Universiti Teknologi Malaysia Institutional Repository

Dispersive micro-solid phase extraction method using newly prepared poly(methyl methacrylate) grafted agarose combined with ICP-MS for the simultaneous determination of Cd, Ni, Cu and Zn in vegetable and natural water samples

Pourmand, Neda and Sanagi, Mohd. Marsin and Abu Naim, Ahmedy and Wan Ibrahim, Wan Aini and Baig, Umair (2015) Dispersive micro-solid phase extraction method using newly prepared poly(methyl methacrylate) grafted agarose combined with ICP-MS for the simultaneous determination of Cd, Ni, Cu and Zn in vegetable and natural water samples. Analytical Methods, 7 (7). pp. 3215-3223. ISSN 1758-2083

Full text not available from this repository.

Official URL: http://dx.doi.org/10.1039/C4AY02889A

Abstract

Poly(methyl methacrylate) grafted agarose (agarose-g-PMMA) was prepared as a new adsorbent for the simultaneous separation and preconcentration of trace amounts of cadmium(ii), nickel(ii), copper(ii) and zinc(ii) in vegetable and natural water samples with a simple and facile dispersive micro-solid phase extraction (D-μ-SPE) prior to ICP-MS detection. Agarose-g-PMMA was prepared by microwave-assisted free radical polymerization, and the materials obtained under optimum conditions in high percentage of grafting were characterized by FTIR, FE-SEM, DSC and TGA. The effective parameters of the extraction process, such as mass of adsorbent, pH of sample solution, adsorption time, type of eluent, concentrations and volume of eluent and desorption time were optimized. A preconcentration factor (PF) of 100 was obtained for trace metals with an elution time of 120 s. Under the optimum conditions, the limits of detection (LODs) for Cd, Ni, Cu and Zn were 1.8, 0.9, 0.6 and 1.5 ng L-1 with relative standard deviations (RSDs) of 2.1%, 3.5%, 4.9% and 3.8%, respectively, at an analyte concentration of 10 ng L-1, n = 7. The proposed method was successfully applied for the determination of heavy metals in vegetable and natural water samples with good relative recoveries in the range of 92.0-104.0%. This journal is

Item Type:Article
Uncontrolled Keywords:natural water samples, heavy metals, vegetable
Subjects:Q Science > QD Chemistry
Divisions:Science
ID Code:58320
Deposited By: Haliza Zainal
Deposited On:04 Dec 2016 04:07
Last Modified:15 Dec 2021 08:55

Repository Staff Only: item control page