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ABSTRACT 

(Keywords: Lightweight, pre-fabricated, aerated concrete sandwich ferrocement) 

 

The development and construction of lightweight pre-fabricated sandwich 
structural elements in building construction is a growing trend in construction industry 
all over the world due to its high strength-to-weight ratio, reduced weight, and good 
thermal insulation characteristics.  Sandwich construction element consists of thin face 
sheets or encasement of high performance material and a thick, lightweight and low 
strength material as core.  Ferrocement is regarded as highly versatile thin material 
possessing superior properties which cannot be matched by other conventional thin 
materials.   Aerated concrete is a cellular lightweight material which exhibits relatively 
higher strength than the conventional core materials such as foam. Additionally, 
sandwich construction deals with the problem of delamination of face sheets leading to 
their premature failure.  This can be avoided by providing encasement over the core. 
This study was focused on the development of ferrocement encased aerated concrete 
sandwich wall elements, where ferrocement thin box encases a thick core of lightweight 
aerated concrete. The study was conducted in two phases. First phase involved the 
development of high workability and high performance slag-cement based mortar mix 
to cast proposed ferrocement encasement. The developed mortar was aimed to replace 
the traditional manual method of plastering the wire mesh by a mechanized casting 
method. The performance of mortar was investigated in terms of compressive strength, 
strength development, unit weight, effect of curing regime, and partial replacement of 
cement by weight with 50% and 60% of slag.  The second phase of the study embarked 
on the development and investigation of the characteristics of ferrocement encased 
lightweight aerated concrete sandwich wall elements.  To achieve the objective, about 
600 specimens including large size wall elements were cast and tested. Ferrocement 
encasement was maintained at 12mm throughout the study. The parameters studied 
were compressive strength, flexural strength, failure mode, load-deflection behaviour, 
load-deformation behaviour, load-strain behaviour, unit weight, water absorption, initial 
surface absorption uniformity, and role of type and layers of the wire meshes. The 
results revealed the potential application of ferrocement encasement of lightweight 
aerated concrete to produce lightweight structural elements which leads towards the 
industrialization of building system.  Finally, two mathematical models were developed 
to predict compressive strength of high workability slag-cement based mortars and the 
ultimate load of ferrocement encased aerated concrete sandwich wall elements. The 
values predicted from the mathematical models were 95%-100% accurate to the 
experimental results. 
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ABSTRAK 
 
 
Pembangunan serta penghasilan anggota struktur apit pasang siap ringan untuk binaan 

adalah merupakan suatu tren yang mengembang dalam industri pembinaan seluruh dunia 
disebabkan oleh nisbah kekuatan-berat yang tinggi, berat yang berkurangan, dan ciri-ciri penebatan 
haba yang baik.   Anggota pembinaan apit terdiri dari lapisan muka nipis atau bahan salut 
berprestasi tinggi yang menyaluti bahagian anggota teras yang tebal, ringan tetapi berkekuatan 
rendah. Simenfero dikenali sebagai bahan serba guna nipis yang mempunyai ciri-ciri kelebihan 
yang tidak dimiliki oleh bahan-bahan konvensional yang lain. Manakala konkrit ringan berudara 
adalah merupakan bahan ringan selular yang mempamirkan kekuatan lebih tinggi secara 
perbandingan dengan teras konvensional seperti bahan berbusa. Seterusnya pembinaan melibatkan 
penggunaan bahan apit biasanya berhadapan dengan permasalahan pemisahan atau pengupasan 
lapisan muka yang menjurus kepada kegagalan sebelum waktunya (premature). Fenomena ini 
boleh dielakkan dengan penyediaan salut menyelaputi teras. Maka kajian ini tertumpu kepada 
pembangunan anggota dinding apit konkrit ringan diselaputi kekotak simenfero. Kajian ini telah 
dijalankan dalam dua fasa. Fasa pertama melibatkan pembangunan bancuhan mortar berasaskan 
sangga-simen berkebolehkerjaan serta perprestasi tinggi untuk dijadikan bahan salut simenfero 
yang dicadangkan untuk anggota tersebut. Mortar berkenaan yang dituang secara mekanikal adalah 
untuk menggantikan bahan mortar konvensional yang digunakan dalam proses melepa secara 
tradisional dalam pembikinan simenfero. Prestasi mortar telah dikaji dari sudut kekuatan 
mampatan, perkembangan kekuatan, berat unit, kesan regim pengawetan, serta kesan penggunaan 
gantian separa simen oleh sangga. Pasa kedua pula melibatkan pembangunan serta penyiasatan ciri-
ciri anggota dinding apit konkrit berudara ringan bersalut simenfero. Untuk tujuan ini sejumlah 
spesimen termasuk anggota dinding bersaiz besar telah disediakan dan diuji. Salut simenfero 
ditetapkan dengan ketebalan 12mm dalam keseluruhan kajian. Parameter yang telah dikaji adalah 
kekuatan mampatan, kekuatan lenturan, mod kegagalan, kelakuan bebanan-pesongan, kelakuan 
bebanan-ubahbentuk, kelakuan bebanan-keterikan, berat unit, penyerapan air, ujian serapan 
permukaan awal, keseragaman, dan peranan serta kesan jenis serta jumlah lapisan jejaring yang 
digunakan untuk simenfero. Kajian ini mendapati bahawa kaedah penggunaan konkrit apit seperti 
dalam kajian ini amat berpotensi dalam pembikinan anggota struktur ringan yang seterusnya 
selangkah ke hadapan dalam perlaksanaan sistem binaan berindustri. Akhirnya dua model 
matematik telah dibangunkan bagi mentaksir kekuatan mampatan motar berkebolehkerjaan serta 
perprestasi tinggi yang berasaskan sangga-simen, serta kekuatan muktamad anggota apit tersebut. 
Di mana nilai taksiran diperolehi dari model sangat hampir dengan keputusan ujikaji.  
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CHAPTER 1 

 

INTRODUCTION 

 

1.1 General Appraisal 

The concept of industrialization of the construction technology has emerged as 

well accepted and preferred option in the field of building construction now a days, in 

order to reduce insitu construction up to maximum extent.  This could be achieved by 

employing a number of strategies including the application of newly developed cement 

based composites for structural applications.  Cement based composites perform better 

than conventional plain concrete.  The development of new construction materials and 

technology can partly relieve pressures on the existing building material supply and 

help to arrest the spiraling rise in cost of these materials and also may reduce insitu 

construction activities (Abang, 1995).  

Ferrocement is one of the relatively new cementitious composite considered as a 

construction material.  It is a type of thin walled reinforced concrete commonly consists 

of cement mortar reinforced with closely spaced layers of continuous and relatively 

small wire mesh (ACI 549R, 1997; ACI 549 2R, 2004). The closely-spaced and 

uniformly-distributed reinforcement in ferrocement, transforms the otherwise brittle 

material into a superior ductile composite.  Thus, ferrocement has been regarded as 

highly versatile construction material possessing unique properties of strength and 

serviceability.  Its advantageous properties such as strength, toughness, water tightness, 

lightness, durability, fire resistance, and environmental stability cannot be matched by 

any other thin construction material (Naaman, 2000).  Ferrocement is the promising 

composite material for prefabrication and industrialization of the building industry 

(Suresh, 2004; Austriaco, 2006).  However, as an alternative construction material, 

ferrocement has not gained widespread acceptance in both; developed countries in 

general and developing countries in particular.  Its acceptance is hindered mainly due to 

its small thickness and labor intensive method of production (Abang, 1995; Naaman, 

2001).  In order to cope with the problem of thickness, one of the options currently 

suggested is to develop ferrocement sandwich elements.  This technique provides not 
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only the thickness but makes the sandwich element lightweight and good heat 

insulating. 

Sandwich panel is a three-layer element comprising of two thin, flat facing 

plates of relatively higher strength material and between which a thick core of relatively 

lower strength and density is encased or it could consists of thin skin box of relatively 

higher strength material in-filled with relatively weaker and lower density material 

known as core.  These have been used in the aerospace industry for many years and 

more recently they are being used as load bearing members in naval structures (Mahfuz 

et al., 2004).  Presently, it has gained attention to be used as an effective structural form 

in the building and construction industries.  Sandwich construction form has distinct 

advantages over conventional structural sections, because it promises high stiffness and 

high strength to weight ratios (Tat and Qian, 2000; Arafa and Balaguru, 2006).  Hence, 

it is only natural that currently almost every field of industry resorts to the use of 

sandwich material in building and construction.  The introduction of new materials such 

as laminated composites; ferrocement, for the face sheets/skin box and low density 

materials like aerated concrete, for the core presents new possibilities in the design of  

sandwich construction.  

 Aerated concrete is either cement or lime mortar, classified as lightweight 

concrete, in which air-voids are entrapped in the mortar matrix by means of suitable 

aerating agent (Arreshvhina, 2002; Narayanan and Ramamurthy, 2000a).  Aerated 

concrete refers to concrete having excessive amounts of air voids.  These air bubbles are 

created to reduce the density of the concrete and to make it lightweight, which provides 

good thermo-acoustic insulation too.  However, aerated concrete, which is a porous 

material and classified as cellular construction material exhibits low compressive 

strength and high rate of water absorption (Arreshvhina 2002; Arreshvhina and Zakaria, 

2002).  It can be used as a potential material for core in sandwich composite because of 

its relatively more compressive strength compared to the traditional lightweight core 

materials like foam. Attention has not been paid in order to investigate its suitability as 

core material in sandwich construction. Most recently, its application as core material in 

FRP-AAC sandwich panels has been reported so far (Nasim et al., 2006; Juan et al., 

2007).  However, the literature is silent about its application as core in cement-based 

sandwich composite structural panels. 

It is therefore, this study is aimed to develop a cement based ferrocement-

aerated sandwich wall elements by encasing the aerated concrete with ferrocement.   
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1.2 Background and Rationale 

In Malaysia the pace of development and construction activity achieved since 

last three decades was even beyond the expectations rather dreams three decades ago.  It 

has spurred the demand for fast, cost-effective and quality residential buildings 

(Zakaria, 1999).  The supply of houses by both the public and private sectors is still far 

from meeting the demand (Waleed et al., 2004).  In this age of rising cost of building 

materials and labor is another problem which makes it imperative to study the economic 

and systematic application of new construction materials and systems. 

Industrialization of the building system by developing efficient prefabricated 

composite cellular structural elements may deal with the problem amicably where the 

fabrication of the elements takes place in factory and the elements are installed with 

minimum time period and labor at the site.  This may also lead to the reduction in the 

foreign labor engaged in the construction industry of the country causing economical 

and social problems.  

 

1.3 Statement of the Problem 

The development of lightweight, industrialized and sustainable housing system 

in Malaysia as per modular coordination system is a need of the day.  The present 

modular coordination system usually focus on the use of cement or concrete blocks for 

the infill or to certain extent as load bearing walls which are heavy in weight.  

Ferrocement structural elements are widespread as lightweight, high performance 

composite material which can replace its counterpart conventional materials.  However, 

these could not gain popular acceptance here due to its thin section causing noise and 

heat transfer and also the perceived corrosion problem particularly in the tropical 

environment of Malaysia.  Moreover, the psychological factor coined with buildings 

constructed with such thin sections would be perceived as unsafe to live, is also another 

factor which hinders the application of ferrocement.   

Thus, sandwich composite construction system, presents one of the potential 

solution, where, ferrocement is applied as face sheets/encasement and lightweight 

aerated concrete is adopted as core.  The problem of the labor intensive production of 

ferrocement may be addressed by developing mechanized system of casting identical to 

that of the ordinary RC sections.  The structural sandwich elements should be as per the 
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standard size leading towards the industrialization of building system, in order to reduce 

the insitu construction which is associated with social and economy problems. 

1.4 Aim and Objectives of the Study 

 The main aim of this research investigation is to manufacture and study the 

behaviour and properties of ferrocement encased aerated concrete sandwich wall 

elements.   

Towards achieving the above mentioned aim, the related objectives associated 

were identified as follows: 

1. To investigate the minimum flow value (flow table) of cement mortar 

capable to be poured during the casting of thin ferrocement encasement.  

2. To establish the optimum high workability and high performance mortar 

with slag and superplasticizer.  

This pertained to the compressive strength, strength development, 

unit weight, curing regime, water absorption and ISAT (permeability) as 

parameters of study 

3. To study the behaviour of ferrocement encased aerated concrete 

sandwich specimens. 

This part of study was focused on, to optimize the various 

variables; in compression as principal testing and in flexure as additional 

testing.. The variables investigated were, type and number of wire mesh 

layers, overall unit weight, core dimensions (core-encasement volumetric 

ratio) to achieve lightweight sandwich, and the encasement direction 

(parallel or perpendicular to the loading direction) effective in terms of 

compressive strength.  Water absorption and ISAT tests were also 

included in this part of study.  A variety of specimens of standard size; 

cubes, blocks and prism beams were cast and tested. 

4. To investigate the behaviour of ferrocement encased lightweight aerated 

concrete wall elements of relatively large size particularly in 

compression with additional flexural and ultrasonic pulse velocity (UPV) 

tests. 

5. To develop mathematical models. 

This was final step towards this research study during which two 

mathematical models were developed to predict: 
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(a) Compressive strength of high workability slag cement based 

mortar for ferrocement. 

(b) Ultimate load of ferrocement encased aerated concrete sandwich 

wall elements in compression.  

 

1.5 Scope and Limitations of the Study 

The study is almost experimental in nature.  The study consists of two-phase 

study scheme.  First phase of the present research focuses on development of optimum, 

high workability and high performance mortar, which should be capable to be poured 

during the casting of ferrocement skin boxes over aerated concrete, in single operation.  

The performance of the mortar was investigated in terms of compressive strength, 

strength development, water absorption, and unit weight.  The specimens were cured in 

three curing regimes namely water, air, and natural weather in order to determine the 

appropriate curing regimes to be adopted for sandwich specimens.  The effect of slag as 

cement replacement in mortar to make it low cost is also included.   

During the second phase of the experimental programme, behaviour of sandwich 

specimens; cubes, blocks prism beams and wall elements of relatively large size, were 

investigated under compression as major parameter and under bending as additional 

parameter.  To achieve the main aim, a stepwise strategy was adopted by addressing a 

number of variables.  Two types of wire mesh namely square welded wire mesh, and 

chicken wire mesh were incorporated in ferrocement box by varying the number of 

layers; 0, 1, 2, 3 and 4.  The performance of the sandwich specimens were studied in 

terms of ultimate compressive strength and flexural strength (modulus of rupture), unit 

weight load-axial deformation, and load-lateral deformation under compression along 

with load-deflection and load-strain relationship under bending.  The failure mode and 

composite action of sandwich elements under both the loading conditions were also 

studied.  In addition, efforts were made that it should be low cost, lightweight, and 

water resistant.  To investigate the material uniformity of sandwich wall elements 

applying UPV test was also included in the scope of this study.  Aerated concrete 

previously developed in UTM (Arreshvhina, 2002) and subsequently improvised were 

used as core during this study.  Finally mathematical models were developed which 

were related to both the phases of this study.  The mathematical models developed were 

applicable to predict compressive strength of high workability slag-cement based mortar 

and ferrocement encased lightweight aerated concrete sandwich wall elements. 
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1.6 Significance of Research 

The research and its findings will encourage the use of the new approach to 

produce lightweight composite wall elements for industrialized building system and 

hence promoting better quality construction and innovative system in our construction 

industry.  The study surely is a step forward in the right direction to achieve quality 

products. 

 

This current project is able: 

1. To produce a new potential structural composite, that is an integration of 

ferrocement and aerated concrete for modern industries of modular 

housing and building system. 

2. To develop a novel method of prefabrication ferrocement sandwich wall 

element for use in modular housing and building system which can be 

developed and marketed nationally and internationally. 

3. To help solve the problem of low and middle income earners to own 

houses. 
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CHAPTER 2 

 

LITERATURE REVIEW 

 

2.1 General Appraisal 

The world is witnessing a revolution in construction practices along with a new 

phase of development fuelled by the rapid economic growth and the high rate of 

urbanization.  Construction provides the direct means for the development, expansion, 

improvement and maintenance of urban settlements (Suresh, 2004).  The construction 

industry is entering in an era of globalization where the utilization of the latest 

technology and material shall no longer recognize national borders (Abang, 1999).  

Thus, the construction industry must keep up with the advanced technology and systems 

to cope with the modern trends and demands.  The growing need for affordable houses 

is a much discussed subject because due to spiraling construction cost, housing today is 

not an affordable proposition for the common people even on the international scene.  

Malaysia also is not spared from the problem of inadequate housing.  There is still a 

very high demand for affordable houses in the country (Mahyuddin and Wahab, 1994; 

Abang, 1995; Waleed et al., 2004).  Especially in the case of developing countries, the 

gap between demand and supply of adequate housing is continuously increasing 

(Shaikh, 1999; Arif et al., 2001; Waleed et al., 2004).  The duration of construction is 

vital in this regard. In order to minimize the time span of the construction, 

prefabrication is generally preferred.  

Prefabricated structures are also preferred for rapid construction of tourism 

facilities such as, transportation utilities, communication units, hotels etc.  In order to 

satisfy the ascending demand for rapid construction of the structures mentioned, the 

method of prefabrication is remarkably employed now days (Korkmaz and Tankut, 

2005).  Precast concrete members offer various advantages in service and quality over 

their cast-in-place correspondents; such as their higher allowance for quality control 

(Seckin and Fu, 1990; Soubra et al., 1991;  Soubra et al., 1993), the ready supply of 

good quality aggregates, much higher strength due to better batching and quality control 

of the concrete achieved through the use of a specialized labour force under factory 

conditions and results in the reduced construction activities at the site (Korkmaz and 
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Tankut, 2005).  In this context, there is need for the adoption of cost-effective and 

environmentally appropriate technology and materials. 

Recent years has seen a renewed interest in the development of precast 

composite structural elements by adopting the technique of sandwich.  Precast sandwich 

elements present a series of possibilities for the solution of housing problems.   

 

2.2 Sandwich Structural Elements/Members 

 

2.2.1 Introduction 

A sandwich panel is a three-layer element, comprising two thin, flat facing 

plates of high-strength material and between which a thick lightweight core of low 

average strength is attached.  Figure 2.1 presents a few types of sandwich panel 

elements.  Such sandwich structures have gained widespread acceptance within the 

aerospace, naval/marine, automotive and general transportation industries as an 

excellent way to obtain extremely lightweight components and structures with very high 

bending stiffness, high strength and high buckling resistance (Mahfuz et al., 2004; 

Liang and Chen, 2006).  

 

 
(a) foam core sandwich 

 
(b) Honeycomb sandwich 

 
(c) web core sandwich 

 
(d) Truss core sandwich 

Figure 2.1: Types of sandwich elements (An, 2004) 
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2.2.2 Advantages of Sandwich  

Sandwich construction form has distinct advantages over conventional structural 

sections because it promises high stiffness and high strength-to-weight ratio (Tat and 

Qian, 2000; Araffa and Balaguru, 2006) as compared with a solid member.  Sandwich 

composite structure possesses excellent flexural and shear properties.  Their inherent 

lightweight characteristics make them ideal structural components where weight 

reduction is desirable (Serrano et al., 2007).  Thus structural sandwich panels are 

becoming important elements in modern lightweight construction.  

In concrete construction, self-weight of structure itself represents a very large 

proportion of the total load on the structures (Mouli and Khelafi, 2006) thus, reduction 

in the self-weight of the structures by adopting an appropriate approach results in the 

reduction of element cross-section, size of foundation and supporting elements thereby 

reduced overall cost of the project.  The lightweight structural elements can be applied 

for construction of the buildings on soils with lower load-bearing capacity (Carmichael, 

1986).   

Reduced self weight of the structures using lightweight concrete reduces the risk 

of earthquake damages to the structures because the earth quake forces that will 

influence the civil engineering structures and buildings are proportional to the mass of 

the structures and building.  Thus reducing the mass of the structure or building is of 

utmost importance to reduce their risk due to earthquake acceleration (Ergul et al., 

2004).  

Among the other advantages, its good thermal insulation due to the cellular thick 

core makes it an ideal external construction component (Bottcher and Lange, 2006).  

Some recent investigations suggest their excellent energy-absorbing characteristics 

under high-velocity impact loading conditions (Villanueva and Cantwell, 2004).  

Sandwich structures have been considered as potential candidate to mitigate impulsive 

(short duration) loads (Nemat-Nasser et al., 2007).  

 

2.2.6 Precast Concrete Sandwich Panels  

PCSP consists of two layers of concrete called wythes separated by a thick, 

lightweight and very low strength core layer.  The concrete wythes are connected to 

each other by concrete webs, steel connectors or the combination of the two, called as 

shear connectors. PCSP with shear truss connectors is typically fabricated of two 

concrete wythes tied together with truss-shaped shear connectors equally spaced along 
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the length of the panel as depicted in Figure 2.2, while Figure 2.3 shows the PCSP, 

where the wythes  are connected by webs.  

It is generally accepted that this type of panels has been in use for more than 40 

years in North America.  Their application, however, has been restricted as cladding 

panels.  Now a days, many sandwich panels in use in the North America and Europe are 

proprietary but very limited is available, because the producers are reluctant to share 

information with their competitors (PCI, 1997; Bush and Zhigi, 1999).   

The first prefabricated panels were of non-composite type and consisted of a 

structural wythe (layer) and a non-structural wythe separated by a layer of insulation, 

whereas composite type panels were manufactured later (Benayoune et al., 2007a). 

 

     

 

Figure 2.2: Sections of PCSP with shear connectors (Lindsay, 2003) 
 
 
 

   

 

 

 

 

 

 

Figure 2.3: Sandwich elements with webs 
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Although PCI (1985; 1989) propose the wythe thickness ranging between 15mm 

to 75 mm, however it is mentioned that the appropriate thickness of the wythes be 

decided as per the requirement of the structure.  The structural behaviour of the panel 

depends greatly on the strength and stiffness of the connectors, while the thermal 

resistance of the insulation layer governs the insulation value of the pane.  The 

arrangement and spacing of shear connectors in PCSP vary depending on several 

factors, such as desired composite action, applied load, span of the panel and type of 

shear connectors used.  Various types of connectors used are shown in Figure 2.4. 
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Figure 2.4: Types of shear connectors (PCI, 1997) 
  

 

 The insulation between the wythes may in some cases provide a shear resistance 

between the wythes.  Rough faced dense insulation provides more shear transfer than 

slick faced insulation.  Shear resistance that may be available from bonded insulation is 

considered temporary.  In semi-composite panels, the assumption is made that the 

insulation provides sufficient shear transfer to create composite action during stripping, 

handling and erection, but the shear transfer is not relied on to provide composite action 

for resisting service loads. 

The structural integrity of any sandwich construction, to enjoy the full advantage 

of the strength of two wythes and to prevent individual wythe buckling, depends on the 

strength of connection/bonding of the connectors/core with wythes (Frostig and 

Thomson, 2005; Grove et al., 2006; Benayoune et al., 2006).  Commonly, the 

connection between the connectors and the two facing plates is achieved by the one-side 

spot welding, or self-taping screws/rivets.  The fabrication of conventional sandwich 

panels necessitates adequate contact area between the core and facing plates ensure 

proper connection between these elements (Tat and Qian, 2000).  In case of honeycomb, 

and steel connectors, the cell walls provide a very small area for connection/bonding; 

inadequate to hold the two wythes connected until failure thereby causing the separation 

of two wythes and also may cause buckling of the diagonals (Benayoune et al., 2006).  

Also it is laborious and may face difficulties during production (Al-Kubaisy and 

Jumaat, 2002).  Thus, difficulty in the production of such panels affects the reliability of 
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the connection between the elements resulting in uncertain role of connectors and 

interaction between various components.  This is why, it continues to be a problem for 

investigators and fabricators alike (Tat and Qian, 2000; Benayoune et al., 2006 ).  

Moreover, the connectors pass from one concrete wythe to the other concrete 

wythe through the insulation layer.  Thus, the placement of the connectors interrupts the 

continuous insulation layer.  These interruptions are known as thermal bridges.  

Depending upon the material used to make the connectors in a panel, the thermal 

performance of panel may be decreased; in some cases as much as 40% by the large 

quantities of heat conducted through the shear connectors passing through the insulation 

(Lee and Pessiki, 2006). 

On the other hand, the foam cores are bonded with the wythes by means of 

various types of bonding agents.  Although the foam cores provide a large area in 

contact with the wythes, however it entirely depend upon the type, quality, an efficiency 

of bonding material along with the skills adopted during the bonding process.   Flaws in 

the form of debond between the wythes and the core are likely to prevail, and if the 

flaws propagate they may impart effect on the load-bearing capacity of the structure 

because of the loss of load transfer between the facings (Prasad, 1993).  

 In addition, it has been demonstrated time and again that during flexural loading 

be static or cyclic, core (foam cores) basically controls the failure of the sandwich 

structures.  Interfacial delaminating in a sandwich panel represents a severe defect that 

affects the overall integrity and safety of the structure.  It typically begins as a 

delamination crack at the core–skin interface near the loading point, advances towards 

the support along the sub-interface (Mahfuz et al., 2004; Frostig and Thomson 2005; 

Russo and Zuccarello, 2006) kinks into the core.  Figure 2.5 shows the interfacial 

delamination between core and wythes.  Thus, in any event, it is clear that the 

delamination at the sub-interface region and the shear strength of the core in essence 

dictate the performance of the sandwich composites under flexure. 
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Figure 2.5: Pictorial view of delamination of core (Russo and Zuccarello, 2006) 

 

Sandwich structures with compliant/soft core materials (foam etc) are 

notoriously sensitive to failure by the application of concentrated loads, at points or 

lines of support, and due to localized bending effects induced in the vicinity of points of 

geometric and material discontinuities.  The reason for this is that, although sandwich 

structures are well suited for the transfer of overall bending and shearing loads, 

localized shearing and bending effects, as mentioned above, induce severe transverse 

(vertical) normal and interfacial shear stresses.  These stress components can be of 

significant magnitude, and may in many cases approach or even exceed the allowable 

stresses in the core material as well as in the interfaces between the core and the face 

sheets (Frostig and Thomson, 2005). 

The evolution of new high performance and lightweight cement based 

composites and laminates are emerging as an alternative of the traditional construction 

materials in modern techniques of the construction of structural elements.  According to 

(Allen, 1996) “any structural material which is available in the form of thin sheet may 

be used to form the faces of a sandwich panel.”   

 Ferrocement is a thin laminated structural composite and its advantageous 

properties such as its versatility of application, strength, toughness, lightness, water 

tightness, durability, fire resistance and environmental stability can not be matched by 

another thin construction material (Naaman, 2000; 2001)  
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2.2 Ferrocement 

 

2.3.1 Introduction 

 “Ferrocement is a type of thin wall reinforced concrete commonly constructed 

of hydraulic cement mortar reinforced with closely spaced layers of continuous and 

relatively small diameter wire mesh; the mesh may be made of metallic or other suitable 

materials” (ACI 549R, 1997; ACI-549 2R, 2004). 

 

2.3.3 Constituents of Ferrocement 

Ferrocement is defined as being made of cement-based mortar mix and steel 

wire mesh reinforcement.  However, a broader definition of ferrocement includes the 

use of skeletal steel in addition to the mesh system. 

 

2.3.3.1 Mortar Mix 

The hydraulic cement mortar mix consists of Portland cement, fine aggregate 

(sand), water and various admixtures as per the requirement.  The materials should 

satisfy standards similar to those used for quality reinforced concrete construction, with 

particular attention paid to the type of application (IFS-10, 2001).  Naaman (2000) 

proposed that the actual mix design should be optimized, whenever possible, with 

respect to the available local materials and environmental conditions.  

 

2.3.3.2 Wire Mesh Reinforcement 

Steel wire meshes are considered the primary mesh reinforcement.  This include 

the various types of the shape; square woven or welded meshes, chicken 

(hexagonal/aviary) wire mesh, expanded metal mesh lath etc.  Except for expanded 

metal mesh, generally all the meshes are used galvanized.  Figure 2.6 depicts the typical 

steel wire meshes used in ferrocement applications.  
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Figure 2.6: Typical steel meshes used in ferrocement (IFS-10, 2001) 
 

 

2.3.3.3 Skeletal Steel 

Skeletal steel used in ferrocement is in form of welded fabric as a grid of steel 

rods, strands of small diameters.  Skeletal reinforcement is needed to form the shape of 

the structure to be built; around mesh layers are attached.  Skeletal steel is only used 

when the thickness of the ferrocement element allows.  

 

2.3 4 Ferrocement versus Reinforced Concrete (Distinct Characteristics)  

  

 As stated in the definition, ferrocement is a type of reinforced concrete 

construction.  While, such a definition implies many similarities between ferrocement 

and reinforced concrete, there is a number of differentiating factors sufficiently 

important to explain the differences in their behaviour.  

Compared to reinforced concrete, ferrocement (Figure  2.7):  
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• Is a thinner material. 

• Has distributed reinforcement. 

• Is reinforced in two directions (transverse and longitudinal). 

• Has matrix made of fine mortar or paste instead of concrete which 

contains larger size aggregates (the maximum size of the particles in 

ferrocement is controlled by the average opening of the stack of mesh 

system to be encapsulated). 

 

 
Figure 2.7: Typical cross section of ferrocement versus reinforced 

concrete (Naaman, 2000) 
 

2.3.5 Ferrocement: A Composite and a Member of the Structural Concrete 

Family 

Cement-based composites are generally viewed as two-component materials: the 

cement-based matrix and the reinforcement.  In fact, the matrix alone (which generally 

comprises cement, sand, water, and other additives) may be considered a composite by 

itself; while steel reinforcement is not a composite material.  A composite is a material 

made of at least two different components, resulting in a synergism where the 

composite property of interest for a particular application is better than either of 

components taken separately.  

Although ferrocement was the first type of reinforced concrete, today it is 

considered a member of the general family of structural concrete materials, or, using 

different terminology, of cement-based composites.  The family includes conventional 

reinforced concrete, prestressed concrete, partially prestressed concrete, fiber reinforced 
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concrete, and several of their combinations.  The flow chart in Figure 2.8 attempts to 

place ferrocement in this family and shows that each member can stand alone or in 

combination with other members.  Applications where a combination of materials or 

concepts is used include, for instance, where ferrocement is applied as a jacket to 

confine reinforced concrete columns, or where discontinuous fibers are added to 

ferrocement to provide a hybrid composite with improved properties.  

 

Figure 2.8: Ferrocement as a member of structural concrete family (Naaman, 2000) 
 

2.3.7 Mechanical Properties 

Many of the properties unique to ferrocement derive from the relatively large 

amount of two-way reinforcement made up of relatively small elements with much 

higher surface area than conventional reinforcement.   

In the words of Nervi (ACI 549R, 1997), who first used the term ferrocement, its 

most notable characteristics are “greater elasticity and resistance to cracking given to 

the cement mortar by the extreme subdivision and distribution of the reinforcement.  

Where, volume fraction and the specific surface area are the two factors that recognize 

the definition of extreme subdivision and distribution of reinforcement in ferrocement.   
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2.3.7.1 Tensile Strength  

Ferrocement is often described in the professional literature as a wonder material 

that does not crack and that has a variety of marvelous properties.  In fact, ferrocement 

can be considered a small-scale model of a super reinforced concrete; it does indeed 

crack, but cracking in ferrocement under service loads can be so fine that it is not visible 

to the naked eye.  Ferrocement possesses a distinct behaviour in tension compared to 

that of reinforced concrete.  

The behaviour of ferrocement in tension is extremely interesting since 

ferrocement seems to adapt slowly to increasing load by increasing its extensibility.  

When cracks keep forming, crack width does not increase proportionately to the applied 

load, and thus crack widths tend to remain smaller than otherwise in reinforced 

concrete.  The stress, at which no more new cracks formed, is called the stabilization 

stress.  Beyond the stabilization stress (at crack saturation), the width of the existing 

cracks increases with loading and the behaviour of the composite is controlled.  

However, crack widths in ferrocement can be one or two orders of magnitude smaller 

than in reinforced concrete by that of the reinforcement (Arif et al., 1999; Naaman, 

2000).  

In tension, the load carrying capacity is essentially independent of specimen 

thickness because the matrix cracks before failure and does not contribute directly to 

composite strength (ACI 549R, 1997).  Typically the tensile strength of ferrocement is 

directly proportional to the number of layers (volume fraction) of the wire mesh layers.  

However, what is the counter intuitive is that the elongation at failure also increases 

when the volume fraction of reinforcement (layers of reinforcing mesh) increases.  

Figure 2.9 shows typical load elongation curve of ferrocement containing various 

number of mesh layers. 

 



 20

 
Figure 2.9: Typical load-elongation curve of ferrocement.(Naaman, 2000) 

 

One of the key characteristics of ferrocement when compared to reinforced 

concrete is its substantially higher (one to two orders of magnitude) specific surface of 

reinforcement for a volume fraction of reinforcement of about the same order.  This 

leads to a number of features particular to ferrocement behaviour, as observed in 

numerous experimental investigations.  The studies have observed that, everything else 

being equal, the tensile strength at first cracking in ferrocement is directly proportional 

to the specific surface of reinforcement (Swamy and Shaheen, 1990; Somayaji and 

Naaman 1985; Arif et al., 1999; Naaman, 2000).  This can also be observed in Figure 

2.10 which illustrates qualitatively the influence of the specific surface of reinforcement 

on the stress at first cracking, the stress at crack stabilization (or saturation), the ultimate 

elongation of the composite, and the average crack spacing and width. The tensile 

strength of ferrocement depends on the mesh orientation and whether the applied 

loading is uniaxial or biaxial because of the change in volume fraction in the loading 

direction (Arif et al., 1999; Abdullah and Mansur, 2001).   



 21

 
Figure 2.10: Typical qualitative influence of specific surface of  

reinforcement on properties of ferrocement (Naaman, 2000) 
 

Figure 2.11 defines orientation and loading directions for typical meshes.  

While, Figure 2.12 shows the effect of orientation on the load carrying capacity due to 

change in orientation.  The mesh orientation at 450 results in the lowest volume fraction 

of the wire mesh in the loading direction, thus, exhibiting poorest performance (Arif et 

al., 1999; Hossain and Inoue, 2000)  

 

 

Figure 2.11: Mesh orientation (IFS-10, 2001) 
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Figure2.12: Effect of mesh orientation on load carrying  capacity 
                    of ferrocement in tension. (Arif et al., 1999) 

 

The tensile strength of ferrocement can be of the same order as its compressive 

strength by increasing the tensile strength of the mesh reinforcement which leads to a 

direct increase in composite tensile strength.  Whereas, the meshes with smaller 

openings lead to smaller crack widths and allow a more efficient use of high strength 

reinforcements (Naaman, 2000). 

 

2.3.7.2 Compressive Strength 

The compressive strength and the related properties of ferrocement are generally 

controlled to a great extent by the properties of the cementitious mortar mix.  Typical 

compression test results of ferrocement prisms suggest that the compressive strength of 

ferrocement is smaller than that of the matrix alone, where, the delamination (due to 

splitting transverse tensile stresses) and buckling of the mesh reinforcement in 

compression account for the reduction in strength (Al-Noury and Haq, 1988; ACI 549R, 

1997; Mansur and Abdullah, 1999; Naaman, 2000).  In general, the compressive 

strength of ferrocement is considered as that of the mortar mix (ACI 549R, 1997; IFS-

10, 2001).  On the contrary, solid and hollow columns prophetically reinforced with 

wire mesh exhibited enhanced strength significantly.  This is attributed to the lateral 

wires in the mesh acting in a manner similar to conventional helical reinforcement by 

restraining the enclosed matrix (ACI 549R, 1997).  
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Everything else being equal, the mesh type (expanded or hexagonal versus 

square) and its orientation (such as 45 versus 0 or 90 degrees) also influence the 

compressive strength  The hexagonal and expanded metal meshes oriented in the 

direction of loading are less effective than similarly oriented welded square wire 

meshes.  Meshes oriented at 45 degrees are also less effective than meshes aligned 

along the loading direction (ACI 549R, 1997; Hossain and Inoue, 2000).  

There is initial and final non-linearity of strain-stress plots of ferrocement with 

non-linearity in between. Generally 50-60% of the ultimate strength, ferrocement 

exhibits the linearity (Rao and Rao, 1986; Rao, 1992; Hossain and Inoue, 2000). 

 

2.3.7.3 Bending (Flexure)  

Bending reflects the combined influence of parameters controlling both tensile 

and compression properties, such as mortar compressive strength, mesh type, mesh 

properties and mesh orientation.  Moreover, it is believed that the two-way nature of the 

mesh reinforcement generally imparts some additional strength and safety when 

bending is considered in one direction only (one-way bending).  Similar to the case of 

tension, ferrocement exhibits typical behaviour in bending also.  

The ferrocement with the mesh layers even bundled at the centre of the cross-

section behaves similar to that of the plane mortar under bending.  Thus, in ferrocement 

bending elements, as in reinforced concrete, the most efficient layer of mesh is that 

closest to the extreme fiber or face of the element (Paramasivam and Ravindarajah, 

1988).  The specific surface of reinforcement does not have as strong an influence on 

the cracking behaviour in bending as in tension.  The average crack width in 

ferrocement bending elements is primarily a function of the tensile strain in the extreme 

layer of mesh and the transverse wire spacing (Naaman, 2000) 
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Figure 2.13: Load versus various mesh layers of 

ferrocement in flexure. (Arif et al., 1999) 
 

Everything else being equal, square welded wire meshes perform better in 

bending than the other meshes.  This is due to the transverse wires in welded meshes 

provide a better anchorage for bond zone, thereby strengthening the matrix through 

biaxial confinement.  Hexagonal mesh has the poorest performance among the wire 

meshes.  Likewise in tension, the orientation of meshes at 45 degrees is the weakest 

configuration in bending also (ACI 549R, 1997; Naaman, 2000; Arif et al., 2001).  

Figure 2.14 depicts the effect of mesh orientation on load carrying capacity of 

ferrocement under bending.  

 

 
Figure 2.14: Effect of wire mesh orientation in bending (Arif et al., 1999) 

 

In ferrocement crack width at working load remain very small compared to that 

of reinforced concrete, thereby leading towards to good impermeability, stiffness, and 
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durability (Onet et al., 1992; Suksawang et al., 2006)  However, the compressive 

strength of mortar does not seem to have much influence on the bending resistance of 

ferrocement beams.  Everything else being equal, an 80 percent increase in mortar 

compressive strength led to an average increase of only 11% in bending strength 

(Montesinos  and Naaman, 2004; Suksawang et al., 2006). 

 

2.3.7.4 Shear 

The shear strength of ferrocement is reported to be approximately equal to 32 

percent of its equivalent bending strength regardless the type and content of mesh or 

mortar strength used (Mansur and Ong, 1987).  However, in general, shear failure is 

preceded by the attainment of flexural capacity of ferrocement (Mansur and Ong, 1991).  

Whereas, cracking shear strength of ferrocement is reported to increase with the 

decrease in span-to-depth ratio and increase in mesh layers and mortar strength (Al-

Kubaisy and Nedwell, 1999).   

Ferrocement beams behave in a manner similar to conventional concrete beam, 

except for demonstrating excellent crack control characteristics in shear.  Furthermore, 

unlike the beams failing in flexure, the beams failing in shear exhibits little sign of 

impending failure besides the formation of a large number of diagonal cracks and a 

negligible plastic behaviour after the multiple cracking (Alsulaimani and 

Basunbal,1991; Mansur and Kiritharan, 2001)  

 

2.3.7.5 Impact Resistance 

Resistance to impact is often measured by the amount of energy absorbed during 

the impact loading.  Reports attesting to the favourable characteristics of ferrocement in 

collisions between boats or with the rocks are numerous (ACI 549R, 1997).   

Ferrocement is very adequate to resist the impact, due to its higher ability of absorbing 

impact energy as compared with the conventional reinforced concrete, and the damage 

is localized at the impact zone (Al-Rifai, 2006).  While, the impact energy to cause the 

failure of ferrocement due to repeated impact loading is 60% more than the concrete 

compared and 25% larger cracking resistance (Eswaramoorthi and Subramanian, 2006).  

Ferrocement wall panels could resist blast load effectively, and posses high 

deformability.  Ferrocement walls of 20 mm thickness exhibited higher blast resistance 

capabilities then the 100 mm thick conventional plastered brick and block masonry 

walls (Pheerphan et al., 2006).  
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The impact strength of ferrocement increases with the volume fraction and the 

specific surface of reinforcement.  The thickness of the ferrocement is a vital factor 

affecting impact resistance, which also depends on the type of mesh system used.  

Impact results in the fracture of the mortar on the back face of resulting from the 

reflected tensile wave.  This is accompanied by spalling of the inside mortar, and 

possible delamination of the mesh layers (Naaman, 2000).  

An increase in fracture energy and reduction in total crack width and maximum 

displacement of slabs were observed with the increase in wire mesh layers when the 

slabs were subjected projectile load by dropping hemispherical hammer from a height of 

4m (Khan et al., 1999) 

 

2.3.8 Durability 

 Durability can be defined as the resistance to deterioration of properties when 

the ferrocement composite is subjected to various loading and environmental exposures.  

Although the measures required to ensure durability in conventionally reinforced 

concrete also apply to ferrocement, two other factors which affect durability are unique 

to ferrocement,  

(a) The cover of mortar to the mesh reinforcement is small and consequently 

it is relatively easy for corrosive liquids to reach the reinforcement. 

(Mansur et al., 1996; Nedwell, 2000). 

 (ii) The surface area of the reinforcement is unusually high; so that area of 

contact over which corrosion can take place, and the resulting rate of 

corrosion are potentially high (Naaman, 2000). 

However, these factors assume varying degrees of importance, depending on 

exposure conditions.  An adequate cover should essentially be provided during the 

construction of ferrocement elements.  The armature cover in compressed regions could 

be as much as 6mm, however in case of medium aggressive environments this value 

must be at least 10mm. (Mansur et al., 1996; Liborio and Hanai, 1992).  An OPC mortar 

cover of 5mm is reported to provide sufficient protection for the galvanized weldmesh 

against corrosion for a simulated load-marine corrosion environment (Xiong, 1997) 

 

Ferrocement subjected to180 drying and wet cycles in fresh water showed 

unaffected strength of ferrocement elements in flexure, rather, the continued hydration 
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of cement and resulting increase in the maturity of the mortar contributed to an 

improvement in the first crack strength in flexure (Al-Rifai and Al-Shukur, 2001). 

Deterioration of wire mesh fabric in ferrocement showed deterioration due to 

sustained exposure in saline water casting and curing conditions.  However, the strength 

of panels under saline casting and saline curing condition is more as compared to panels 

under normal casting and saline curing condition because of better pore structure 

minimizing the ingress of water, due to the presence of fly ash and the saline water 

during casting (Masood et al., 2003).  Ferrocement subjected to180 drying and wet 

cycles in fresh water showed unaffected strength of ferrocement elements in flexure, 

rather, the continued hydration of cement and resulting increase in the maturity of the 

mortar contributed to an improvement in the first crack strength in flexure (Al-Rifai and 

Al-Shukur, 2001). 

 

2.3.9 Thermal/Sound Conductivity 

Thermal conductivity in ferrocement increases with the increase in volume 

fraction of reinforcement.  However, it is significant when mesh layers are placed along 

the direction of heat flow.  This rarely exists in ferrocement structures because in the 

conventional form of ferrocement construction, the mesh layers are arranged normal to 

the anticipated direction of heat flow (Hawaldar, 1990).  Ferrocement elements were 

found to be thermally acceptable and behaved better in natural calamities of Bangladesh 

(Salimullah, 1994) 

However, it is believed that, the ferrocement has high thermal and sound 

conducting properties due to its small thickness of section.  This could be addressed by 

providing a cavity insulation or infilling the cavity with low conductivity materials, 

when ferrocement elements are produced in hollow sections (Methews et al., 1992; 

Kandaswamy and Ramachandraiah, 2002).   

 

2.3.10 Applications of Ferrocement 

In its role as a thin reinforced concrete product and as a laminated cement-based 

composite, ferrocement can be used in numerous applications.  These applications can 

be classified in three major categories; marine applications, terrestrial applications, and 

repair and strengthening applications. 
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2.3.11 Strengthening /Confinement 

Ferrocement is useful for repair of concrete structures.  It can restore the 

durability of structures which may undergo distress due to aggressive environments 

causing the corrosion of embedded reinforcement (Rajamane et al., 2003).  Its 

application as overlays on masonry walls can increase its total load capacity, tension 

and shear strength.  It also provides the ductility, and. cracking control.  The application 

of ferrocement overlays is potential option in the situations where high performance of 

the walls is required (Fabiana and De Hanai, 2002).  

A significant enhancement in stiffness, strength, and durability can be achieved 

under compression when concrete is confined with various degree of ferrocement 

confinement.  Compressive strength enhancement of the order of 20 to 30% was 

achieved by ferrocement confinement (Abdullah and Takiguchi, 2002a). 

Ferrocement jacketing of RC columns is a feasible technique to prevent their 

shear failure and to provide the ductility when loaded in compression.  It enhances the 

stiffness, strength, energy dissipation, and ductility significantly, where, the mode of 

failure changed from brittle shear failure to ductile flexural failure (Takiguchi and 

Abdullah, 2000; Takiguchi and Abdullah, 2004).  Ferrocement jackets were produced 

by wrapping the required number of wire mesh layers over R/C columns and injecting 

the mortar slurry in meshes.   

Confinement of high strength concrete in ferrocement shell in addition to 

rectangular ties under axial compression indicated that the additional confinement in the 

form of ferrocement shell improved ultimate strength, strain, strain at ultimate strength 

and the ductility of high strength concrete. It also improved the dimensional stability 

(Rajesh, 2001). 

Encasement of brick masonry columns by ferrocement considerably increased 

the load carrying capacity of column in compression.  It changes the brittle behaviour of 

the masonry columns in ductile.  The mortar strength strongly affected the overall load 

carrying capacity of the columns (Al-Rifai and Mohammad, 2000)  

Provision of ferrocement shell improves the flexural behaviour of reinforced 

concrete beams.  It improved peak stress, the corresponding strain and the ductility of 

concrete.  The improvement in curvatures was also obtained in RC beams irrespective 

of type of beam and these curvatures at ultimate were improved with ferrocement shell 

confinement (Seshu, 2000).  
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2.3.12 Ferrocement in Sandwich Construction 

A very little information is available regarding the application of ferrocement in 

sandwich elements especially members under compression.  Ferrocement when used as 

middle plate in a sandwich panel prevented cracking and disintegration of the middle 

plate when subjected to a hard lateral impact (Paramasivam and Santosh, 2006).  

The behaviour of sandwich panels under low velocity impacts (Santosh et al., 

2003) showed large permanent deformations in the steel cover plates but no fracture.  

Middle plates of normal and high strength concrete cracked into pieces under this kind 

of impact but the introduction of a ferrocement layer to the middle plate reduced the 

steel strains and also prevented disintegration of the middle plate. 

Ferrocement skins of a bolted sandwich panels tested exhibited a significant 

increase in the punching shear strength when compared with a corresponding single 

skin.  The increase in upper skin strength was greater than that of the lower skin which 

was of the order of 221% and 119% for the upper and lower skins respectively under 

punching (Al-Kubaisy and Jumaat, 2002). 

Ferrocement sandwich panels made of two outer ferrocement skins separated by 

a polystyrene core with two typical cross sections; with and without web connections 

showed a high ductility under bending when those compared to that of asbestos sheets 

as skins of sandwich.   The load carrying capacity of the sandwich elements with webs 

was almost twice of that of the panels without web where as the ultimate load was 

proportional to the thickness of the elements (Naaman, 2000). 

One of the main factors that have so far hindered the full development and 

acceptance of high performance ferrocement is its cost.  The relatively high cost of 

ferrocement, in comparison to reinforced concrete, is mainly due to the labour intensive 

nature of its fabrication (Nedwell, 2000; Naaman, 2001), Since the ferrocement 

elements are thin in section ranging between 10mm to 30mm and contains the wire 

mesh layers closely spaced inside, this often results in reinforcement congestion and 

poor concrete quality in the end product if the elements are produced by the method of 

the pouring.  This is why; the common method of the construction of ferrocement 

elements is by plastering the wire mesh with cement mortar manually in three stages.  

This method is not only the labour intensive and time consuming but the quality of the 

product too becomes non uniform thus exhibiting poor performance (Naaman, 2000; 

2001).   
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The major problem associated with the casting of thin ferrocement elements by 

the method of pouring the cement mortar in form work pertains to the workability/flow 

of mortar mix.  A few researchers adopted the method of pouring by enhancing the w/c 

ratio randomly, to ensure the adequate workability of mortar mix (Waliuddin and 

Rafeeqi, 1994; Abdullah and Takiguchi, 2002b) resulting the increase in porosity of the 

mortar mix thereby increasing the water absorption and decrease in compressive 

strength.  The porosity of mortar can be controlled by adjusting the water cement ratio 

with the corresponding addition of a superplasticizer to maintain the workability.  In 

fact, the matrix in ferrocement has 95% or more pronounced influence on the behavior 

of final product (ACI 549R, 1997; Kumar et al., 2002a; 2002b) which entirely depends 

on the composition of the mortar mix.  Thus the properties of mortar mix like 

compressive strength, water absorption are very important to consider during the design 

of ferrocement structural elements.  However to the best knowledge of the authors, the 

literature is silent about any systematic study to investigate the minimum flow 

(workability) required to cast such thin sections with the method of pouring. 

As cited before, ferrocement has been used as the face sheets to the sandwich 

elements and exhibited better performance.  Since, Precast Concrete Sandwich Panels 

(PCSP) generally span vertically between foundations and floors or roofs to provide an 

insulated outer shell to buildings carrying mostly axial loads (Einea, 1995; PCI, 1997).  

In fact, it is also mentioned that the compressive strength of ferrocement is smaller than 

that of the matrix alone due to delamination (due to splitting transverse tensile stresses) 

and buckling of the mesh reinforcement in compression (Al-Noury and Haq, 1988; 

Mansur and Abdullah, 1998).  This is because of, generally the mesh reinforcement is 

arranged parallel to the applied load in one plane only and it is common to consider that 

the compressive strength of ferrocement is the same as that of the mortar mix (Naaman, 

2000; IFS-10, 2001). 

However, on the contrary solid and hollow columns prophetically reinforced 

with wire mesh exhibited enhanced strength significantly (ACI 549R, 1997; Lim et al., 

2000).  This is attributed to the lateral wires in the mesh acting as confining 

reinforcement and literature review reveals the ferrocement as efficient and preferred 

option adopted for the confinement of normal and high strength concrete even in 

compression.  El Debs et al. (2000) reported the sandwich wall panel produced by 

polystyrene foam core encased in ferrocement box, which exhibited better compressive 
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strength and to some extent composite behaviour also.  Figure 2.15 shows one of the 

panels developed and tested.  

 

 

Figure 2.15: Sandwich panel tested (El Debs  et al.,2000) 
 

Moreover, high interfacial bond against slip (shear) along the surfaces of contact 

between ferrocement and the concrete is reported without any bonding agent like resin, 

and shear connectors (Thandavamoorthy, 2000; Lim et al., 2002). 

The possible uses of composite materials in infrastructure related applications is 

an area of active research now a days and autoclaved aerated concrete is a proven 

building material that will become much more widely used for both residential and 

commercial construction.  It is also important that the building material be cost 

effective, energy efficient, and available throughout the world (Nasim et al., 2006).  

Aerated concrete is significantly lighter than regular concrete, has similar properties to 

commercially available foam materials rather imparts better strength, and is 

significantly cheaper than commercial polymeric foams (Juan et al., 2007).  

 

2.4 Aerated Concrete 

 

2.4.1 Introduction 

Aerated concrete refers to concrete having excessive amounts of air voids.  

These air bubbles are created to reduce the density of the concrete and provide good 
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thermal insulation.  Aerated concrete was first produced in Sweden in 1930s and can 

also be referred to as cellular, foamed or gas concrete (Neville, 2003).  

In fact the name ‘concrete’ is inappropriate since the material contains no coarse 

aggregate.  According to Narayanan and Ramamurthy (2000a), aerated concrete is 

either a cement or lime mortar, classified as lightweight concrete, in which air-voids are 

entrapped in the mortar matrix by means of suitable aerating agent; the air entraining 

agents may be chemical (metallic powders like Al, Zn, H2O2) or mechanical (foaming 

agents) (Narayanan and Ramamurthy, 2000b).  Thus, the manufacturing process of 

aerated concrete consists in the creation of macro-porosity (called as induced porosity).  

Between 60 to 90% of volume of hardened aerated concrete consists of pores, which are 

classified as micro and macro capillaries and artificial air voids (Roels et al.; 2002; Kus 

and Carlson, 2003).  The aerating agents; among these aluminum powder is most 

commonly used, reacts with the water and the lime liberated by the hydration of the 

binder (Witman, 1983).  Equation 2.1 (Mostafa, 2005) shows the chemical process of 

creating the air bubbles within aerated concrete mass 

( ) ↑+⋅⋅→++ 223222 363632 HOHOAlOCOHOHCAH aa  2.1 

Thus the gaseous release generated by this chemical reaction causes the fresh 

mortar to expand and leads to the development of pores, which give aerated concrete its 

well known characteristics; low weight and high thermal performances (Narrayanan and 

Ramamurthy, 2000b).  The foaming method (foamed concrete) has no chemical 

reactions involved.  Introduction of pores is achieved through mechanical means either 

by pre-foaming (foaming agent mixed with a part of mixing water) or mix foaming 

(foaming agent mixed with the mortar).  The various foaming agents used are 

detergents, resin soap, glue resins, hydrolyzed proteins such as keratin. Manufacturing 

of aerated concrete is very efficient, simple and economical, as it takes little manpower 

to produce (RILEM, 1993).  

 

2.4.2 Classification of Aerated Concrete based on Curing Method. 

Aerated concrete can be non-autoclaved (NAAC) or autoclaved (AAC) based on 

the method of curing.  The compressive strength, drying shrinkage, absorption 

properties directly depend on the method and duration of curing.  The strength 

development is rather slow for moist cured products (Narayanan and Ramamurthy, 

2000a).  NAAC has larger volume of these fine pores due to presence of excessive pore 
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water (Tada and Nakano, 1983).  High porosity of aerated concrete is essential to its 

main function, that is its thermal insulation but it leads to poor mechanical strengths.  

Hence the most usual technique to make up for this lack of strength is the autoclave 

treatment performed under high pressure and temperature, but this one is economically 

and environmentally costly (Cabrillac et al., 2006). 

 

2.4.3 Density of Aerated Concrete 

 Aerated concrete of wide range of densities (300-1800 kg/m3) can be produced 

depending upon method of production, thereby offering flexibility in manufacturing 

products for specific applications; insulation, partition, and structural grades (Narayanan 

and Ramamurthy, 2000a).   

The density of aerated concrete is influenced by the water-cement ratio which 

controls the aeration process thus, the density. For a given density, water-cement ratio 

increases with proportion of sand.  Therefore, when pozzolans are used, water-solids 

ratio is more important than the water-cement ratio (Arreshvhina, 2002).   

For gas concrete, a lesser water-solids ratio leads to insufficient aeration while a 

higher one results in rupture of voids, increase in density being consequence in both the 

cases (Narayanan and Ramamurthy, 2000a).  In fact, the density of aerated concrete is 

also greatly dependent on the dosage of the aerating agent; the prime responsible to 

induce artificial voids in the mass.  The increase in the dosage of aerating agent (Al 

powder) decreases the density (Arreshvhina, 2002).  

Everything else being equal, the curing method also influences the density of 

aerated concrete.  The material as delivered from autoclave may be 15-25% heavier than 

oven-dry material.  This value can be as high as 45% for very low density aerated 

concrete (RILEM, 1993).  

 

2.4.4 Porosity 

 As stated in preceding section, aerated concrete with wide range of densities for 

specific applications can be manufactured by varying the method of production; 

composition of constituents and type of curing.  Cabrillc et al., (2006) reported that an 

increase in the cement dosage increases the introduced porosity where as increase of the 

sand or lime dosage decreases the introduced porosity.   

Whereas, the influence of the water dosage depends on the presence or absence 

of lime in the composition; with lime the increase of water dosage increases the 
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introduced porosity, while it does not influence the introduced porosity in the absence 

of lime.   

Furthermore, the additional autoclaved treatment greatly affected the mechanical 

strength rather than the introduced porosity.  The high porosity of aerated concrete 

allows the penetration by liquids and gases, which may lead to the damage of the matrix 

(RILEM, 1993).  

 

2.4.5 Compressive Strength 

 Generally it is believed that the compressive strength is linearly proportional to 

the density of the concrete.  However, in case of aerated concrete, the specimen size and 

shape, method of pore formation, direction of loading, age, water content, 

characteristics of raw material used and method of curing are reported to influence its 

compressive strength (Isue et al., 1995; Hanecka et al., 1997; Narayanan and 

Ranmamurthy, 2000a).  The strength of NAAC increases 30%-80% between 28 days 

and 6 months, and marginally beyond this period. A portion of this increase is attributed 

to the process of carbonation (Hanecka et al., 1997).  Houst et al. (1983) reported the 

inverse proportion between compressive strength and moisture content of aerated 

concrete.  This could be attributed to the pore water which may act as lubricant in the 

microstructure of the material. 

 

2.4.6 Drying Shrinkage 

Drying shrinkage occurs due to the loss of adsorbed water from the material and 

it is significant in aerated concrete because of its high porosity and specific surface of 

pores thereby accelerating the drying water within the mass.  The decrease in pore size 

combined with a higher percentage of smaller size pores is also reported to be 

responsible to shrinkage in aerated concrete (Narayanan and Ramamurthy, 2000a).  

While, the capillary tension theory of drying shrinkage of porous building materials 

states that the water in the pores exit in tension which produces an attractive forces 

between the pores of walls, thereby causing shrinkage (Tada  and Nakano,1983).  

Aerated concrete with only cement as binder is reported to cause higher value of 

drying shrinkage than the aerated concrete produced with lime or lime-cement.  

Whereas, the duration and method of curing, pressure of autoclaving (in case of AAC), 

fineness and chemical composition of mineral admixtures, the size and shape of 

specimen affects the drying shrinkage (Schubert, 1983; Narayanan and Ramamurthy, 



 35

2000a).  Due to high level of moisture loss, dry curing influences significantly the 

drying shrinkage of aerated concrete than the water curing (Mirza et al., 2002). 

ASTM C426-06 (2006) specifies the drying shrinkage or expansion of a 

specimen limiting between ±0.15 percent of their initial dimension in consideration.  

Drying shrinkage values ranging from 0.06 to over 3% are reported in literature 

(Narayanan and Ramamurthy, 2000a).  

A higher shrinkage in NAAC is reported due to its larger volume of finer pores 

(Tada and Nakano, 1983).  However, when the same product is autoclaved, fundamental 

changes take place in the mineral constitution, which may reduce shrinkage to one 

quarter or even one-fifth of that air-cured product.  Nevertheless, Arreshvhina (2002) 

found the drying shrinkage of the order of 0.03% of slag-cement based NAAC which is 

substantially smaller than those the extreme specifications of ASTM C426-06 (2006). 

 

2.4.7 Water Absorption and Permeability 

Aerated concrete is porous material, consists of a substantial portion of its 

volume by pores.  Therefore, it has strong interaction between water, water vapor and 

the porous system. In dry state, pores are empty and the water vapors diffusion 

dominates, while some pores are filled in higher humidity regions (if any).  

 

2.4.8 Thermal Conductivity 

 Thermal conductivity is largely a function of density.  In aerated concrete it does 

not really matter whether the product is moist cured or autoclaved (Narayanan and 

Ramamurthy, 2000a).  However, the amount of pores and their distribution are also 

critical for thermal insulation; finer the pores better the insulation (Bave, 1980).  Other 

factors, which could affect the thermal conductivity to some extent, include moisture 

content, temperature level, raw materials and pore structures (Loudun, 1983). 

 

2.4.9 Fire Resistance 

 One of the most remarkable properties of aerated concrete is its fire resistance 

capability due to its cellular structure (Nasim et al., 2006).  Since the aerated concrete is 

relatively homogeneous in nature and independent of coarse aggregates unlike normal 

concrete, thereby avoiding the differential rated of expansion, cracking and 

disintegration caused by these aggregates (Narayanan and Ramamurthy, 2000a).  It also 

neither spalls due to fire and nor requires the plastering to achieve good fire resistance 
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(Buekett and Jennings, 1996).  The good fire resisting property of aerated concrete is 

where its closed pore structure pays rich dividends, as heat transfer through radiation is 

an inverse function of the number of air-solid interfaces traversed.  Adding this to their 

low thermal conductivity and diffusitivity, gives an indication that aerated concrete 

possess good fire resisting properties  

Most recently autoclaved aerated concrete (AAC) is used as core material in 

FRP-AAC sandwich panels and have proven to be structurally efficient combination for 

lightweight structural components.  AAC-CFRP composites have great excellent 

absorbing capabilities under impact force. While the resin infiltrates into the concrete 

micro-pores of the AAC panel, additional strengthening is provided.  The potential 

advantages of panelized construction using AAC core as building material are 

lightweight, energy efficient, easy to use, fire resistant, environmental friendly, weather 

resistant, pest resistant, durable, acoustically efficient (Juan et al., 2007; Lim and Kang, 

2006).  Furthermore, if the strength is not the major criteria, then non-autoclaved 

aerated concrete is more cost effective and easy to produce possessing almost all other 

properties nearest similar to those of AAC as discussed in previous section.   

Mouli and Khelafi (2006) reported that the interfacial bond strength of 

composite sections is significantly affected by the type of concrete. LWC exhibits 

higher results push-loads and thus better composite action than the normal concrete.  

Therefore, it is believed that if aerated concrete is used as core with cement based 

composite as face sheets to produce sandwich element, a superior interfacial bond can 

be achieved between the two without use of any bonding agent.  This led to the idea to 

use non-autoclaved aerated concrete (NAAC) as core material during this study.  This 

also will lead to the basic concept of the affordable housing that, the building material 

be cost effective, energy efficient, easily available. 

  

2.5 Cost Effectiveness  

 To reduce the overall construction cost of the building has been the much 

focused area of the current period for developed countries in general and for developing 

countries in particular.  This could be achieved by reducing the material cost by 

replacing traditional materials with cheaper materials and also adopting mechanized 

construction techniques. Averagely 10-20% of the material cost can be saved compared 

to normal dense concrete when lightweight aerated concrete is used.  Table 2.1 shows 

an outline of costing for a project in United States.  The project was to build 36-story 
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luxury condominium.  The cost savings have been calculated in the Malaysian currency 

(RM) also.  It is evident that about 10% of the total cost has been saved with the use of 

aerated concrete and in addition the ongoing saving of US$40,000 per year is 

accomplished in terms of reduction of electricity cost due to lower air-conditioning 

requirements caused by the insulation behavior of aerated concrete. 

The reduction in the cost can also be achieved by the application of the 

industrial by-products to replace costly conventional materials is major technique in this 

regard.  The utilization of industrial by products offer triple benefits namely: 

conservation of fast declined natural resources, planned gainful exploration of waste 

materials and release of valuable land for more profitable use (Swamy, 1989).  Using 

by-products, such as silica fume, fly ash and blast furnace slag, in concrete products has 

been done for many years because of ecological, economical and diversified product 

quality reasons.  Their use also improves the concrete properties.  

 

Table 2.1: Cost saving details of a project using aerated concrete in United States (Pan 

Pacific, 2000) 

Description Cost (US$) Cost (RM) 

Foundation/Structural cost 1,600,000.00 6,080,000.00 
Concrete 3500m3 70,000.00 266,000.00 
Transportation/crane 30,000.00 114,000.00 
Air-Conditioning Installation 500,000.00 1,900,000.00 
Total saving 2,200,000.00 8,360,000.00 
 

Fly ash mortar also has been used for ferrocement (Kausik et al., 2002).  

However, workability of the fly ash mortar continues to be a problem.  The mortar 

becomes harsh and poses considerable problems in preparation, flow, placing and 

compaction.  This results in improper encapsulation of wire meshes in matrix thereby 

leading to poor performance.  However, GGBFS commonly known as slag does not 

affect the workability significantly.  It is therefore, investigations on the properties of 

concrete and mortar with slag as partial replacement of cement is remained active area 

of research.   

The effectiveness of slag in terms of compressive strength of concrete, mortar 

and aerated concrete, especially at 28 days and later is reported in literature (Swamy and 

Ammar, 1990; Arreshvhina et al., 2005; Agarwal and Deepali, 2006; Barnett et al., 
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2006).  In most cases, GGBFS slag has been used in proportions of 25 to 70 percent by 

mass of total cementitious material but 50% appears to be an optimum blend of GGBFS 

slag that produces the greatest strength at 28 days (ACI 226, 1987; Swamy, 1990; 

Arreshvhina, 2002).  Since each slag, behaves differently with different cements, it is 

important to prepare trial mixes with the cement and ground slag to be used, to 

determine the correct mix proportions and insure adequate performance of the concrete 

(Mantei, 1994). 

The overall construction cost of ferrocement elements can further be reduced by 

casting the thin ferrocement encasement with a mechanized approach replacing the cost 

intensive traditional method of construction, where, wire meshes are plastered in three 

stages manually. 

 

2.6 Concluding Remarks  

The modern and innovative techniques, approaches and systems are being 

adopted by the construction industry to industrialize the building system in order to 

coup with the problem.  Precast and prefabrication of the lightweight structural 

members/elements in factory provides the quality construction, rapid progress of 

structure erecting, minimized construction activities at site and the reduced construction 

duration of the project.  Sandwich form of construction serves the purpose efficiently.  

Based on the application of sandwich, it is produced with a wide variety of 

alternative core materials, including wood, honeycomb, polymer foams and steel 

connectors.  Each material has its own advantages and disadvantages, but for buildings 

steel connectors and foams are preferred. Whereas, many high performance materials 

are in common use to produce face sheets, but the concrete wythes are commonly used 

in sandwich elements for the buildings along with the recent attention paid to the 

ferrocement due to its high performance compared to the other thin materials.  

However, sandwich faces the severe problems pertained to the small area of 

connection where shear connectors are connected to the wythes. While, in case of foam 

cores bonded with the wythes, the performance of sandwich is governed by the type, 

quality and efficiency of the bonding resins which are expensive too. Thus, it was 

deemed to adopt a novel technique to produce sandwich composite by encasing 

lightweight aerated concrete with high performance ferrocement eliminating the shear 

connectors and the bonding materials with a mechanized simultaneous casting of core 

and encasement.  
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CHAPTER 3 

 

RESEARCH METHODOLOGY 

 
3.1 General Appraisal 

 

This chapter describes the methodology adopted to achieve the aim and 

objectives of the study, details of the materials used, and the experimental procedures 

applied to investigate various parameters.  

 

3.2 Experimental Programme of Study 

The main aim of the study was to investigate the characteristics of ferrocement 

encased aerated concrete sandwich wall element.  In order to achieve the aim and the 

related objectives mentioned in chapter one, a two-phase experimental study; each 

comprised of stepwise strategy was adopted.  Following are the details of the two 

phases, stepwise research methodology adopted. 

 

3.2.1 Phase-I: To Investigate Optimum High Workability and High   

Performance Mortar Mix for encasement 

The phase-I was completed in four steps detailed as follows. 

 

3.2.1.1 Minimum Mortar Flow Value 

Initially thin ferrocement plates of 6mm, 8mm, 10mm and 12 mm thick 

thickness were cast on trial and error method (by adjusting water-binder ratio and 

adding superplasticizer).  Minimum flow of mortar required to cast the proposed 

ferrocement encasing box for sandwich wall elements was determined using flow table 

test.  

 

3.2.1.2 Maximum Dosage of Superplasticizer 

The maximum dosage of superplasticizer reducing the water-binder ratio by 

maintaining the minimum flow determined was also examined.  In all three mixes were 

selected at random were used.  These mixes were of different mix proportion with and 
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without GGBFS.  In each mix superplasticizer dosage was utilized with an increment 

0.1% of total binder by weight until its further increase did not render desired results.  

Throughout this step, mortar flow was maintained at the value determined from 

previous step.   

 

3.2.1.3 Flow versus Mix Proportions (A Comprehensive Flow Test Programme) 

On the basis of the results of previous two steps a comprehensive test 

programme was conducted to establish the criteria between mix proportions, water-

binder ratio, dosage of superplasticizer and partial replacement of cement with GGBFS 

at constant mortar flow determined previously.  The details of the mix proportion, level 

of partial replacement of cement with GGBFS to achieve the economy and the dosage 

of the superplasticizer applied to reduce the water-binder ratio at specific flow, are as 

follows: 

 

(a) Mix proportion: binder : sand  

1: 2, 1: 2.5, 1: 3 

(b) GGBFS:  0%, 50% and 60% by weight of the total binder 

   as partial replacement of cement 

(c) Superplasticizer: Used from 0.1%; of total binder by weight up 

    to maximum dosage determined during 

    previous step.  It was applied in an increment of

    0.1% each time 

All in all 54 mixes were developed, tested and analyzed during this step, the 

details of which are given in chapter 4.  

 

3.2.1.4 Characteristics of High Workability Slag Cement Based Mortar 

Initially cube specimens of size 70.6mm x 70.6mm x 70.6mm for all the 54 

mixes developed from previous step were cast and tested with following variables 

 

(a) Curing regime  Water  

(b) Age of Mortar: 28 days. 

(c) Tests:    Cube crushing strength  and 

Density of mortar 
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As a step further, based on the strength and density results obtained, seven high 

strength (compressive strength > 45MPa) and economical mixes (with GGBFS) 

including one control mix were selected and were tested with following variables.   

 (a) Curing regime  : Water (at 27 0C room temperature in 

      water tank) 

(b) Strength development : 3, 7, 28, 90, and 180 days  

(c) Water absorption : at 28 days  

(d) ISAT (permeability) : at 28 days 

As the concluding step, two mixes were selected based on the results from 

previous testing, and were tested for effect of curing regime by curing with following 

variables 

 (a) Curing regime: Water (in water tank at 27 0C room temperature

   temperature. 

    Air (inside room at 27 0C room temperature) 

    Natural whether (ambient environment; outside

    the laboratory under open sky at temperature 

    from     25 0C to 35 0C) 

 (b) Tests  : Compressive strength 

 (c)  Specimens Age: 3, 7, 28, 90, and 180 days 

Finally on the bases of the entire results and the discussions made, an optimum 

high workability and high performance mortar was selected to cast ferrocement 

encasing box to produce ferrocement-aerated sandwich.  

 

3.2.2 PHASE-II:  To Investigate Characteristics of Ferrocement Encased   

Aerated Concrete Sandwich Wall Elements 

This phase of the experimental study was accomplished in two parts.  As the 

wall elements considered in the final step of this study were of relatively large size, 

hence it was deemed necessary to carry an intensive experimental programme with large 

number of variables but with small size specimens as per the specifications of various 

standards.  Throughout the study it was decided to adopt 12mm thick ferrocement 

encasement to produce sandwich.  The encasement was achieved by producing 

ferrocement box around four sides of the entire specimens.  The details of the study are 

as follows: 
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3.2.2.1 Sandwich Cubes, Blocks and Prism Beams 

 
 (a) Shape and size of specimens   

  Cubes A :  70.6mm x 70.6mm x 70.6mm (Figure 3.1) 

Cubes B : 100mm x 100mm x 100mm (Figure 3.2)  

Blocks  :  400mm x 200mm x 100mm (Figure 3.3) 

Prism beams : 500mm x 100mm x 100mm (Figure 3.4) 

 (b) Variables  

Type of mesh:   Chicken and square weld wire meshes 

Number of mesh layers: 1 to 4 layers in chicken wire mesh and 1 to 

3 layers in square weld wire mesh (Since 

square weld mesh was of greater diameter 

thus the maximum number was limited to 3 

in this case) 

Curing regime:  Water  

Age of specimen: 28 days,  

Core Volume:   Varying with size of specimens 

Encasement effectiveness Method of testing the specimen for 

compression comprised of 

(i) Holding encasement parallel to loading 

direction (Figure 3.5a) 

(ii) Holding encasement perpendicular to 

loading direction (Figure 3.5b) 

 (c) Tests 

   Ultimate compressive strength 

   Flexural strength (Modulus of rupture) 

   Ductility (Load deflection curves) 

   Weight comparison 

   Failure mode (both; under compression and flexure) 

   Water absorption 

   ISAT (Permeability) 
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Figure 3.1: Dimensions and cross sections of cubes A 
 

 

Figure 3.2:.Dimensions and cross sections of cubes B 
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Figure 3.3: Dimensions and cross 
sections of blocks 

Figure 3.4: Dimensions and cross sections of 
prism beam 

 

 

Figure 3.5: Encasement direction in compression 
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3.2.2.2 Sandwich Wall Elements  

 Finally ferrocement encased aerated concrete sandwich wall elements of 

relatively large size were tested.  The details are as follows: 

 (a) Dimensions of wall elements 

  Wall elements   700 x 300 x 100 mm (Figure 3.6) 

Wall elements   700 x 400 x 100 mm (Figure 3.7) 

  Wall elements    1400 x 400 x 100 mm (Figure 3.8) 

 (b) Variables 

Mesh layers: Optimum number of wire mesh obtained 

from previous step (section 3.12.1) 

Curing regime:  Water moist  

Age of Wall element:  28 days. 

 (c) Tests  

 (i) Compression  

Ultimate load 

Load-lateral deformation behaviour 

Load-axial deformation behaviour 

Failure mode 

Composite action of sandwich wall elements 

  (ii) Flexure (bending) 

   Ultimate load 

   Load deflection behaviour (ductility) 

   Failure mode 

   Load-strain behaviour 

   Composite action of sandwich wall elements 
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Figure 3.6: Dimensions and cross sections of wall elements 

                                        (700 mm x 300 mm x 100 mm) 
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Figure 3.7: Dimensions of wall elements 
                    (700 mm x 400 mm x 100 mm) 

 
  Figure 3.8: Dimensions of wall element  
                        (1400 mm x 400 mm x 100 mm) 

 

3.3 Materials 

 All the raw materials used throughout this study complied with the standard 

specifications of ASTM, BS and Malaysian Standards. 
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3.3.1 Cement 

Ordinary Portland Cement (OPC) of ‘SELADANG’ brand from Tenggara 

Cement Manufacturing Sdn. Bhd. was used during the study. The OPC used complied 

with the Type I Portland Cement as in ASTM C150-05 (2005) and BS 12 (1991) which 

is equivalent to Malaysian Standard MS 522: part I (2003).  The chemical composition 

of the cement is given in Table 3.1. 

 

Table 3.1: Chemical composition of OPC and GGBFS 

Chemical Composition OPC GGBFS  

Silicon dioxiode (SiO2) 20.1 28.2 

Aluminum oxide (Al2O3) 4.9 10.0 

Ferric oxide (Fe2O3) 2.5 1.8 

Calcium oxide (CaO) 65.0 50.4 

Magnesium oxide (MgO) 3.1 4.6 

Sulphur oxide (SO3) 2.3 2.2 

Sodium oxide (Na2O) 0.2 0.1 

Potassium oxide  (K2O) 0.4 0.6 

Titanium Oxide (TiO2) 0.2 - 

Phosphorus Oxide P2O2  <0.9 - 

Loss of ignition (LOI) 2.4 0.2 

Carbon content (C)  - - 
* All values are in percentage 

 

3.3.2 Ground Granulated Blast Furnace Slag (GGBFS) 

GGBFS was obtained from YTL Cement Sdn. Bhd.,Pasir Gudang, Johor.  The 

GGBFS used complied with the requirements in ASTM C989-05 (2005), which is 

equivalent to BS 6699 (1992) and MS 1387 (1995).  The chemical composition of slag 

is given in Table 3.1. 

 

3.3.3 Fine Aggregate 

Locally available hill sand passing through 1.18 mm sieve was used as fine 

aggregate in mortar for encasement. Initially the sand was dried in an oven at the 
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temperature of 105 0C ± 5 0C.   After that it was sieved accordingly.  The sand used was 

as per the specifications of ASTM C778-02 (2002) and gradation was in accordance 

with the specifications of ASTM C33-03 (2003) and IFC-10 (2001).  The fineness 

modulus was found to be 2.36. 

For aerated concrete the sand was sieved from 600 micron sieve as per the 

recommendations of Arreshvhina (2002).  

 

3.3.4 Superplasticizer 

The superplasticizer of trade name SIKAMENT NN was used as the chemical 

admixture during this study.  It was type F high range water reducing admixture 

complying with ASTM C494-05a (2005).  It was from group Sulphonated Naphthalene 

Formadehyde condensates (SNF) in dry powder form. 

 

3.3.5 Aluminum Powder 

The aluminum powder type Y250 was used as the gas-forming agent in 

producing the slag cement based aerated lightweight concrete.  The specifications and 

chemical composition of the aluminum powder used are given in Table 3.2. 

 

Table 3.2: Specifications and chemical composition of Aluminum powder 

Specification No.300 
Colour Silver 
Particle Size Mesh 250 
Reactivity of Aluminum (%) - 
Chemical composition (%) 
Aluminum Min. 99.3 
Copper Max. 0.1 
Iron Max. 0.4 
Silica Max .0.2 

 

3.3.6  Wire Meshes 

Square welded wire mesh and hexagonal chicken wire mesh locally available in 

the market were used as the reinforcement in ferrocement box.  The properties of the 

wire mesh are given in Table 3.3. Figure 3.9 depicts the photographic view of wire 

meshes used.  
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Table 3.3: Properties of wire meshes 

Wire mesh type Properties Values 

Average diameter 0.9 mm 

Opening size of mesh 12.2 mm x 12.2 mm Square mesh 

Yield strength 410 MPa 

Average diameter 0.45 mm 

Opening size of mesh 13 mm x 15 mm Chicken (Hexagonal) mesh 

Yield strength 290 MPa 
 

  

Chicken mesh Square mesh 

Figure 3.9:.Wire meshes 
 

3.3.7 Water 

Water is one of the most important constituents without which concrete cannot 

be produced.  It should not contain any substance, which can be harmful to the process 

of hydration of cement and durability of concrete.  In general, water, which is 

acceptable for drinking, is also suitable for the concrete mixing. In this study tap water 

was used for the manufacture of the concrete.  

 

3.4  Mix Proportion 

 

3.4.1 Mortar for Encasement  

Mix proportion for ferrocement mortar was selected from the test results of 

phase-1. Table 3.4 shows the details of the proportion.   
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Table 3.4:  Mix proportion of mortar for encasement 

Binder : Sand 1:2 
OPC 50% of total binder by weight 
GGBFS (as partial replacement of (OPC) 50% of total binder by weight 
Sand Passing through sieve  size # 16 
Water-binder ratio Adjusted to 136±3% flow value 
Superplasticizer 0.2% of total binder by weight 
Design compressive strength  About 50MPa 

 

3.4.2 Aerated Concrete 

In principle the mix proportion for aerated concrete (sand: binder) adopted was 

the same as that of aerated concrete developed earlier at UTM by Arreshvhina (2002).  

However substantial modifications in the dosage of superplasticizer and aluminum 

powder were applied as per the requirement.  Table 3.5 presents the mix proportion of 

the aerated concrete used during this study.    
 

Table 3.5:  Mix proportions of slag cement based aerated concrete. 

Binder : Sand 1: 1 
OPC 50% of total binder by weight 
Sand  Passing  through sieve size 600 micron 
Slag Replacement 50% 
Water-dry mix ratio 0.23  
Aluminium Powder 0.1% of total dry mix by weight 
Superplasticizer 0.55% of total binder by weight 
Average density  1100- 1200 kg/m3 

 

3.5 Specimens Casting 

The specimens of various sizes and shapes as mentioned in section 3.1 were 

prepared and tested during the experimental part of this study.  All the specimens were 

cast and tested in accordance to the specifications of the appropriate standards.  

Guidelines established by various authors were adopted wherever the procedures in 

certain cases were not found in the standards like, casting of ferrocement thin sheets, 

aerated concrete, and sandwich specimens.  Following is the brief account of the casting 

procedures adopted for these specimens. 
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3.5.1 Ferrocement Thin Sheets   

Thin ferrocement elements of 6mm, 8mm, 10mm, and 12mm thick, 200mm 

wide and 600mm high containing one layer of square wire mesh inside were cast in 

vertical upright direction with random values of water-binder ratio by keeping mix 

proportions constant.  A trial-and-error method was applied by adjusting the water 

content, in order to determine the minimum water-binder ratio required to cast the 

proposed ferrocement box by the method of pouring the mortar instead of manual 

plastering of the wire mesh layers.  Table vibrator was used during the casting of thin 

sheets.  

Tests were conducted for different mix proportions and were repeated for three 

times for each mix.  Details of mix proportions and results are discussed in chapter 4. 

Figures 3.10 and 3.11 show the mould and a few thin ferrocement elements cast 

respectively while Figure 3.12 depicts the view of one of the ferrocement elements 

containing wire mesh encapsulated with mortar.  

 

Figure 3.10: Mould used to 
cast thin FC elements 

Figure 3.11: View of a 
few thin FC elements cast 

Figure 3.12: FC element 
showing wire mesh inside 

 

3.5.2 Mortar Cubes 

All materials including water were weighed prior to mixing of the materials.  

The mixing was performed in accordance to ASTM C305-99 (1999). Initially sand and 

binder (OPC and GGBFS) were mixed in an electrically operated mortar mixer at 285 ± 

10 rpm for about 3-5 minutes to ensure uniformly mixed.  Figure 3.13 shows the mixer 
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used.  Then water was added slowly into the dry mix and mixing of the mortar mix 

continued for about 3 minutes in order to achieve the uniform mix.  Then cube 

specimens of standard size were cast as per the specifications of                ASTM C109-

05 (2005).  The moulds were covered in a plastic sheet with wet gunnysacks at the top 

to provide humidity during the hardening process.  After 24 hours, the specimens were 

demoulded and cured accordingly. 

Since mortar for ferrocement sandwich elements was large in quantity to be 

mixed in electrically operated mixer, hence it was mixed in the drum mixer with similar 

procedure adopted for the cube mortars.   

 

 
Figure 3.13:  Mixer (electrically operated) 

 

3.5.3 Aerated Concrete Specimens  

Firstly, sand cement and slag were weighed and added and were mixed 

thoroughly in a mixer (electrically operated mixer/ drum mixer) for about 3-5 minutes.  

Aluminum powder and SP were then added and mixed about three minutes until all the 

constituents were evenly mixed.  Then water was added and again mixed for about 5 

minutes or until a uniform mix was achieved.  Figure 3.14 shows the AC mix after 

attaining the uniform state.  
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Figure 3.14: AC uniform mix 
 
Then the mix was poured in the moulds approximately up to 80% of their height.  

This can be viewed from Figure 3.15. 

 

 

 
 

  

Figure 3.15:  AC filled in moulds up to 80%. 
 
 
Immediately after pouring the mix in mould, expansion convened and continued 

for next 30-45 minutes.  The specimens became hard enough after 3-4 hours of casting 

and were ready to be trimmed the expanded portion above the top of the specimens.  

After 24 hours the specimens were demoulded and were placed in the curing regime (if 

the control) and the core specimens were processed further to cast the sandwich.   

Figures 3.16 -3.18 illustrate the pictorial views of expanded, trimmed and demoulded 

aerated concrete specimens.  
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Figure 3.16: AC specimens after expansion 
 
 

 

 

 
  

 
 

Figure 3.17: AC specimens after trimming 
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Figure 3.18: AC specimens after demoulding. 
 

3.5.4 Sandwich  

 The wire mesh was cut from the roll as per requirement of the specimens and it 

was wrapped over the core in layers (as required) followed by the casting of the 

ferrocement box in single operation.  Table vibrator was used during the casting of the 

ferrocement encasement.  Figures 3.19-3.22 present the pictorial views of the various 

stages of the casting of the sandwich elements.  The stages are; wrapping of wire mesh, 

specimens ready to cast encasement, after casting, and the demoulded specimens ready 

for curing.  At the time of casting the ferrocement encasement, three companion mortar 

cube specimens of standard size were also cast to determine the ultimate compressive 

strength of mortar on the day of the testing the corresponding batch.  
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Figure 3.19: AC core specimens after the wrapping with wire mesh 
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Figure 3.20: Sandwich specimens ready to cast encasement 
 
 

 

 

 

Figure 3.21: Sandwich specimens after casting of encasement 
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Figure 3.22: Sandwich specimens under curing process 
 

3.6 Experimental Procedures and Setup 

 
3.6.1 Flow Tests 

 Flow table test in accordance to ASTM C230-03 (2003) was applied in order to 

determine the mortar flow.  The flow is defined as the resulting increase in the base 

diameter of a mortar mass expressed as a percentage of the original base diameter after 

being vibrated on a flow table.   First of all the constituents were mixed thoroughly to 

achieve uniform mix.  The mix is filled in the standard mould on the flow table in 2 

layers compacted in each layer with 20 numbers of blows with a 25mm diameter mild 

steel bar.   The tamping pressure was just sufficient to ensure uniform filling of the 

mould.  After filling, the mould was removed and the flow table was vibrated, by 

dropping it from standard height of 12.5mm at the rate of 25 drops in 15 seconds.  
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Lastly, the result of increased base diameter of mortar mass is measured and divided by 

the original diameter to get the flow. Figure 3.23 presents the pictorial views of the flow 

test. 

 

 

 

  

Figure 3.23: Flow table test 
 

3.6.2 Compression  

Compressive strength is the major test done during this study.  Three types of 

specimens were tested under compression; cubes, blocks and wall elements.  The cubes 

and block specimens were tested using TONIPAK 300 compressive testing machine of 

capacity 3000 KN installed in the structures and materials laboratory, FKA UTM.  The 

tests were conducted as per the specifications of ASTM C109-02 (2002) and EN 679 

(1993) at the prescribed age of the testing.  The specimens were withdrawn from the 

specific curing regime just 15 minutes before the testing and cleaned properly with dry 

cloth to remove foreign particles if any.  

Before conducting the test, all the specimens were checked for any kind of 

deformation such as broken edges and cracks.  Then the specimens were placed at the 

center of the cleaned platens of the machine followed by the application of gradual and 

without shock loading.  The rate of loading was maintained at a constant value 0.3 

KN/mm2 per second until the failure of the specimens.  During test, the visible cracking 

and the failure mode were monitored carefully and the load corresponding to first 

visible crack and the ultimate failure were recorded.  Figures 3.24 and 3.25 show the 

test setup for compression tests of cubes and block specimens.  
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Figure 3.24: Test setup for cubes. Figure 3.25: Test setup for blocks 
 

Lastly the compressive strength was calculated by following formula:  

ci

i
ci A

F
f =          3.1 

Where: 

  =cif  Compressive strength (MPa) 

  =iF  Ultimate load (N) 

  =ciA  Cross-sectional area perpendicular to loading direction (mm2) 

Sandwich wall elements were tested with special testing arrangement suited for 

the specimen dimensions and expected load carrying capacity accordingly.  The test set 

up used for the wall elements are shown in Figures 3.26 and 3.27.  All the specimens 

were tested in vertical position.  Before testing, the panels were painted white so that 

crack pattern could be observed easily.  The specimen was placed in the loading frame 

in the correct position.  A leveling ruler was used to ensure the proper leveling of the 

panel.  A total of 10 LVDTs were used in each specimen for lateral and axial 

deformations, out of which six LVDTs, three being on either side were used to measure 

lateral deformation, while the remaining four were used to measure axial deformations 

by installing two on either side. 
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Figure 3.26: Test setup-I for wall panels under compression 
 

 

 

Figure 3.27: Test setup-II for wall panels under compression. 
 

The instruments were checked and adjusted properly, before applying the load.  

A small load of around 1 KN was first applied to make sure that all the instruments 

were working.  The load is then increased gradually with an increment of approximately 

10 KN till the failure of the specimen.  At each load stage, the readings were recorded 

automatically using a Data Logger connected to a computer.  The crack pattern was also 

noted at each load stage. Cracks were marked on the surface of the specimen the general 

behaviour of the specimen was carefully observed.  
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3.6.3 Flexural (Bending) 

The bending strength is of value in estimating the load under which cracking 

will develop. Flexural strength specimens were in the form prisms 100 x 100 x 500 mm 

in dimensions, to asses the modulus of rupture. A symmetrical, two point loading (third-

point / middle third loading) in accordance to ASTM C78-02 (2002), which produces a 

constant bending moment between the load points, was used until to failure. Three 

LVDTs; one at centre and two at load points, were installed at the bottom of the prisms 

to study the load-deflection behaviour. The load was applied in uniform increments of 

about 400N/s until failure. During the test in progress, the development of crack and the 

cracking pattern of specimens up to failure were closely observed.  At each load stage, 

the readings were recorded automatically using a Data Logger connected to a computer.  

Figure 3.28 depicts the pictorial view of the test arrangement.  

 

 

Figure 3.28: Test setup for prism beams under flexure (bending) 
 

The flexural strength values of all prisms can be calculated using the modulus of 

rupture formulae using the ultimate load values as follows. 

 2bd
PLMOR =           (When,  a > 

3
L  )     3.2 

 2

3
bd

PaMOR =           (When, a < 
3
L  )     3.3 

 Where  

  P = Load at failure 

  L = Span length 
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b = Average width of specimen 

  d = Average depth of specimen 

a = Average distance between line of fracture and the

 nearest support measured in the tension surface of the 

 beam  

Sandwich wall elements were tested in a testing frame.  The frame was anchored 

to a strong floor.  All the specimens were tested in the horizontal position.  The panels 

were simply supported on two shorter sides and subjected to two-line lateral loads as 

shown in Figure 3.29. The force introduced to the jack was generated by a hydraulic 

pump.  

 

 

Figure 3.29: Test setup for walls under flexure (bending) 
 

The force was transferred from the jack through the I-beams to the specimen. All 

the specimens were tested till failure.  The panels were painted white so that crack 

patterns could be easily observed.  The specimen was then placed in the loading Frame 

in the correct position.  The LVDTs and strain gauges were placed at the proper 

locations.  Before application of the load, the instruments were checked and adjusted 

properly.  A small load of around 0.5 KN was first applied to make sure that all the 

instruments were working.  The load is then increased gradually with an increment of 

approximately 1 KN till the failure of the specimen.  At each load stage, strains in 

concrete and the deflections were recorded automatically using a computerized data 

acquisition system.  The crack pattern was also noted at each load stages.  Cracks were 

marked on the surface of the specimen and general behaviour of the specimen was 
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carefully observed during the load application.  The failure load is identified when 

excessive cracking occurs at the bottom the applied load drops and the deflection 

increases. 

 

3.6.4 Water Absorption Test 

 Water absorption test was conducted as per the specifications of BS 1881: Part 

122, (1983).  This method is also known as water immersion method. Three 

representative specimens from each batch were oven dried at 105±5 0C for 72±2 hours. 

Upon removal from the oven, all specimens were cooled for 24±0.5 hours in a dry 

airtight vessel.  Then the specimens were weighed and immediately immersed in water 

tank to a depth ensuring 25±5mm of water over the top of specimens.  The specimens 

remained in water for 30±0.5 minutes, followed by their withdrawal from the water.  

Then the specimens were dried with a cloth in order to remove surplus water on the 

surfaces and were weighed.   The water absorption value was then calculated as the 

increasing in the mass resulting from the immersion process expressed as a percentage 

of the mass of the dry specimen.  The calculations were made as per the formula 

specified in BS 1881: Part 122 (1983), as follows: 

 100×
−

=
d

dw
a W

WWW       3.4 

 Where 

  =aW  Percentage of water absorption 

  =wW  Weight of wet specimen 

  =dW  Weight of dry sample 

 Accordance to Concrete Society Technical Report No. 31 (1988), the typical 

values of the water absorption of concretes rating the type of concrete cured in water 

and tested at 28 days as per the recommendations and test procedures of BS 1881 BS 

1881: Part 122 (1983), are defined as: 

 Very low absorption concrete  < 3% 

 Low absorption concrete  3 – 4% 

 High absorption concrete  > 4% 
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3.6.5 Initial Surface Absorption Test (ISAT) 

 BS1881: Part 5 (1970) clause 6 describes a method of determining the initial 

surface absorption of concrete which was developed and tested by Levitt, (1970).  The 

test is non-destructive test and a measurement of the surface concrete properties and is 

of interest in relation to concrete performance criteria like permeability thereby the 

durability.  The clause defined the initial surface absorption test as the rate of flow of 

water into concrete per unit area after a stated interval from the start of the test and at 

constant applied head and temperature. 

All the ISAT samples were oven dried in well-ventilated oven at 105±50C for 

about 24 hours in order to achieve constant weight.  Then the specimens were placed in 

a suitable airtight cooling cabinet until the time of testing where the temperature was 

equivalent to the room temperature. 

In this method a cap with a minimum surface area of 5000mm2 is sealed to the 

concrete surface and filled with water.  Figure 3.30 illustrates the schematic diagram of 

the tests.  The rate at which water is absorbed into the concrete under constant pressure 

head of 200mm is measured by movement of water along a capillary tube attached to 

the cap.  The readings were recorded at the time intervals; 10 minutes, 30 minutes, I 

hour and 2 hours after the starting of test.  

The observed values are then calculated accordingly and the results are given as 

‘K’ (ml/m2/s).  Finally the specimens are classified by comparing the values observed 

with the classification criteria proposed by Levitt (1970) as presented in Table 3.6.   

 

            

                          Figure 3.30: Schematic diagram of ISAT 
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Table 3.6: Typical results of ISAT (Levitt, 1970) 

ISAT ml/m2/s 

Time after  starting the test Comments  

10 minutes 30 minutes 60 minutes 120 minutes 

High > 0.50 >0.35 >0.20 >0.15 

Average  0.25-0.50 0.17-0.35 0.10-0.2 0.07-0.15 

Low < 0.25 < 0.17 < 0.10 < 0.007 

 

3.6.6 Ultrasonic Pulse Velocity (UPV) Test 

 The purpose of this test is to check the uniformity in the prisms. According to 

Neville (2003), this test is useful as a measure of uniformity of concrete and is great 

value in checking the quality of material throughout a structure, or in the manufacturing 

of pre-cast sections.  Figures 3.31 show the testing points marked on one of the wall 

elements while Figure 3.32 depicts the UPV test in progress.  The sensitivity of this 

method was very useful in determining the uniformity of the prisms by checking its 

surface hardness at age day-28.  

The test was performed as per the specifications of ASTM C597-02 (2002) the 

test was conducted across the thickness of the wall element; thus, the distance between 

the two transducers was 100 mm (thickness of wall element) through out the test.  

Whereas, a total of 43 readings (testing points as shown in Figure 3.31) along the height 

of each wall element were recorded.  The readings were in terms of effective transit 

time of pulse waves between the two transducers.  Finally pulse velocity was calculated 

by a formula described by ASTM C597-02 (2002) as follows: 

T
LV =          3.5 

Where 

 =V  Pulse velocity (m/s) 

 =L  Distance between transducers (m) 

 =T  Effective transit time (s) 
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Figure 3.31: A view of point marking for UPV test 

 

 
Figure 3.32: A pictorial view of UPV test in progress 
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CHAPTER 4 

 

EXPERIMENTAL RESULTS AND DISCUSSIONS (PHASE-I) 

 

4.1 General 

 This chapter discusses the results of phase-I of the experimental program as 

described in chapter three.  The experimental investigations were aimed to develop high 

workability and high performance slag cement based mortar to cast the ferrocement 

encasement over aerated concrete core in order to produce proposed ferrocement 

encased aerated concrete sandwich wall elements.   

A stepwise strategy for this phase of experimental study was adopted, as 

mentioned in methodology of the study described in chapter three. The results and their 

comparisons are described through tables and figures as following. Finally the 

experimental results are summarized at the end of the chapter. 
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4.2 Minimum Mortar Flow Value  

 

Table 4.1: Details of thin ferrocement elements cast by the method of pouring the 

mortar with minimum flow required 

S. 
No 

Thickness of thin 
FC Elements  
(mm) 

Mix SP 
(%) w/b* Flow* 

(%) 
Average

(%) 

1:2 0 0.6 140 

1:2 0.1 0.57 139 

1:2.5  0.2 0.64 140 
1 6 

1:2.5 (50% GGBFS) 0.1 0.65 140 

140 

1:2 0.0 0.59 138 

1:2 0.1 0.56 137 

1:2.5 0.2 0.62 136 
2 8 

1:2.5 (50% GGBFS) 0.1 0.64 137 

137 

1:2 0.0 0.58 135 

1:2 0.1 0.55 135 

1:2.5 0.2 0.61 134 
3 10 

1:2.5 (50% GGBFS) 0.1 0.6 134 

135 

1:2 0.0 0.57 132 

1:2 0.1 0.54 133 

1:2.5 0.1 0.59 132 
4 12 

1:2.5 (50% GGBFS) 0.1 0.6 133 

133 

Range 7 

Mean 136 

* All the values are average of three-test values. 

 

SD 3 
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4.3 Maximum Dosage of Superplasticizer  

       Table 4.2: Details of the test results for optimum dosage of superplasticizer 

Mix 

1:2 0.5:0.5:2.5 0.5:0.5:3 SP 
(%) 

w/b Flow* 
(%) w/b Flow* 

(%) w/b Flow* 
(%) 

0.0 0.60 140 0.70 140 0.79 137 

0.1 0.56 139 0.66 140 0.76 139 

0.2 0.53 138 0.64 139 0.74 137 

0.3 0.50 136 0.61 138 0.72 138 

0.4 0.48 137 0.59 138 0.69 135 

0.5 0.47 138 0.57 136 0.68 134 

0.6 0.46 129 0.56 132 0.67 126 

0.6 0.47 136 0.57 136 0.68 133 

0.7 0.46 124 0.56 128 0.66 116 

0.7 0.47 131 0.57 134 0.68 129 
*All the values are average of three tests values.  
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Figure 4.1: Superplasticizer versus flow value (mortar 1:2) 
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Figure 4.2: Superplasticizer versus flow value (mortar 1:2.5, 50% GGBFS) 
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Figure 4.3: Superplasticizer versus flow value (mortar 1:3, 50% GGBFS) 
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4.4 Flow Value versus Mix Proportions of Mortar Mix 

  Table 4.3: Comprehensive flow tests results.   
OPC 50% GGBFS 60% GGBFS 

Mix SP 
(%) w/b Flow 

(%) w/b Flow 
(%) w/b Flow 

(%) 
0.0 0.59 138 0.59 139 0.60 140 
0.1 0.56 139 0.56 139 0.56 138 
0.2 0.53 138 0.53 137 0.54 138 
0.3 0.50 136 0.50 138 0.51 136 
0.4 0.48 137 0.48 137 0.49 136 

1:2 

0.5 0.47 138 0.47 137 0.48 136 
0.0 0.69 138 0.69 139 0.70 138 
0.1 0.65 139 0.66 139 0.66 139 
0.2 0.63 137 0.64 139 0.64 137 
0.3 0.60 137 0.61 138 0.62 139 
0.4 0.57 135 0.59 138 0.59 136 

1:2.5 

0.5 0.55 135 0.57 136 0.57 135 
0.0 0.79 138 0.79 137 0.80 139 
0.1 0.75 139 0.76 139 0.75 137 
0.2 0.73 137 0.74 137 0.73 136 
0.3 0.71 138 0.72 138 0.71 136 
0.4 0.69 135 0.69 135 0.70 137 

1:3 

0.5 0.68 135 0.68 134 0.69 135 
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Figure 4.4: GGBFS versus water-binder ratio (136±3%        

mortar flow, without SP))  
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Figure 4.5: GGBFS versus water-binder ratio (136±3%      

mortar flow, 0.5% SP) 
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Figure 4.6: Superplasticizer versus water/binder ratio 

(OPC mortar, 136±3% mortar flow)  
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Figure 4.7: Superplasticizer versus water/binder ratio (50%     

GBFS mortar, 136±3% mortar flow)  
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Figure 4.8: Superplasticizer versus water/binder ratio (60% 

GGBFS mortar, 136±3% mortar flow)  
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Figure 4.9: Mix proportion versus water/binder ratio 

(OPC, 0% SP, 136±3% mortar flow)  
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Figure 4.10: Mix proportion versus water/binder ratio (50% 

GGBFS, 0.5% SP, 136±3% mortar flow)  
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Figure 4.11: Mix proportion versus water/binder ratio (60% 

GGBFS, 0% SP, 136±3% mortar flow)  
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4.5 Characteristics of High Workability Slag Cement Mortar  

4.5.1 Compressive Strength  

Table 4.4: 28 days compressive strength of 54 mixes (136±3% mortar flow) 

OPC 50% GGBFS 60% GGBFS 

Mix 
% 
of 
SP fcu 

(MPa) 
fcu 

(MPa) 

Difference 
of fcu 

(% OPC) 

fcu 
(MPa) 

Difference 
of fcu 

(% OPC) 
0.0 43.0 45.8 6.5 43.2 0.5 

0.1 45.3 50.4 11.3 46.0 1.5 

0.2 48.7 53.9 10.7 48.3 -0.8 

0.3 51.3 55.8 8.8 50.4 -1.8 

0.4 52.7 56.7 7.6 51.8 -1.7 

 

1:2 

0.5 54.0 56.5 4.6 52.0 -3.7 

Mean 49.17 53.18  48.62  

SD 4.33 4.31  3.49  

0.0 33.6 36.4 8.3 34.8 3.6 

0.1 36.2 40.7 12.4 36.9 1.9 

0.2 37.9 42.5 12.1 38.8 2.4 

0.3 40.0 43.9 9.8 40.4 1.0 

0.4 41.9 45.0 7.4 40.7 -2.9 

1:2.5 

0.5 42.6 45.0 5.6 41.7 -2.1 

Mean 38.7 42.25  38.88  

SD 3.47 3.30  2.61  

0.0 26.8 30.0 11.9 28.1 4.9 

0.1 28.5 32.7 14.7 29.9 4.9 

0.2 30.5 35.1 15.1 31.8 4.3 

0.3 32.1 36.3 13.1 32.9 2.5 

0.4 33.1 36.7 10.9 33.3 0.6 

1:3 

0.5 33.9 37.0 9.1 33.5 -1.2 

Mean 30.82 34.63  31.58  

SD 2.76 2.76  2.16  
• fcu  = Compressive strength 

•  
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Figure 4.12: Percentage increase in compressive strength for mix 1:2   

versus SP (136±3% mortar flow)  
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Figure 4.13: Percentage increase in compressive strength for mix         

1:2.5 versus SP (136±3% mortar flow)  
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Figure 4.14: Percentage  increase in compressive strength for mix       

1:3 versus SP (136±3% mortar flow)  
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4.5.2 Unit Weight 

 

 Table 4.5: Details of unit weight 54 mortars (136±3% mortar flow) 
 

OPC 50% GGBFS 60% GGBFS 
Mix 

% 
of 
SP Unit weight 

(kg/m3) 
Unit weight 

(kg/m3) 
Unit weight 

(kg/m3) 

0.0 2207 2155 2117 

0.1 2240 2193 2164 

0.2 2236 2188 2174 

0.3 2245 2236 2188 

0.4 2269 2228 2202 

1:2 

0.5 2288 2217 2240 
       Mean 2248 2203 2181 

0.0 2146 2164 2122 

0.1 2183 2202 2183 

0.2 2221 2198 2188 

0.3 2188 2207 2174 

0.4 2250 2202 2207 

1:2.5 

0.5 2245 2212 2188 
       Mean 2206 2198 2177 

0.0 2146 2174 2155 

0.1 2193 2183 2174 

0.2 2188 2179 2183 

0.3 2188 2150 2179 

0.4 2198 2202 2155 

1:3 

0.5 2193 2202 2179 
       Mean 2184 2182 2171 

Gross Mean  Density        :        2194 kg/m3 

Range (Gross values)       :          117 kg/m3 
 

Since, this study was aimed to investigate the ferrocement sandwich elements, 

and it is well known fact that the end product of thin ferrocement elements depends 

upon the properties of the mortar, particularly compressive strength and porosity.  
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Moreover, the compressive strength becomes more pronounced factor when the 

elements are subjected to axial compression.  Thus, on the basis of the results presented 

and the discussion made herein, it was imperative to select mix 1:2 as the principal mix.  

However, one mix 1:2.5 with higher dosage of SP was also selected for further study 

just for comparison purposes.  Table 4.6 shows the details of seven mortar mixes 

selected for further investigations. 

 

Table 4.6:  Mortars selected for strength development (136±3% mortar flow) 

Mix 
Designation Mix  ratio GGBFS (%) SP (%) 

M1 1:2 OPC 0 

M2 1:2 50 0 

M3 1:2 50 0.1 

M4 1:2 50 0.2 

M5 1:2 60 0.1 

M6 1:2 60 0.3 

M7 1:2.5 50 0.4 
 

 

4.5.3 Strength Development 

 

Table 4.7: Strength development of mortars at various ages (136±3% mortar flow) 

Age 

(Days) 
Compressive strength (MPa) 

3 25.5 18.9 28.2 32.1 25.6 27.3 19.1 
7 33.8 34.2 40.3 43.4 35.5 39.9 35.4 
28 42.8 44.3 51.1 54.1 45.1 50.8 43.7 
90 47.9 52.7 61.9 66.1 53.5 59.9 51.9 
180 48.8 54.1 63.3 67.7 54.8 60.9 52.4 
Mix M1 M2 M3 M4 M5 M6 M7 
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Table 4.8: Strength development of mortars expressed as percentage of 28-day    

compressive strength (136±3% mortar flow) 

Age 

(Days) 
Strength development as percentage of 28 days 

3 59.6 42.6 55.2 59.3 56.8 61.1 63.2 
7 79.0 77.2 78.9 80.2 78.7 81.0 81.0 
28 100 100 100 100 100 100 100 
90 111.9 119.0 121.1 122.2 118.6 120.0 115.6 
180 114.1 122.2 123.9 125.1 121.6 122.1 119..8 
Mix M1 M2 M3 M4 M5 M6 M7 
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Figure 4.15: Compressive strength versus curing regime of selected 
mortars (136±3% mortar flow)  
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Figure 4.16: Strength development as %age of 28 days strength 
(136±3% mortar flow)  

 
 

4.5.4 Water Absorption  

Table 4.9: Water absorption test results of mortars (136±3% mortar flow) 

Mix 
designation 

Water absorption 
(%) 

Water absorption 
expressed as 
%age of M-1 

M1 4.69 100 
M2 4.44 95 
M3 3.67 78 
M4 2.98 64 
M5 4.12 89 
M6 3.49 74 
M7 4.21 90 
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Figure 4.17: Water absorption of selected mortars  (136±3% mortar flow) 

 

4.5.5 Initial Surface Absorption Test, ISAT (Permeability Test) 

 

Table 4.10: ISAT results of mortars (136±3% mortar flow) 

ISAT  (ml/m2/s) Time after 
test 

started M1 M2 M3 M4 M5 M6 M7 

10 minutes 0.220 0.2050 0.1558 0.1147 0.1470 0.1129 0.2230

30 minute 0.130 0.1210 0.0929 0.0641 0.0862 0.0558 0.1370

60 minutes 0.070 0.0600 0.0510 0.0282 0.0430 0.0248 0.0766
120 

minutes 0.009 0.0084 0.0062 0.0032 0.0053 0.0041 0.0110
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Figure 4.18: ISAT values of mortars  (136±3% mortar flow) 

 

4.5.6 Effect of Curing Regime 

It was supposed that for the present studies, the compressive strength of mortar 

at 28 days should be 50MPa for the casting of thin ferrocement box of proposed 

sandwich wall elements and keeping in view the results of other characteristics 

presented before, two mortar mixes M3 and M4 were chosen to determine the effect of 

curing regime on compressive strength characteristics.  

Table 4.11: Effect of curing conditions on compressive strength of mortars (136±3% 

mortar flow)  

Compressive strength (MPa) 
Mix Age (Days) 

Wet Air Natural 
weather 

M3 
M4 

3 
3 

29.1 
31.7 

23.6 
28.1 

25.2 
30.4 

M3 
M4 

7 
7 

41.5 
44.7 

31.2 
34.3 

32.1 
37.5 

M3 
M4 

28 
28 

52.6 
55.4 

39.9 
44.2 

40.8 
47.2 

M3 
M4 

90 
90 

63.6 
67.5 

39.4 
46.6 

44.6 
53.7 

M3 
M4 

180 
180 

63.6 
67.5 

39.4 
46.6 

44.6 
53.7 
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Table 4.12: Compressive strength expressed in %age of 28 days strength of mortars 

cured under various curing regimes (136±3% mortar flow)  

Compressive strength expressed as  
%age of 28 days strength Mix Age (Days) 

Wet Air Natural 
weather 

M3 
M4 

3 
3 

29.1 
31.7 

55.3 
57.2 

61.8 
64.4 

M3 
M4 

7 
7 

41.5 
44.7 

78.9 
80.7 

78.7 
79.4 

M3 
M4 

28 
28 

52.6 
55.4 

100 
100 

100 
100 

M3 
M4 

90 
90 

63.6 
67.5 

120.9 
121.8 

109.3 
113.8 

M3 
M4 

180 
180 

63.6 
67.5 

125.7 
126.9 

112.5 
116.9 
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Figure 4.19: Effect of curing regime on strength development mortar M2 

(1:2, 50% GGBFS, 0.1% SP and 136±3% mortar flow))  
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Figure 4.20: Effect of curing regime on strength development mortar M3 

(1:2, 50% GGBFS, 0.2% SP and 136±3% mortar flow)) 

 
4.6 Summary 

  

 As the matrix in ferrocement has 95% or more pronounced influence on the 

behaviour of the final product.  The selection of the constituent materials such as fine 

aggregates, cement content, water-cement ratio, and the mineral admixtures are the 

major influencing parameters in determining the performance of the mortars rather final 

products regarding strength and other characteristics like durability etc. Moreover, the 

ferrocement is thin walled cement based composite and the common practice of 

construction is done by plastering the wire mesh manually in three stages thus it renders 

it as, not only labour and cost intensive but also a non uniform final product leading 

towards the poor performance.  This is why, this phase of study was conducted, the 

details of which are already presented.  This study led to the development of a criterion 

for a high workability and high performance mortar to cast thin FC elements with the 

technique of pouring the mortar similar to that applied for the casting of RC members 

without compromising on the performance of mortar in terms of strength, water 

absorption, strength development and ISAT.  The results of the study can be briefly 

concluded as follows: 
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(a) Mortar flow value of 136±3 % is adequate to cast ferrocement elements ranging 

from 6mm to 12 mm thickness.  In general for each 2mm thickness difference 

flow may be adjusted inversely proportional by 3%.  

 

(b) Water-binder ratio required to ensure the flow of mortar at 136±3 % depends 

upon the mix proportion and the dosage of the superplasticizer as water reducing 

agent. 

 

(c) Water-binder ratio can be controlled by the addition of superplasticizer but the 

maximum dosage of the SP applicable in this case was found to be 0.5% of the 

total binder by weight and this reduced the water-binder ratio by 1.2 when 

compared to that of same mix without SP. 

 

(d) An increase of water/binder ratio by 17% is observed with each increment of 

sand content by 25% of the sand in the mix 1:2 in order to maintain constant 

flow.  

 

(e) Mineral admixture GGBFS adopted as cement replacement did not affect the 

flow properties in all the mortars and at all the dosages of superplasticizer 

applied.   

 

(f) A wide range of compressive strength ranging about 27MPa to 57MPa was 

exhibited by high workability mortars depending on the mix proportion, GGBFS 

level and superplasticizer dosage adopted.  A value as high as 56.7MPa of 

compressive strength at 28 days was achieved in case of mortar 1:2 including 

50% GGBFS and 0.4% of SP.  The lowest compressive strength was achieved 

for mortar 1:3 without GGBFS and SP. 

 

(g) Addition of superplasticizer and GGBFS contributed towards the strength 

enhancement ranging 5-15% over their OPC mortars depending upon the mix 

proportion, GGBFS replacement level and dosage of superplasticizer.  However 

likewise ordinary concrete and mortars, the optimum level of GGBFS is found 

to be 50% of total binder weight in this case also.  While superplasticizer dosage 

up to 0.2% yielded the pronounced effect on compressive strength. 
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(h) Trend regarding strength development of high workability mortars was identical 

to that of normal workability concretes and mortars that, at early age’s strength 

development of mortars with GGBFS was slower than OPC. Nevertheless, the 

early age strength of slag   cement based mortars could be ensured similar to that 

of the OPC mortar by adopting appropriate proportioning of mortar constituents 

and dosage of superplasticizer. 

 

(i) Although all the high workability mortars exhibited low rate of water absorption 

whereas, mortar mix 1:2 with 50% GGBFS and 0.2% SP exhibited the lowest.  

Similar trend to that of water absorption was obtained for ISAT (permeability).  

The values were quite lower than those fixed as low limit by previous 

researcher.  

 

(j) Curing conditions influence the compressive strength and strength development 

of high workability mortars.  The mortars cured under wet condition obtained 

remarkably higher and consistent strength development compared to the mortars 

of same mix proportions cured under air and natural weather conditions.  Thus, 

likewise ordinary concretes and mortars wet/moist curing condition is essential 

for high workability mortars also.  The mortar 1:2 with 50% GGBFS and 0.2% 

SP exhibited strength gain more than 25% over its 28 days strength, when cured 

for 6 months in water.  It is believed that in 10 years the concretes with 

appropriate replacement level of GGBFS and the mix proportioning may attain 

strength about 2.5 times as high as 28 days strength (Shi 2004).  

 

 Based on the results presented, discussions made during the analysis of results 

and the conclusions cited above, it was decided to select mortar mix 1:2 with 50% 

GGBFS as partial replacement and 0.2% superplasticizer as high workability and high 

performance mortar for the casting of ferrocement encasement to produce ‘Ferrocement 

Encased Aerated Concrete Sandwich Elements’ during next phase of the experimental 

investigations. 
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CHAPTER 5 

 

EXPERIMENTAL RESULTS AND DISCUSSIONS (PHASE-II)  

 

5.1 General  

As described in chapter three, this phase of the experimental study comprised of 

two parts where the wall elements of relatively large size were manufactured and tested 

in the step of this study.  Likewise phase-I, stepwise approach was adopted during this 

phase of the study too.  Following are the details of the results of the experimental study 

conducted.   

 

5.2 Results and Discussions of Part I 

During this part of the study, an intensive experimental programme with large 

number of variables and different sizes of specimens was carried out either to determine 

the non-parametric properties like optimizing various variables such as overall weight 

of sandwich elements, water absorption, and ISAT, and to optimize the various 

variables; core-encasement volumetric ratio and type and number of mesh layers of wire 

mesh to be adopted for further studies carried out in part II.  The entire specimens were 

cast and tested with the standard procedures described in Chapter Three. Following are 

the results and discussions. 
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5.2.1 Compressive Strength 

 

Table 5.1: Details of specimens tested for compressive strength 

Specimens type and batch designation 

Cubes A (CA) 
70.6* 

Cubes B (CB) 
100* 

Blocks (B) 
400x200x100* 

Description 

CAC CBC BC Control specimens made of 
aerated concrete 

SWCA0 SWCB0 SWB0 Sandwich specimens without 
mesh 

SWCACM1 SWCBCM1 SWBCM1 Sandwich specimens with one 
layer of chicken mesh 

SWCACM2 SWCBCM2 SWBCM2 Sandwich specimens with two 
layers of chicken mesh 

SWCACM3 SWCBCM3 SWBCM3 Sandwich specimens with three 
layers of chicken mesh 

SWCACM4 SWCBCM4 SWBCM4 Sandwich specimens with four 
layers of chicken mesh 

SWCASM1 SWCBSM1 SWBSM1 Sandwich specimens with one 
layer of square mesh 

SWCASM2 SWCBSM2 SWBSM2 Sandwich specimens with two 
layers of square mesh 

SWCASM3 SWCBSM3 SWBSM3 Sandwich specimens with three 
layers of square mesh 

* All the dimensions are in mm. 
 

Table 5.2: Compressive strength (cubes A ) 

Batch 
Compressive 

strength 
(MPa) 

Increase 
w.r.t CAC 

(%) 

Increase 
w.r.t SWCA0 

(%) 

Increase 
w.r.t. no. of 
layers (%) 

CAC 6.5 - -  

SWCA0 20.3 212.3 -  

SWCACM1 22.3 243.1 9.9 9.9 

SWCACM2 23.6 263.1 16.3 5.8 

SWCACM3 24.3 273.8 19.7 3.0 

SWCACM4 25.1 286.2 23.6 3.3 

SWCASM1 25.4 290.8 25.1 25.1 

SWCASM2 27.0 315.4 33.0 6.3 

SWCASM3 27.9 329.2 37.4 3.3 
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Figure 5.1: Compressive strength of cubes A 
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Figure 5.2: Comparison of compressive strength increase between CM and 
SM for cubes A 
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5.2.1.2 Compressive Strength of Cubes B 

 

Table 5.3: Compressive strength (cubes B) 

Batch 
Compressive 

strength 
(MPa) 

Increase 
w.r.t CBC 

(%) 

Increase 
w.r.t SWCB0 

(%) 

Increase 
w.r.t no. of 
layaers (%) 

CBC 7.4 - -  
SWCB0 15.3 106.8 - - 
SWCBCM1 15.9 114.9 3.9 3.9 
SWCBCM2 16.9 128.4 10.5 6.3 
SWCBCM3 17.8 140.5 16.3 5.3 
SWCBCM4 18.1 144.6 18.3 1.7 
SWCBSM1 20.3 174.3 32.7 32.7 
SWCBSM2 21.7 193.2 41.8 6.9 
SWCBSM3 22.4 202.7 46.4 3.2 
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Figure 5.3: Compressive strength of cubes B 
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Figure 5.4: Comparison of compressive strength increase between CM and 

SM for cubes B 
 

5.2.1.3 Compressive Strength of Blocks 

 

Table 5.4: Compressive strength (blocks) 

Batch 
Compressive 

strength 
(MPa) 

Increase 
w.r.t BC 

(%) 

Increase 
w.r.t SWB0 

(%) 

Increase 
w.r.t. no. of 
layers (%) 

BC 7.7 - -  

SWB0 10.8 40.3 -  

SWBCM1 12.2 58.4 13.0 13.0 

SWBCM2 13.0 68.8 20.4 6.6 

SWBCM3 13.7 77.9 26.9 5.4 

SWBCM4 12.9 67.5 19.4 -5.8 

SWBSM1 15.5 101.3 43.5 43.5 

SWBSM2 16.4 113.0 51.9 5.8 

SWBSM3 16.9 119.5 56.5 3.0 
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Figure 5.5: Compressive strength of blocks 
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Figure 5.6: Comparison of compressive strength increase between CM and 

SM for blocks 
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5.2.2 Encasement Effectiveness towards Compressive Strength Based on Its 

Direction to the Loading Direction 

 

Table 5.5: Compressive strength of specimens tested by holding encasement 

perpendicular to loading direction 

Number of mesh layers 
(square mesh) 0 1 2 3 

Cubes B (100mm) 

Compressive strength 
encasement  hold perpendicular  
to loading direction (MPa) 

14.8 13.3 12.4 11.1 

Compressive strength 
encasement  hold parallel to 
loading direction (MPa) 

15.3 20.3 21.7 22.4 

Decrease in compressive 
strength (%age of encasement 
hold in loading direction) 

3 53 75 102 

Blocks 

Compressive strength 
encasement  hold perpendicular 
to loading direction (MPa) 

10.5 9.7 9.3 8.7 

Compressive strength 
encasement  hold parallel to 
loading direction (MPa) 

10.8 15.5 16.4 16.9 

Decrease in compressive 
strength (%age of encasement 
hold in loading direction) 

3 60 76 94 
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5.2.3 Compressive Strength Based on Core-Encasement  (c-e) Volumetric Ratio  

 

Table 5.6: Core-encasement (c-e) volumetric ratio of cubes and blocks 

Description Cubes A 
(CA) 

Cubes B 
(CB) 

Blocks 
(B) 

Specimen dimensions* 70.6 x 70.6 x 70.6 100 x 100 x 100 400 x 200 x 100 

Core dimensions* 70.6 x 46.6 x 46.6 100 x 76 x 76 376 x 200 x 76 

Total volume** (V) 351896  1000000 8000000 

Core volume** (Vc) 153312 577600 5715200 
Encasement Volume** 
(Ve) 

198584 422400 2284800 
Core-to-encasement 
ratio (c-e) 0.77 1.37 2.50 
Core as %age of total 
volume 44 58 71 
Encasement as %age of 
total volume 56 42 29 
* All dimensions sizes are in mm    **volume is in mm3 

 

 

Table 5.7: Comparison between compressive strength enhancement and c-e volumetric 

ratio 

Description Cubes A 
(CA) 

Cubes B 
(CB) 

Blocks 
(B) 

Core-to-encasement (c-e) ratio 
 0.77 1.37 2.50 

Core volume (Vc)as %age of total 
volume 44 58 71 

Encasement volume (Ve) as %age 
of total volume  56 42 29 

Compressive strength of control 
(MPa) 6.5 7.4 7.7 

Average increase in compressive 
strength due to encasement with 
CM including 0 layers (%) 

258 127 63 

Average increase in compressive 
strength due to encasement with 
SM including 0 layers (%) 

287 169 94 
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Figure 5.7: Compressive strength variation versus c-e volumetric ratio. 
 

An identical trend for both the types of meshes incorporated in FC encasement is 

evident from the figure.  The reduction in strength enhancement is not linearly 

proportional to the increase in c-e ratio, however; the relationship between the two is 

governed by quadratic equation with R2 equals to 1 (Figure 5.7).  Nevertheless, it is 

worth noting that, within the scope of this study, the variation between compressive 

strength with the change in c-e value may be predicted by following equation to the 

maximum possible degree of accuracy i.e.1 (100%). 
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 is the c-e volumetric ratio. 
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5.2.4 Unit Weight (Density) 

Table 5.8: Unit weight 

Average 
density (kg/m3) Description c-e volumetric 

ratio 
CM SM 

Increase in 
density  

(%age of 
control) 

Average 
increase 
(%age of 
control) 

Control -- 1199 1199 CM SM CM SM 
SW0 1823 1823 52 52 
SW1 1831 1836 53 53 
SW2 1839 1849 53 54 
SW3 1845 1857 54 55 

53 54 
Cubes 

A 
(CA) 

SW4 

0.77 
 

(Vc**=44% of 
total volume) 

1848 - 54 - Av.  ≈  54 
Control -- 1208 1208 CM SM CM SM 
SW0 1722 1722 43 43 
SW1 1734 1742 44 44 
SW2 1744 1753 44 45 
SW3 1750 1766 45 46 

44 45 
Cubes 

B 
(CB) 

SW4 

1.37 
(Vc = 58% of 
total volume) 

1754 - 45 - Av.  ≈  45 
Control -- 1205 1205 CM SM CM SM 
SW0 1562 1562 30 30 
SW1 1588 1603 32 33 
SW2 1597 1623 33 35 
SW3 1613 1642 34 36 

32 33 Blocks 
(B) 

SW4 

2.5 
(Vc = 71% of 
total volume) 

1623 - 35 - Av.  ≈  33 
*SW = Sandwich,       0,1,2,3,4 = number of mesh layers  and     ** Vc = core volume 

 

5.2.5 Unit Weight Increase versus Compressive Strength Enhancement 

Table 5.9: Comparisons between the variations in compressive strength, unit weight 
and c-e volumetric ratio. 

Average increase  
in compressive 

strength 
 (%age of control) 

Description 
of sandwich 
specimens 

c-e  
volumetric 

ratio 
CM SM 

Average increase 
In 

 density 
(%age of control) 

Cubes A 
(CA) 

0.77 
(Vc* = 44% of total 

volume)
258 287 54 

Cubes B 
(CB) 

1.37 
(Vc = 58% of total 

volume)
127 169 45 

Blocks 
(B) 

2.5 
(Vc = 71% of total 

volume)
63 94 33 

*Vc = core volume 
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Figure 5.8: Comparisons between the variations in unit weight, and  
                    compressive strength. 

 

5.2.6 Classification of Sandwich Based on Average Unit Weight  

 

 

      Table 5.10: Classification of sandwich specimens based on unit weight. 

Description of 
sandwich 
specimens 

c-e  
volumetric 

ratio 

Average 
unit weight of 

sandwich 
(Kg/m3) 

Classification of 
sandwich  

(ASTM C90-06b) 

Cubes A 
(CA) 

0.77 
 

(Vc* = 44% of 
total volume) 

1839 
 

Medium weight 
 

(1682-2002 kg/m3)  

Cubes B 
(CB) 

1.37 
 

(Vc = 58% of 
total volume) 

1743 
 

Medium weight 
 

(1682-2002 kg/m3 ) 

Blocks 
(B) 

2.5 
 

(Vc = 71% of 
total volume) 

1601 
 

Lightweight 
 

(<1682 kg/m3)  
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5.2.7 Flexural Strength 

 

5.2.7.1 Modulus of Rupture (Flexural Strength of Sandwich Prism Beams) 

 

 

Table 5.11: Details of results of prism beams tested in flexure (bending) 

Batch 

Average 
ultimate 

load 
(KN) 

Average
MOR* 
(MPa) 

Increase in 
MOR 

(%age of 
PBC) 

Increase in 
MOR 

(%age of 
SWPB0) 

Increase in 
MOR w.r.t no. 
of layers (%) 

PBC 3.7 1.5 -- - - 

SWPB0 6.1 2.5 68 .. - 

SWPBCM1 7.3 2.9 100 19 19 

SWPBCM2 8.8 3.5 142 44 21 

SWPBCM3 9.9 4.0 172 36 12 

SWPBCM4 11.8 4.7 222 92 18 

SWPBSM1 8.2 3.3 125 34 34 

SWPBSM2 14.1 5.6 287 130 71 

SWPBSM3 18.0 7.2 393 194 28 
*MOR = Modulus of rupture 
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Figure 5.9: Comparison of increase in MOR with CM and SM 
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5.2.8 Failure Mode of Cubes, Blocks and Prism Beams Specimens 

 During the compressive strength and flexural strength tests in progress, the 

development of first crack and the other cracking pattern along with the failure mode of 

specimens at ultimate load, were closely monitored.  The details of the failure mode are 

as under; 

 

5.2.8.1 Failure Mode under Compression 

 

 

 
 

Figure 5.10:  Failure mode of  control specimen  in compression 

 

 

 

 

 

Figure 5.11: Failure mode of sandwich specimens without mesh  in compression 
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Figure 5.12: Failure mode of sandwich specimens with wire mesh  in compression 
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5.2.8.2 Failure Mode under Flexure  

 

 

 

Figure 5.13: Failure mode of control prism beam in flexure 
 
 
 
 

 

Figure 5.14: Failure mode of sandwich prism beam without wire mesh in flexure 
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Figure 5.15: Failure mode of sandwich prism beams with wire mesh in flexure. 
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Figure 5.16: Load deflection curves of prism beams in flexure 
 

  

 

Figure 5.17: Composite failure at interface of core and FC 
encasement of prism beam tested in flexure 
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5.2.9 Water Absorption of Sandwich 

 

                 Table 5.12: Water absorption 

Batch 

Average  
*

aW  
(%) 

***

**

aC

aSW

W
W

 *****
0

****

aSW

aSWM

W
W

 

Control 16.72 -- - 

SW0 4.15 0.25 - 

SWCM1 3.94 0.24 0.95 

SWCM2 3.74 0.22 0.90 

SWCM3 3.86 0.23 0.93 

SWCM4 3.91 0.23 0.94 

SWSM1 3.79 0.23 0.91 

SWSM2 3.31 0.20 0.80 

SWSM3 3.6 0.22 0.87 

Average 0.23 0.90 

* aW = Water absorption,      ** SW = sandwich,    ***C= Control  
****SWM sandwich with mesh  *****SW0 = sandwich without mesh 
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Figure 5.18: Water absorption 
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5.2.10 Initial Surface Absorption Test, ISAT (Permeability Test) of Sandwich 

 

Table 5.13: ISAT (Permeability) 

ISAT  (ml/m2/s) Batch 
designation 

10 minutes 30 Minutes I hour 2 hours 

Control 
The actual ISAT values at any time interval could not be recorded 
because of excessive flow of water beyond the limits of maximum value 
and instrument  

SW0 0.1181 0.0660 0.0290 0.0033 
SWCM1 0.1164 0.0650 0.0286 0.0032 
SWCM2 0.1152 0.0569 0.0253 0.0042 
SWCM3 0.1229 0.0687 0.0302 0.0034 
SWCM4 0.1418 0.0792 0.0349 0.0040 
SWSM1 0.1140 0.0637 0.0280 0.0032 
SWSM2 0.1118 0.0564 0.0250 0.0041 
SWSM3 0.1170 0.0654 0.0288 0.0033 

 

 

5.3 Results and Discussions of Part II 

This was the last part of the experimental study chalked out in order to 

investigate the characteristics of ferrocement encased aerated concrete sandwich wall 

elements, the details of which were presented in methodology explained in Chapter 

Three.  As mentioned before, the study was aimed to investigate lightweight sandwich 

panels, thus, on the basis of the comparison made before, between c-e volumetric ratio 

and average unit weight of sandwich elements, the c-e value was fixed at about 2.5 

(core volume about 70% or more of the total volume).  Since the wall elements are 

primarily subjected to axial loading, therefore, the effect of slenderness ratio and aspect 

ratio of the wall elements under compression were also considered as variables during 

this part of study.   

 

It is important to mention that during this phase of study an additional 

reinforcement (steel bars of 5mm diameter and yield strength 455MPa, and steel strips 

0.4mm thick and 20mm wide and yield strength 650MPa) was incorporated along with 

the square mesh layer in FC box of respective sandwich wall elements.  This was 

adopted in order to investigate their effect of on the compressive strength of sandwich 
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wall elements.  Figures 5.20 and 5.21 present the sectional and pictorial views of the 

sandwich specimens with steel bars and strips incorporated in FC box respectively.   

            
Figure 5.20: Wall cross-section showing steel bar reinforcement 

 
 

         

Figure 5.21: Wall elements with steel strips 
 
 

Table 5.14 describes the details of the sandwich wall elements and their 

variables investigated under compressions.  The specimens are arranged in three series; 

A, B and C according to the variation in their various properties.  Addition tests; 

flexural and uniformity (UPV), were also conducted on large size wall panel elements 

designated as series A in Table 5.14.  The details of test results are discussed later on, in 

their respective sections.  
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Table 5.14:  Details of wall elements 

Group 
Sandwich 

wall 
elements 

Reinforcement 
details of 

encasement 

Dimensions 
(mm) 

(H x L x t) 

c-e 
volumetric 

ratio t
H

 
L

H

 

control AC without 
encasement  

SWA-1 Without mesh 

SWA-2 1 layer SM 

SWA-3 1 Layer SM, 
Horizontal. strips 

 
A 

SWA-4 1 layer SM,   
4 vertical steel bars 

1400x400x100 

2.5 
(CV = 

71% of 
total 

volume 

14 3.5

SWB-1 Without mesh 

SWB-2 1 layer SM 

SWB-3 1 Layer SM, 
Horizontal. strips 

B 

SWB-4 1 layer SM,   
4 vertical steel bars 

700x300x100 

2.3 
(CV = 

70% of 
total 

volume 

7 2.3

SWC-1 Without mesh 

SWC-2 1 layer SM 

SWC-3 1 Layer SM 
Horizontal. strips 

C 

SWC-4 1 layer SM,   
4 vertical steel bars 

700x400x100 

2.5 
(CV = 71% 

of total 
volume 

7 
 

1.8 
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5.3.1 Compression (Wall Elements) 

 

5.3.1.1 Ultimate Load 

 

Table 5.15:  Ultimate load of wall elements in compression 

Group 
Sandwich 

wall 
elements 

First crack load 

.ucrP  
(KN) 

Experimental 
ultimate load 

.expuP  
(KN) 

Ultimate load 
(KN/m) 

control 198 198 495 

SWA-1 309 329 823 

SWA-2 335 465 1163 

SWA-3 343 463 1158 

A 

SWA-4 324 498 1245 

SWB-1 265 279 930 

SWB-2 269 384 1280 

SWB-3 277 379 1263 
B 

SWB-4 254 416 1387 

SWC-1 327 352 880 

SWC-2 324 483 1208 

SWC-3 344 484 1210 
C 

SWC-4 323 513 1283 
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5.3.1.2 Load- Lateral Deformation Behaviour  

 

D3D3

D1

D2

H/3

H/3

H/3

H/2

H/2

Vertical LVDT
 (Axial deformation)

Horizontal LVDT
 (Lateral deformation)

Side 1 Side 2Wall

Load

 

Figure 5.22: Schematic diagram of instrumentation on wall 
under compression 
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Figure 5.23: Axial load-lateral deformation curves of wall elements 
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Figure 5.24:  Comparison between lateral deformations along the two sides of sandwich 
wall elements under compression.  
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5.3.1.3 Load-Axial Deformation Behaviour  
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Figure 5.25:   Axial deformations of sandwich wall elements along the two sides of  
sandwich wall elements 
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Figure 5.26: Comparison between axial and lateral deformations of sandwich wall 
elements 
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5.3.1.4 Failure Mode of Walls in Compression   

 

 

 
 

 

 

Figure 5.27: Failure mode of control wall elements in compression 
 

 

 
 

  

Figure 5.28: Failure mode of sandwich wall elements without wire mesh in compression 
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Figure 5.29:   Failure mode of sandwich wall elements with reinforcement (wire mesh 
and others) in compression 
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5.3.2 Flexure (Bending) of Wall Elements 

 

Figure 5.30:  Schematic diagram of instrumentation and testing of  wall elements 
 

As described before, the main objective of this study was to investigate the 

sandwich wall elements and in fact, the wall panels are subjected to the compression 

loading.  This is why; a detailed study was carried in order to investigate the panels 

under compression.  Nevertheless, it was deemed appropriate to carry additional 

flexural tests on only largest size  sandwich elements, in order to study the behaviour of 

sandwich wall elements under flexure because a detailed investigation on the prism 

beams under flexure considering a large number of variables is already reported in the 

previous sections.  Hence, only series A of the sandwich specimens described in Table 

5.14 was considered during this set of test series.  The details of the results are as 

follows.  

 

5.3.2.1 Ultimate Load 

 

        Table 5.16: Ultimate load of sandwich wall elements in flexure 

Wall element Ultimate Load 
(KN) 

First crack load 
(KN) 

Control 1.6 1.6 
SWA-1 4.9 4.6 
SWA-2 7.4 6.1 
SWA-3 7.2 5.7 
SWA-4 11.9 7.2 
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Figure 5.31: Load-deflection variations of sandwich wall elements in flexure 
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Figure 5.32:  Mid-span deflections of wall elements in flexure 
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5.3.2.2 Load-Strain Behaviour. 
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Figure 5.33: Load-strain curves of sandwich wall elements in flexure 
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Figure 5.34: Strain distribution along the section of sandwich wall elements in flexure 
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5.3.2.4 Failure Mode of Wall Elements in Flexure 

 

 
Figure 5.35: Failure mode of control wall element in flexure 

 
 

 
Figure 5.36: Failure mode of sandwich wall element without wire mesh in flexure 

 
 

 

 

 

Figure 5.37: Failure mode of sandwich wall element with reinforcement (wire mesh and 
others) in flexure 
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5.3.3 Ultrasonic Pulse Velocity (UPV) Tests (Uniformity) 

 

 

Table 5.17:  UPV (uniformity) test results of wall elements. 

Wall element Control SWA-1 SWA-2 SWA-3 SWA-4 

Average distance between 
transducers (wall thickness)  
(mm) 

100 100 100 100 100 

Average time measured 
(µs) 38.3 32.0 29.5 29.8 29.3 

Average pulse velocity 
(Km/s) 2.61 3.12 3.39 3.36 3.41 

Standard deviation (S.D) 0.21 0.17 0.28 0.41 0.37 

 

 

 

5.4 Summary 

 

The modern and innovative techniques, approaches and systems are being 

adopted by the construction industry in order to produce sustainable housing 

particularly in developing countries like Malaysia and Pakistan. . Precast and 

prefabrication of the lightweight structural members is much more discussed subject of 

the day, one of the efficient techniques in this regard is the sandwich construction. A 

number of the issues associated to sandwich construction have been addressed by 

various researchers which were discussed earlier in chapter two.  However, the 

development of sandwich elements by encasing the lightweight core with high 

performance encasing material has not yet been investigated.  This is why this study 

was undertaken to investigate the characteristics of ferrocement encased aerated 

concrete sandwich wall elements.  An extensive experimental programme was chalked 

out and conducted by addressing a large number of variables.  The discussions are 

already made which can be summarized as under. 

  



 125

• A remarkable enhancement in compressive strength was obtained due to the 

encasement of lightweight aerated concrete.  

 

• Although, the compressive strength of the sandwich increased with the increased 

number of mesh layers but the relation between the two was not proportional.  It 

was significant with one and two layers of square and chicken wire meshes 

respectively and its effect diminished with the further addition wire mesh layers.  

This led to the conclusion that the in terms of compressive strength, the number 

of wire mesh layers should be kept at possible minimum number.  

 

• Both the wire meshes; square and chicken wire mesh contributed to the 

enhancement of strength; however the enhancement due to square wire mesh 

within the FC encasement was more significant to that exhibited by chicken wire 

mesh.  This observation was in agreement to the previous investigations 

reported.  This inferred that square wire mesh could be suitable choice between 

square and chicken wire mesh in terms of compressive strength. 

 

• The FC encasement direction to the loading direction was found to be as primary 

parameter towards the compressive strength enhancement.  The enhancement in 

compressive strength could only be expected when FC encasement is hold 

parallel to the loading direction, otherwise it causes the deterioration of 

compressive strength when hold perpendicular to the loading direction.   

 

• Overall unit weight of the sandwich specimens increased due to the encasement.  

However, it was independent of any significant effect of wire mesh layers 

incorporated in the FC encasement.  

 

• The unit weight was emerged to be a function of core-encasement volumetric 

ratio. In other words, the core volume governs the over all unit weight of the 

sandwich elements, particularly when those are produced by encasing 

lightweight core material where the difference of unit weight between core and 

an encasement material is more pronounced.  
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• The classification of sandwich elements based on their weight entirely depends 

upon the core-encasement volumetric ratio when lightweight core is encased 

with high density FC encasement.  Higher the c-e ratio; lower the overall unit 

weight of sandwich. In our case, c-e value 2.5 rendered sandwich element to be 

classified as lightweight sandwich element.  

 

• Nevertheless, it was worth noting that, due to the encasement, the compressive 

enhancement was manifold as compared to the increase in unit weight of 

corresponding specimen, when both, the compressive strength and unit weight 

increase of same sandwich specimen were compared to the corresponding 

control specimen.  This implied the suitability of ferrocement encasement in 

terms of compressive strength versus unit weight. Where, the compressive 

strength enhancement is the major parameter without compromising on unit 

weight at large.  

 

•  All the control and sandwich specimens without wire mesh exhibited sudden 

and brittle failure under compression.  However, the sandwich specimens with 

wire mesh layers showed significant ductile behaviour where the fine cracks 

appeared at about 60%-80% of their ultimate load depending on the type and 

layers of wire mesh.  This led to the conclusion that, FC encasement over 

aerated concrete transforms the otherwise brittle failure mode of aerated 

concrete in a ductile failure due to the presence of wire mesh within ferrocement 

box.  This property is more significant when the design of structural elements in 

earthquake prone areas like Pakistan, is in consideration.  

 

• A residual compressive strength of the order of 20%-30% of the corresponding 

ultimate load was obtained for FC sandwich specimens which imparts the some 

sort of the warning period prior to the complete failure of the elements.  

 

• Identical behavioural trends to that reported for sandwich specimens in 

compression were observed when sandwich prism beams were tested in flexure 



 127

(bending).  However, the contribution of number of mesh layers towards MOR 

(flexural strength) was more significant compared to that in case of compressive 

strength.  Where, MOR increased with the increase in mesh layers.  

Nevertheless, the effectiveness of mesh layers was dependent on the encasement 

thickness, because a large number of mesh layers caused the congestion of the 

reinforcement in thin FC section leaving no room for quality casting leading 

towards the deterioration in compressive strength. Thus, it was concluded that 

the number of mesh layers should be optimized depending upon the thickness of 

FC encasement even in the case of flexural strength where steel reinforcement 

plays key role in the performance of structural element.  

 

• Water absorption and ISAT values of aerated concrete were drastically reduced 

due to its FC encasement.  In fact, water absorption and ISAT are considered as 

the measure of porosity and permeability.  Hence, FC encasement transformed a 

very poor aerated concrete into a good material in terms of water absorption, 

porosity and permeability and has great viability to be employed in aggressive 

and hostile environments like Malaysia. 

 

• Slenderness ratio and aspect ratio factors were found to influence the ultimate 

load of sandwich wall elements in compression and these factors should be 

accounted when the development of a mathematical model to predict the 

ultimate compressive load, is in consideration.  

 

• During the testing of wall elements in compression, the incorporation of steel 

bar reinforcement in the direction of loading showed its contribution towards the 

ultimate load.  However, this parameter could further be investigated properly 

with different variables like diameter of bar and the spacing. Nevertheless, it is 

important to note that, as the bars were embedded inside the wire mesh without 

lateral links but no bending of steel bars was observed in any case.  This was 

because of the uniform and closely distributed wires of mesh in transverse 

direction which acted as the lateral reinforcement around the bar.  This deduced 

the good combination of wire mesh and steel bar reinforcement in sandwich wall 

elements in compression.  
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• The axial and lateral deformations of wall elements in compression were almost 

linear in all the cases.  However, their magnitude in case of sandwich specimens 

without wire mesh was greater than those of the sandwich specimens with wire 

mesh.   For FC sandwich specimens wire mesh arrested the deformation of the 

wall elements thus exhibiting some sort of toughness. 

 

• The lateral deformations obtained on the two sides of the sandwich wall 

elements were almost very small and uniform in magnitude which is actually the 

sign of composite action exhibited by the wall element.  This was due to the 

wrapping of the wire mesh.  This concludes that the FC encasement could be 

suitable option to produce sandwich elements which act as composite element in 

compression. 

 

•  The load-strain relationship of sandwich wall elements tested in bending was 

linear up to first crack load.  Except the sandwich wall element without wire 

mesh, in all other cases, the strains in tension and compression zone were in 

good linear trend up o first crack which was broken with further loading beyond 

the first crack load.  This indicated the composite behaviour of the sandwich 

wall elements with wire mesh in flexure up to the first crack.  In fact the 

composite action is considered as major parameter along with the strength when 

sandwich elements are in consideration to design as structural elements.  This 

concluded the feasibility of FC encasement of aerated concrete to produce 

sandwich element where the wire mesh due to the method of wrapping over AC 

renders the sandwich element to act as fully composite up to the first crack.  
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CHAPTER 6 

 

CONCLUSIONS AND RECOMMENDATIONS 
 

6.1 General 

 

 This chapter presents the conclusions on the findings including the contribution 

of the work to the body-of-knowledge and lastly the recommendations for future work. 

Since, the experimental study of this research was undertaken in two phases and the 

details of the results and their summary have been presented in Chapter 4 and Chapter 

5.  Detailed conclusions drawn from the results and discussions of each phase have been 

presented in the end of respective chapter. At this stage it is appropriate to identify the 

major findings in relation to the original objectives of this research.  

 

6.2 Conclusions 

 

A brief account of the conclusions drawn, in the context of original objectives, 

set for this research study, is summarized as follows: 

 

(1) To investigate the minimum flow value (flow table) of cement mortar 

capable to be poured during the casting of thin ferrocement encasement. 

 

• Mortar with flow value of 136±3% is adequate to cast 6mm-12mm thick 

ferrocement encasement. 

• Flow value should be inversely adjusted by 3% with 2mm variation in the 

thickness of ferrocement encasement. 

• Water-binder ratio required to ensure 36±3% mortar flow is adjustable 

depending on mix proportion and superplasticizer dosage. 

 

 (2) To establish the optimum high workability and high performance mortar 

with slag and superplasticizer. 

 

• High workability mortar of compressive strength ranging between 27MPa 

and 57MPa were developed 
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• Mortar mix 1:2 with 50% GGBFS and 0.1%, and 0.2% SP were found to be 

high performance in terms of compressive strength, strength development, 

water absorption and ISAT (permeability). 

• Water curing is the suitable curing regime to achieve high performance of 

high workability mortars. 

 

(3)  To study the behaviour of ferrocement encased aerated concrete sandwich 

specimens.  

 

• Encasement of aerated concrete resulted in pronounced enhancement in 

compressive strength and flexural strength. 

• Square mesh is the better option amongst the square and chicken wire mesh 

to incorporate in ferrocement encasement where layer of the square mesh is 

the optimum number of layers for specimen in compression. 

• Failure mode transformed from pure brittle and sudden mode to the highly 

ductile and gradual mode of failure retaining substantial residual strength 

also due to the ferrocement encasement. 

• Core-encasement (c-e) volumetric ratio governs the strength and density of 

the sandwich. 

• Ferrocement encasement produces the lateral confinement to the core of the 

sandwich leading to the high compressive strength of sandwich. 

 

(4) To investigate the behaviour of ferrocement encased lightweight aerated 

concrete sandwich wall elements of relatively large size in compression with 

addition flexural and UPV tests.  

 

• Slenderness ratio and aspect ratio affect the load carrying capacity of the 

wall elements. 

• Lateral and axial deformations of sandwich specimens particularly with wire 

mesh remained very small and uniform. 

• Steel bars contributed to the ultimate load of sandwich in compression when 

embedded inside the wire mesh within the ferrocement encasement.  
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• Sandwich walls exhibited highly composite behaviour up to 90% of their 

ultimate load and fist crack loading subjected to compression and bending 

respectively. 

• High degree of material uniformity attained by the sandwich due to method 

of pouring adopted to cast ferrocement encasement. 

• Replacement of the conventional labour intensive manual method of 

ferrocement elements manufacture with the new mechanized method of the 

pouring the high workability mortar altogether with the partial replacement 

of cement with  industrial byproduct GGBFS leads to the cost effectiveness 

of the final product of sandwich wall elements. 

 

(5) To develop mathematical models  

 

(a) Compressive strength of high workability slag cement based mortar 

for ferrocement 

 

In all four mathematical expressions were developed. 

 

( )bwfcm 619.86313.9328 −=    (A) 

  

( )bwfcm 322.86402.9728 −=       (B) 

 

( )bwfcm 427.80364.9028 −=    (C)  

 

( )bwfcm 546.85997.9428 −=    (D) 

 

Equations A–C predict the compressive strength of high workability OPC, 

50%GGBFS and 60% GGBFS mortars with an accuracy of the values up to about 97%.  

Equation D is the generalized equation which predicts the compressive strength of high 

workability slag cement based mortars. The predicted values were in good agreement 

with the experimental values. The average deviation of predicted values was just about 

4.6% of the experimental values.  
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(b) Ultimate load of ferrocement encased aerated concrete sandwich 

wall elements in compression  

  

  A comprehensive and classified mathematical equation was developed to 

determine the compressive strength of ferrocement encased sandwich wall elements. 

The equation is also applicable to the sandwich block specimens. 

 

=UP ( ) ( )[ ]24014.0 tkHAfAf cmcmcc −+ + ( )ssymmy AfAf +67.0 + 
⎟⎟
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⎞
⎜⎜
⎝

⎛
+
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w
cmf

c

mp

g
ndft

D
CA π253.0

2   (E) 

Equation E entertains a wide variety of variables like slenderness ratio, type of 

wire mesh, number mesh layers, steel bar reinforcement and c-e ratio. The aspect ratio 

also could be included by multiplying the factor rA , determined from following 

equation 

 

( )[ ]LHAr 102.1 −=      rA , is applicable when, LH . < 2  (F) 

 

The predicted values of the compressive strength of sandwich wall elements and 

block elements are averagely 98% accurate to the experimental values. 

 

From the above mentioned achievements it can be concluded that the main aim 

of this research has been successfully achieved. 

 

6.3  Contribution of the Research  

 

The research has embarked and paved the way to adopt a novel and potential 

approach of ferrocement encasement of lightweight non-autoclaved aerated concrete to 

produce lightweight sandwich composite. The sandwich elements produced are high 

performance in compressive strength, flexural strength and ductility where as the water 

absorption and ISAT values were very low leading to the durability of the elements 

particularly in aggressive environment like in Malaysia. These sandwich composites are 

potential to be applied in earthquake prone areas like Pakistan. Their lightweight 

properties and precast, and prefabrication approach of construction can lead to the 

industrialization of the building system. The equations developed have laid the base to 
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predict the design values of ultimate loads of encasement mortar and the sandwich 

composite in compression without bothering a lot on the experimental studies.  

 

6.4  Recommendations for Future Work 

 

As a result of the work undertaken for this research, it is suggested to extend the 

work further with respect to the following aspects, 

 

(a)  It is highly recommended that the concept of this study should be extended 

towards the development of sandwich elements for their application in floors 

and slabs and the extent of the contribution of mesh layers in terms of flexural 

strength should be optimized. 

 

(b)  Since the steel bar reinforcement was adopted as additional parameter during 

this study. A systematic study investigating various variables like diameter of 

bars, spacing of bars, is recommended for future work.   

 

(c)  It is believed that after a certain value of slenderness ratio, wall elements 

experience the lateral instability which affects the load carrying capacity of the 

wall elements drastically. Hence, it is highly recommended that an experimental 

study based on full height wall elements be planned and the safe limits of the 

slenderness ratio against lateral instability of wall elements be characterized 

accordingly. Also if necessary, the slenderness factor in the proposed 

mathematical model could be modified accordingly. 

 

(d) The mathematical model to predict the compressive strength of high workability 

mortars with slag has been developed based on only the results of this research. 

The author wishes the further generalization of the model by considering the 

effect of other replacement materials like PFA, POFA, and RHA and the slag 

replacement levels other than used during this study.  
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