sizing*. Houston: Gulf Publishing Company.
- Schwarzkopf Otfried (2004). Cylinder Block of An Axial Piston Compressor With Elongated Cylinder Face. (US6672199).
- Schwarzkopf Otfried. (2003). A wobble plate arrangement for a compressor. (EP1363022).
- Schwarzkopf Otfried. (2003). Swash or Wobble Plate Compressors. (US2003140779).

- Shane Harte., Lavlesh Sud., David Herder., and Yong (2001). *Piston Having Anti-Rotation for Swash Plate Compressor*. (US 6325599).
- Shimizu Shigemi., Shimizu Hidehiko., and Terauchi Kiyoshi (1989). *Wobble plate type compressor*. (US4869651).

Slack Don S (1979). Swash plate compressor. (US4138203).

- Simon. Touber. A Contribution to The Improvement of Compressor Valve Design. PhD. Thesis. Technische Hogeschool Delft; 1976.
- Takahiro Nishikawa., hirosi Nishikawa., Tomio Obokata., and Tsuneaki Ishima. (2000). A Study for Improvement on High Pressure Multistage Reciprocating Compressor. International Compressor Engineering Conference at Purdue University. July 25-28, 2000. West Lafayette: Purdue University. 105-112.
- Takai Kazuhiko (1989). Compressor With Variable Displacement Mechanism. (US4850811).
- Takenaka Kenji., Kimura Kazuya., and Kayukawa Hiroaki (1993). *Piston Coupling Mechanism For A Swash Plate Compressor*. (US5201261).
- Thomas T. Gill (1941). *Air and Gas Compression*. New York: John Wiley & Sons, Inc.
- Toyoda Hiroshi., Shimizu Shigemi., Hatakeyama Hideharu., Kumagai Shuzo., and Takahashi Hareo (1989). *Wobble plate type compressor with a drive shaft attached to a cam rotor at an inclination angle.* (US4870894).
- Turner, K. K (1936). Improvements Relating to Reciprocating Engines, Pumps or Compressors of The Swash- or Wobble-Plate Type. (GB458360).

- Umemura Yukio (1996). Variable Displacement Swash Plate Type Compressor. (EP0748936).
- Vedat S. Arpaci., Shu-Hsin Kao., and Ahmet Selamet (1999). *Introduction to Heat Transfer*. New Jersey: Preatice Hall.
- Vladimir Chlumsky (1966). *Reciprocating and Rotary Compressors*. Czechoslovakia: Publishers of Technical Literature.
- Werner Soedel (1984). *Design and Mechanics of Compressor Valve*. Indiana: Office of Publication Purdue University.
- W. H. Hsieh., and T.T. Wu. (1997). Experimental Investigation of Heat Transfer in a High-Pressure Reciprocating Gas Compressor. *Applied Energy*, Vol. 56, Nos ³/₄, pp. 395-405.
- Woolatt Derek. (2001). Compressor Theory. In: Paul C. Hanlon. *Compressor Handbook*. New York: McGraw-Hill. 1.1-1.15.
- Woolatt Derek., and Heidrich Fred (2001). Compressor Performance Positive Displacement. In: Paul C. Hanlon. *Compressor Handbook*. New York: McGraw-Hill. 2.1-2.25.
- Yang Ming., Kraft-Oliver Terry., Xiao Yan Guo., and Tian Min Wang (1997) Compressed Natural Gas Vehicles : Motoring Towards a Cleaner Beijing. *Applied Energy*, Vol. 56, Nos ³/₄, pp. 395-405.
- Ma, Y.-C., and Min, O.-K., (2001). Pressure Calculation in Compressor Cylinder by A Modified New Helmholtz Modeling. *Journal of sound and vibration*. 243(5): 775-776.