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The scaling process of the conventional 2D-planarmetal-oxide semiconductor field-effect transistor (MOSFET) is now approaching
its limit as technology has reached below 20 nm process technology. A new nonplanar device architecture called FinFET was
invented to overcome the problem by allowing transistors to be scaled down into sub-20 nm region. In this work, the FinFET
structure is implemented in 1-bit full adder transistors to investigate its performance and energy efficiency in the subthreshold
region for cell designs of Complementary MOS (CMOS), Complementary Pass-Transistor Logic (CPL), Transmission Gate (TG),
and Hybrid CMOS (HCMOS). The performance of 1-bit FinFET-based full adder in 16-nm technology is benchmarked against
conventional MOSFET-based full adder. The Predictive Technology Model (PTM) and Berkeley Shortchannel IGFET Model-
CommonMulti-Gate (BSIM-CMG) 16 nm low power libraries are used. Propagation delay, average power dissipation, power-delay-
product (PDP), and energy-delay-product (EDP) are analysed based on all four types of full adder cell designs of both FETs. The
1-bit FinFET-based full adder shows a great reduction in all four metric performances. A reduction in propagation delay, PDP, and
EDP is evident in the 1-bit FinFET-based full adder of CPL, giving the best overall performance due to its high-speed performance
and good current driving capabilities.

1. Introduction

The latest and innovative silicon technology processes have
led to the rapid growth of modern integrated chip (IC).
The development has enabled commercial IC foundry and
global semiconductor industry to produce compact, high
performance, low power, and robust microprocessor. The
core of each microprocessor is the central processing unit
(CPU) where the arithmetic logic unit (ALU) is located and
forms the fundamental building block. ALU can perform
logical operation and basic arithmetic, namely, addition,
subtraction, multiplication, and division. Essentially, the
aforementioned arithmetic operation can be summed up as
follows: addition, negative addition, repeated addition, and

repeated negative addition. In the digital system, it is crucial
to have a full adder that is low in power consumption, of
high speed, energy efficient, and reliable [1]. Compared to
conventional MOSFET technology, the new FinFET technol-
ogy can be implemented in 1-bit full adder, to prolong silicon
downscaling and enhance the device performance and energy
efficiency of full adder.

There are four types of cell designs used for FinFET-
based full adder in this study, which are the Complementary
MOS (CMOS), Complementary Pass-Transistor Logic (CPL),
Transmission Gate (TG), and Hybrid CMOS (HCMOS).
The circuit development and simulation were performed
using HSPICE and Cosmoscope. The design libraries were
adapted from the Predictive Technology Model (PTM) for
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conventional FET technology and BSIM CMG Models for
FinFET technology.The fourmetric performances of 1-bit full
adder were analysed: the propagation delay, average power
dissipation, power-delay-product (PDP), and energy-delay-
product (EDP) based on all four cell designs.

The ITRS reported an issue on the scaling process of
MOSFET to 32 nm in year 2006. The issue emphasized
that scaling planar bulk CMOS into a smaller size faced a
lot of challenges due to the high doping that was needed,
band-to-band tunneling across the junction, and difficulty in
adequately controlling short channel effect (SCE). However,
the problem of scaling MOSFET into the nanoscale region
was solved by implementing new structures such as an
ultrathin body fully depleted silicon-on-insulator (SOI) and
multiple-gate FET (FinFET) [2].

2. FinFET Overview

The degradation of the device performance was the result
of the scaling process of MOSFET as it approached the
technology limit at 20 nm. The new alternative structure,
FinFET, replaces the conventional MOSFET which allows
transistors to be scaled down and may contribute to more
advantages over the conventional MOSFET, such as a larger
drain current, smaller switching voltage, and significantly
less static leakage current. The FinFET technology was
developed by Liu; well-known researchers of the University
of California, Berkeley [3]. FinFET which normally refers
to a nonplanar with multiple-gate is built on a SOI or
bulk silicon wafer that can be fabricated using an existing
CMOS compatible technology such as lithography [4]. The
microprocessor manufacturers such as Motorola, AMD, and
IBM widely use the FinFET term to define their double-gate
development efforts. A FinFETwith insulator material across
the top of the channel is a dual-gate transistor although it is
a Tri-Gate structure. Those with a thin insulator on top and
on the sides are called Tri-Gate transistor. In September 2012,
the full-service semiconductor foundry, GlobalFoundries,
planned to offer a 14 nm process technology FinFET three-
dimensional transistor in the year 2014 [5]. In October
2012, the Taiwan Semiconductor Manufacturing Company
(TSMC) planned to make 20 nm chips in 2013 and 14 nm
FinFET chips in 2014 [6].

FinFET is also called multigate device where its mode
of operation is almost similar to the conventional MOSFET
transistor. FinFET also has a source, drain, and gate terminal
to control the flow of current. The only feature that makes
FinFET differ from MOSFET is the channel between source
and drain of FinFET. The channel of FinFET on top of
the silicon substrate is designed as a three-dimensional bar,
which is called a “fin.” The three-dimensional bar design
makes the gate of FinFET fully covered around the channel,
as shown in Figure 1, to form several gate electrodes on
each side. These electrodes may contribute to reduce leakage
effects and improve drive current. Based on the design
structure, the fin height of a single-fin FinFET must be half
of the effective channel width,𝑊eff [10]. However, if the𝑊eff
is large, FinFET can be built by utilizing multiple parallel fins

Gate
Drain

Gate length

Source
Fin width

Oxide

Fin height

Silicon substrate

Figure 1: Basic structure of FinFET model.

to provide higher drive current strengths per unit area than
planar devices. The𝑊eff of FinFET is given by

𝑊eff = NFIN × (TFIN + 2HFIN) , (1)

where NFIN is the number of fins aligned in parallel, while
TFIN is the thickness of the fin and HFIN is the height of the
FIN (HFIN) [11].

3. Subthreshold Conduction

In theory, the current-voltage relationship suggests that the
drain current, 𝐼DS, of a transistor is ideally zero as the gate-
to-source voltage, 𝑉GS, is lower than the threshold voltage,
𝑉th [12]. However, the drain current is not necessarily zero
when 𝑉GS < 𝑉th. The current that exists in this region is
called the subthreshold current and the transistor is in a weak
inversion mode [12, 13]. The current does not drop abruptly
but drops gradually to zero and it is said that the transistor
is partly conducting voltage in the subthreshold region [14].
In this region, the diffusion of carriers controls the flow
of the drain current instead of drift mechanism [12]. Most
digital applications do not need subthreshold current because
it deviates the ideal behavior of the transistor [14], causes
leakage current, and limits the performance of the circuit
[15]. Conversely, the carriers in the subthreshold region have
become more significant in the performance of the device
as the technology has evolved into the nanoscale region and
runs on low power technology [15, 16].

4. The 1-Bit Full Adder Cell Designs

One of the most basic arithmetic operations used in any
digital electronic system is addition. The common adder cell
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Figure 2: CMOS 1-bit full adder circuit (adapted from [7]).

Table 1: The truth table of 1-bit full adder.

Input Output
𝐴 𝐵 𝐶IN 𝐶OUT Sum
0 0 0 0 0
0 0 1 0 1
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 1

used is the full adder, where three inputs are added together
to produce two outputs as shown in the following equations:

Sum = 𝐴 ⊕ 𝐵 ⊕ 𝐶IN (2)

𝐶OUT = 𝐴 ⋅ 𝐵 + 𝐶IN (𝐴 ⊕ 𝐵) . (3)

Both (2) and (3) are generated from the truth table of 1-bit full
adder as tabulated in Table 1.

Numerous types of 1-bit full adder cells with different
numbers of transistors and performance tradeoffs in speed
and power are designed and identified. With any cell design,
there are advantages and disadvantages that are observed in
this simulation work. The four types of 1-bit full adder cell
designs are Complementary MOS (CMOS), Complementary
Pass-Transistor Logic (CPL), Transmission Gate (TG), and
Hybrid CMOS (HCMOS).

4.1. 1-Bit Complementary MOS (CMOS) Full Adder. The
CMOS full adder has 28 transistors which consists of PMOS
andNMOS transistors [17].This type of full adder is designed
by implementing (2) and (3) as shown in Figure 2.The design
is very reliable in subthreshold voltage due to its high noise
margin [7]. CMOS full adder consumes more energy, has
high number of input loads, and requires more silicon area
in wafer because of its high transistor count. There is also
additional delay at Sum which is generated from 𝐶out to the
input of transistors M19 and M20 of Figure 2 [8].

4.2. 1-Bit Hybrid CMOS (HCMOS) Full Adder. This full
adder design is the combination of transmission gates, pass-
transistors, PMOS, and NMOS transistors as proposed in
[18]. It consists of 20 transistors as shown in Figure 3. This
design has overcome several disadvantages that have been
identified in previous cell designs. This design has a lower
transistor count and high noise immunity and it has been
revealed that HCMOS full adder has less power dissipation
when compared to CPL full adder [18]. On the other hand,
this hybrid design also has its advantages including a rela-
tively lower propagation delay than CPL, TG, and CMOS full
adder. It is also revealed that the power-delay-product (PDP)
of HCMOS full adder is the lowest of them all.

4.3. 1-Bit Complementary Pass-Transistor Logic (CPL) Full
Adder. Another type of 1-bit full adder cell is CPL, which
has 32 transistors in this cell design as shown in Figure 4.
It is made of NMOS pass-transistors and has cross-coupled
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Figure 3: HCMOS 1-bit full adder circuit (adapted from [8]).

PMOS transistors added to the design to achieve level restora-
tion [17]. This cell design provides high-speed performance
and full swing operation and has a good driving capability
because of the static inverters’ output [18]. However, the
disadvantage of the CPL full adder is that it has many
intermediate nodes and variable 𝐶out with its complement is
generated at the outputs [8]. Overloading inputs in the design
may cause high capacitance [8], while a high transistor count
may contribute to a higher power dissipation [18].

4.4. 1-Bit Transmission Gate (TG) Full Adder. As illustrated
in Figure 5, this full adder has 20 transistors, which consists
of transmission gates, PMOS, and NMOS transistors. High-
speed operation and low power dissipation performance are
contributed by the transmission gate transistors used in the
design [18]. The TG full adder circuit is simple compared to
CMOS and CPL with fewer transistors, fewer intermediate
nodes, lower input loading, and balanced generation of out-
put. However, the TG full adder has higher power dissipation
compared to CMOS full adder [7]. Previous work [17] has
shown that the propagation delay may increase excessively if
the TG full adder is cascaded in series.

5. Transistor Sizing

The current-voltage (I-V) characteristics of both n-type and
p-type transistors are used to determine the size of a single
n-type and p-type transistor in both MOSFET and FinFET
technologies. The I-V characteristics are simulated to get a
fairly optimum positive and negative drain current of n-type
and p-type transistors and to obtain an almost symmetrical
graph for the constructed logic gates. The 16 nm length is set
for both MOSFET and FinFET to offer an insight into the
device performance of next generation 16 nm process.

A high performance transistor with low power is essential
for future technology and thus the bias voltage of MOSFET
and FinFET is set in the range from 0V (initial voltage)
to 0.2 V (final voltage) for NMOS and vice versa. The I-
V characteristics are computed by initially defining the
parameters of MOSFET and FinFET. Next, the bias point
is inserted to evaluate the output current for every input
current. An appropriate number of bias point should be set
to reduce the computation time. The iteration is finished
once it reached the final voltage.Thus, the I-V characteristics
are plotted. The parameters that can deliver the optimum
performance of transistor are chosen.
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Figure 4: CPL 1-bit full adder circuit (adapted from [8]).

Figure 6 shows the combination of the I-V characteristics
of both n-type and p-type MOSFET (i.e., PMOS and NMOS)
transistors. For MOSFET, the gate length of both n-type and
p-type transistors is kept constant at 16 nm. The transistors
were simulated inHSPICE to obtain the optimized parameter
of width with a specific amount of current flowing through
the drain, approximately at 61.5 nA and 48 nA for n-type and
p-type, respectively. The optimized parameter of width of
both n-type and p-type MOSFET is tabulated in Table 2.

The parameters in Table 2 are used for a single transistor
for both n-type and p-type transistors. However, a full adder
cell design has several transistors connected in series or in

Table 2: Optimized parameters for PMOS and NMOS transistors
(MOSFET).

Transistor Width (nm) Length (nm)
PMOS 16.00 16.00
NMOS 32.00 16.00

parallel. In this case, the size of the transistors must be
increased so they have the same conductance as that of n-type
or p-type single transistor. For example, as shown in Figure 2,
the CMOS full adder has several transistors connected in
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series or in parallel. The size of transistors in parallel must be
equal, while the size of transistors in series must be increased
according to the logical effort. The same concept must be
applied for the rest of the cell designs.

The plots of 𝐼DS versus 𝑉DS of both n-type and p-type
FinFET are as shown in Figure 7. The gate length, 𝐿, of both
n-type and p-type FinFET is kept the same as MOSFETs.The
parameters such as the height of fin (HFIN), the thickness

80

60

40

20

0.0

−20

−40

−0.3 −0.2 −0.1 0.0 0.1 0.2 0.3

n-type

(−0.2, −35.957n)

(0.2, 60.697n)

i(VSS)

I D
S

(n
A

)

VDS (V)

I-V characteristic of n-type and p-type FinFET

Figure 7: Graph of 𝐼DS versus 𝑉DS of FinFET.

of fin (TFIN), and the number of fins (NFIN) are chosen
carefully to obtain a matching drain current of n-type and
p-type FinFET against MOSFET. From our simulation, we
suggest that the respective values of TFIN and HFIN for all
n-type and p-type channel to be kept consistent as shown
in Table 3 for simplicity in computational and fabrication
process. The chosen TFIN and HFIN provide the closest



Journal of Nanomaterials 7

MOSFET CMOS 1-bit full adder
0.2

0.1

0.0

(V
)

0.2

0.1

0.0

(V
)

0.2

0.1

0.0

(V
)

0.2

0.1

0.0

(V
)

0.2

0.1

0.0

(V
)

t (𝜇s)
0.0 5 10 15 20 25 30 35 40

V(A)

V(B)

V(Cin)

V(Cout)

V(Sum)

Figure 8: Input and output waveforms of MOSFET-based CMOS
full adder.

matching drain current of a MOSFET when NFIN of FinFET
is varied from 1 to 10. The tradeoff of this simulation method
would be that there is slight discrepancy of drain current for
n-type compared to p-type. Table 3 tabulates the values of
parameters of FinFET transistors.

The parameters in Table 3 are used for a single transistor
of both p-type and n-type FinFET transistors. The sizing
of transistors in series or in parallel must be increased so
that they have the same conductance as the corresponding
transistor in the circuit design. For FinFET, the NFIN are
increased to yield a larger effective width, 𝑊eff, as in a
MOSFET. This trend is observed from Table 4 where the
discrete number of NFIN in FinFET can be increased to
match the current of a MOSFET. Note that (1) is used to
calculate the sizing of transistors in series or in parallel by
multiplying the discrete value of NFIN.

6. 1-Bit Full Adder Waveforms

The output waveforms of all four types of 1-bit full adder
cell designs are as shown in Figures 8–11. All of the figures
show the input and output waveforms generated from the
HSPICE simulation.The output Sum and𝐶OUT produced are
as expected in the truth table as tabulated in Table 1.

For FinFET technology, the input and output waveforms
of 1-bit CMOS, CPL, TG, and HCMOS full adder are
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Figure 9: Input and output waveforms of MOSFET-based HCMOS
full adder.

Table 3: The values of parameters for n-type and p-type FinFET
transistors.

Types of FinFET n-type p-type
Number of fins, NFIN 1 1
Gate length, 𝐿 (nm) 16.00 16.00
Height of fin, HFIN (nm) 10.00 17.00
Thickness of fin, TFIN (nm) 10.00 17.00

illustrated in Figures 12, 13, 14, and 15, respectively. Similar as
in MOSFET full adder, the outputs generated are as expected
in the truth table. In Figures 12 and 13, the outputs generated
show some glitches because of a high transistor count in
CMOS and CPL full adder cell design [7, 18]. The output
waveforms of TG full adder in Figure 14 showed an obvious
delay in rising and falling due to the transmission gate
transistors used in the cell design. The propagation delay of
transmission gates full adder will increase if the gates are
cascaded in series [17], whereas the waveform of HCMOS
full adder (Figure 15) is comparable to Figure 14 because the
transmission gate transistors are also present in the cell design
of CMOS and CPL transistors [18].
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Table 4: The values of drain current of FinFET and MOSFET transistors.

Number of transistors in series MOSFET FinFET
Width (nm) Current (nA) TFIN (nm) HFIN (nm) NFIN Current (nA)

n-type
1 16.00 61.49 10.00 10.00 1 65.79
2 32.00 97.08 10.00 10.00 2 131.57
3 48.00 166.23 10.00 10.00 3 197.36
4 64.00 235.19 10.00 10.00 4 263.14
8 128.00 510.75 10.00 10.00 8 526.29
10 160.00 648.18 10.00 10.00 10 657.86

p-type
2 32.00 47.37 17.00 17.00 2 63.32
4 64.00 116.38 17.00 17.00 4 126.64
5 80.00 150.86 17.00 17.00 5 158.30
6 96.00 185.33 17.00 17.00 6 190.00
8 128.00 254.26 17.00 17.00 8 253.30
8/3 42.66 70.377 17.00 19.00 2 70.77
9 144.00 288.73 17.00 17.00 9 283.90
12 192.00 392.11 17.00 17.00 12 379.90

Table 5: Propagation delay of MOSFET and FinFET full adder.

Full adder Propagation delay (s)
MOSFET FinFET

CMOS 3.08 × 10−8 4.93 × 10−9

HCMOS 9.39 × 10−9 1.75 × 10−9

CPL 1.97 × 10−8 1.93 × 10−9

TG 2.82 × 10−8 2.93 × 10−9

7. Metric Performance Analysis

In this study, fourmetric performances were analysed: propa-
gation delay, average power dissipation, power-delay-product
(PDP), and energy-delay-product (EDP).These metrics were
measured in 1-bit full adder of CMOS, HCMOS, CPL, and
TG for both MOSFET and FinFET technology. Each of the
cell designs is implemented to determine the optimal tradeoff
between delay-energy-power in planar and nonplanar tran-
sistors for modern digital systems [14].

The bar graph of the propagation delay of bothMOSFET-
based and FinFET-based full adder is illustrated in Figure 16,
which is tabulated from Table 5. Based on Figure 16, the 1-
bit CPL full adder shows the most improved performance
compared to other full adder cell designs because this design
has high-speed performance with full swing operation [18].
The FinFET-based full adder showed a large reduction in
delay and provided the device with high-speed performance,
which is better than the conventional MOSFET-based full
adder.These results showed that FinFET has better and faster
switching speed due to the presence of multiple gates in the
FinFET structure [9] and drives more current through the
transistor compared to the MOSFET structure [17].

The average power dissipation in MOSFET-based and
FinFET-based full adders is tabulated in Table 6 and the
graph is plotted in Figure 17. The average power dissipation

Table 6: Average power dissipation of MOSFET and FinFET full
adder.

Full adder Average power dissipation (W)
MOSFET FinFET

CMOS 2.30 × 10−9 8.41 × 10−10

HCMOS 1.40 × 10−9 3.17 × 10−10

CPL 1.69 × 10−9 5.23 × 10−10

TG 1.74 × 10−9 7.41 × 10−10

for FinFET-based full adder reduced greatly compared to
MOSFET-based full adder, which can be seen in Figure 17.
The presence of multiple gates in the FinFET structure
reduces the short channel effects (SCE). This enhances the
subthreshold slope, which increases the gate oxide thickness.
An increase in oxide thickness will lessen the gate leakage
current, thus reducing the total power dissipation.

The power-delay-product (PDP) is used to measure the
average energy consumed per switching event while the
energy-delay-product (EDP) is another important metric
that unifies a measure of performance and energy. The
equations of PDP and EDP are as follows:

PDP [J] = Propagation Delay × Average Power Dissipation
(4)

EDP [Js] = PDP × Propagation Delay. (5)

The values of propagation delay and average power dissipa-
tion of both MOSFET and FinFET full adder as tabulated in
Tables 5 and 6 are calculated according to (4) and (5) and then
the values are tabulated in Table 7.

The values of PDP and EDP for both MOSFET-based
and FinFET-based full adder were tabulated in Table 7. In
Figure 18, we observed that FinFET-based full adder has a
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Table 7: Power-delay-product (PDP) and energy-delay-product (EDP) of MOSFET and FinFET full adder.

Full adder Power-delay-product, PDP (J) Energy-delay-product, EDP (Js)
MOSFET FinFET MOSFET FinFET

CMOS 7.09 × 10−17 4.14 × 10−18 2.18 × 10−24 2.04 × 10−26

HCMOS 1.31 × 10−17 5.54 × 10−19 1.23 × 10−25 9.67 × 10−28

CPL 3.32 × 10−17 1.01 × 10−18 6.55 × 10−25 1.94 × 10−27

TG 4.90 × 10−17 2.17 × 10−18 1.38 × 10−24 6.34 × 10−27
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Figure 10: Input and output waveforms of MOSFET-based CPL full
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large reduction in PDP compared to MOSFET-based full
adder. This indicates that the average energy consumed per
switching event for FinFET is efficiently better than that
of MOSFET because of the low average power dissipation
during its operation.

Figure 19 shows the bar graph for EDP of both MOSFET-
based and FinFET-based full adder. In Figure 19, the EDP
of FinFET-based full adder shows a better performance
compared to MOSFET-based full adder. Based on (5), the
EPD was measured by taking the square of propagation
delay. Since the propagation delay of FinFET-based full adder
was the lowest compared to MOSFET-based full adder, this
contributed to the lowest EDP, thus giving more advantages
to FinFET-based full adder, which had the largest improved
performance and energy efficiency. By comparing all four
types of full adder cell designs, CPL full adder showed the best
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Figure 11: Input and output waveforms of MOSFET-based TG full
adder.

PDP and EDP due to its characteristics, namely, high speed
of performance and full swing operation. The speed of full
adder cell can be improved at the cost of an increased power
consumption.

8. Conclusions

All four types of 1-bit full adder cells of MOSFET and FinFET
were tested and simulated in HSPICE to analyse its metric
performances such as propagation delay, average power
dissipation, power-delay-product (PDP), and energy-delay-
product (EDP). Based on the findings, the 1-bit FinFET-based
full adder was shown to be the lowest and optimal tradeoff
in all metric performances compared to the MOSFET-based
full adder. This proved that, by using FinFET technology in
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Figure 12: Input and output waveforms of FinFET-based CMOS full adder.
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Figure 13: Input and output waveforms of FinFET-based CPL full adder.
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Figure 14: Input and output waveforms of FinFET-based TG full adder.
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Figure 16: Propagation delays of MOSFET- and FinFET-based full
adder.
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Figure 17: Average power dissipation of MOSFET- and FinFET-
based full adder.

1-bit full adder circuitry, it will improve the performance of
the device. However, the cell design also contributes to how
good the 1-bit full adder performs, as discussed earlier. The 1-
bit FinFET-based full adder has a reduced propagation delay
and average power dissipation, PDP, and EDP, thus giving
FinFET technology great advantages in energy efficiency and
performances for 16 nm technology. It was also verified that
the 1-bit complementary pass-transistor logic (CPL) FinFET-
based full adder performed very well with a reduced amount
of PDP and EDP compared to other cell designs because of
its high-speed performance and full swing operation.
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Figure 18: The power-delay-product (PDP) of MOSFET- and
FinFET-based full adder.

CMOS CPL TG HCMOS

Energy-delay-product

Full adder cell designs

ED
P 

(J
s)

2.5

2

1.5

1

0.5

0

×10−24

MOSFET
FinFET

Figure 19: The energy-delay-product (EDP) of MOSFET- and
FinFET-based full adder.
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