
VOT 78096 
 

 
 

 

GENERALIZED KERNEL METHODS FOR UNSUPERVISED LEARNING 

 

 

 

 

 

DR. MOHD NOOR MD SAP 

DR. SITI MARIYAM HJ. SHAMSUDDIN 

DR. HARIHODIN SELAMAT 

ABDUL MAJID AWAN 

SHAFAATUNNUR BT. HASAN 

MOJTABA KOHRAM 

 

 

 

 

RESEARCH VOTE NO: 

VOT 78096 

 

 

 

 

Faculty of Computer Science and Information Systems 

Universiti Teknologi Malaysia 

 

 

 

2008 



 ii

ABSTRACT 

Unsupervised learning, mostly represented by data clustering methods, is an 

important machine learning technique. Data clustering analysis has been extensively 

applied to extract information from microarray gene expression data. However, 

finding good quality clusters in gene expression data is more challenging because of 

its peculiar characteristics such as non-linear separability, outliers, high-

dimensionality, and diverse structures. Therefore, this study aims at combining 

kernel methods, capable of both handling the high dimensionality and discovering 

nonlinear relationships in the data, with the approximate reasoning offered by fuzzy 

approach. To this end, a robust Weighted Kernel Fuzzy C-Means incorporating local 

approximation (WKFCM) is presented. In WKFCM, fuzzy membership of each 

object is approximated from the memberships of its neighbouring objects. It brings in 

the synergy of partitioning and density based clustering approaches and provides a 

substantial improvement in the analysis of the data using unsupervised learning. 

Comparative analysis with K-means, hierarchical, fuzzy C-means and fuzzy self-

organizing maps showed that, although different types of datasets are better 

partitioned by different algorithms, WKFCM displays the best overall performance, 

and has the ability to capture nonlinear relationships and non-globular clusters, and 

identify cluster outliers.  

 

Keywords: Clustering; Kernel methods; Pattern recognition; microarray data 

analysis; gene expression data; Fuzzy C-means clustering (FCM) 
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ABSTRAK 

 

 

 

Analisa pengelompokan data adalah suatu kelas yang besar dalam 

penggunaan pembelajaran tanpa penyeliaan. Ia telah meluas diaplikasikan untuk 

memperoleh informasi daripada susunan-mikro perwakilan data genetik. 

Walaubagaimanapun, mencari kualiti pengelompokan data yang baik adalah lebih 

mencabar kerana ia mempunyai karakter yang khusus seperti pemisahan tidak sekata, 

titik-luar, dimensi yang tinggi, dan mempunyai pelbagai struktur. Oleh itu, 

penyelidikan ini dijalankan adalah bertujuan untuk menyatukan kaedah kernel 

dimana mampu menggalas dimensi yang tinggi dan menemukan perhubungan tidak 

sekata dengan data, iaitu dengan mengaplikasikan anggaran munasabah yang 

ditawarkan oleh pendekatan kabur. Maka, pendekatan yg mantap iaitu Weighted 

Kernel Fuzzy C-means (WKFCM) yang menggabungkan anggaran setempat telah 

diperkenalkan.  Keahlian kabur di dalam setiap objek WKFCM dianggarkan daripada 

keahlian objek jirannya. Ia membawa kepada kerjasama dalam pembahagian dan 

berdasarkan pendekatan kepadatan kelompok. Analisa  Perbandingan dengan K-

Means, hierarchical, fuzzy C-Means, dan Fuzzy Self–Organizing Map menunjukkan 

bahawa WKFCM tetap mempamerkan yang terbaik daripada keseluruhan 

pelaksanaan dan mempunyai kebolehan untuk mengenal pasti perhubungan tidak 

sekata, pengelompokan tidak global dan pengelompokan titik-luar walaupun pelbagai 

jenis data boleh diasingkan dengan algoritma yang lain. 
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CHAPTER 1 

 

 

 

INTRODUCTION 

 

 

 

1.1 Overview 

 

Unsupervised learning, mostly represented by data clustering methods, is an 

important machine learning technique. Clustering is a division of data into groups of 

similar objects. From a machine learning perspective clusters correspond to hidden 

patterns, the search for clusters is unsupervised learning, and the resulting system 

represents a data concept. From a practical perspective clustering plays an 

outstanding role in data mining applications such as scientific data exploration, 

information retrieval and text mining, spatial database applications, web analysis, 

marketing, medical diagnostics, computational biology, and many others. There are 

many approaches to data clustering that vary in their complexity and effectiveness, 

due to the wide number of applications that these algorithms have. While there has 

been a large amount of research into the task of clustering, currently popular 

clustering methods often fail to find high-quality clusters. Clustering has received a 

renewed attention with the advent of nonlinear clustering methods based on kernels 

as it provides a common means of identifying structure in complex data. 
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1.2 Background and General Problem Statement 

 

Over the last decade, estimation and learning methods utilizing positive 

definite or Mercer kernels have become rather popular, particularly in machine 

learning. Since these methods have a stronger mathematical slant than earlier 

machine learning methods (e.g., neural networks), the statistics and mathematics 

communities have also significant interest in these methods [1]. Among these 

methods, Support Vector Machines (SVM) is being widely applied in the machine 

learning community since it often shows better performance than other learning 

algorithms. A distinctive feature of SVM is the use of Mercer kernels [2] to perform 

the inner product (kernel trick). The great success of SVM has led to the 

development of a new branch of machine learning, Kernel Methods, i.e. the 

algorithms that use the kernel trick. The kernel methods are among the most 

researched subjects within machine learning community in recent years and have 

been widely applied to pattern recognition and function approximation. Two of the 

typical examples are support vector machines (SVM) [2, 3], and kernel principal 

component analysis [4].  

 

The fundamental idea of the kernel methods is to first transform the original 

low-dimensional inner-product input space into a higher dimensional feature space 

through some nonlinear mapping where complex nonlinear problems in the original 

low-dimensional space can more likely be linearly treated and solved in the 

transformed space. In the higher dimensional space, data points are spread out, and a 

linear separating hyperplane may be found. This concept is based on Cover’s 

theorem on the separability of patterns. According to the Cover’s theorem, an input 

space made up of nonlinearly separable patterns may be transformed into a feature 

space where the patterns are linearly separable with high probability, provided the 

transformation is nonlinear and the dimensionality of the feature space is high 

enough [5]. However, usually such mapping into high-dimensional feature space will 

undoubtedly lead to an exponential increase of computational time. Fortunately, 

adopting kernel functions to substitute an inner product in the original space, which 

exactly corresponds to mapping the space into higher-dimensional feature space, is a 

favorable option. Therefore, the inner product form leads us to applying the kernel 

methods to cluster complex data [6, 7]. 
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The standard “sum-of-squares” (such as Euclidean distance measure) based methods 

of partitioning (such as K-means, FCM) have proved to be effective for datasets 

having ellipsoidal cluster structures [8]. A disadvantage to these methods is that 

clusters can only be separated by a hyperplane. If the separation boundaries between 

clusters are nonlinear, for instance non-Euclidean structures in the data such as 

nonspherical shape clusters, then these methods fail. An attractive approach to 

solving this problem is to adopt the strategy of nonlinearly transforming the data into 

a high-dimensional feature space and then performing the clustering within this 

feature space. Linear separators in the feature space correspond to nonlinear 

separators in the input space [4].  However, as the feature space may be of high and 

possibly infinite dimension, then directly working with the transformed variables is 

an unrealistic option. However, as mentioned above, it is unnecessary to work 

directly with the transformed variables. It is the inner-products between points which 

are used and these can be computed using a kernel function in the original data space 

[2, 4]. This observation provides for a tractable means of working in the possibly 

infinite feature spaces. While powerful kernel methods have been proposed for 

supervised classification and regression problems, the development of effective 

kernel method for clustering, aside from a few tentative solutions [4, 6, 7, 9], needs 

further investigation [9, 10]. 

 

 

 

1.3 Objective of the Study 

 

To study the state-of-the-art approaches to non-linear system modeling 

concerning fundamental theoretical aspects, design of efficient and reliable 

algorithms. 
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1.4 Scope of the Study 

 

The scope of the study is as follows: 

• This study focuses on the issue of clustering especially for microarray 

gene expression data analysis  

• Mainly kernel-based methods have been used in this study 

• Experimentation has been conducted on publicly available standard, 

real benchmark datasets.  

 

 

 

1.5 Significance and Contribution of the Study 

 

Clustering is a very useful tool for effective data analysis and has a wide 

range of applications. While a large number of clustering techniques have been 

developed in statistics, pattern recognition, data mining, and other fields, significant 

challenges still remain. Most of the clustering challenges, particularly those related to 

quality rather than computational resources, are the same challenges that existed 

years ago: how to find clusters with differing sizes, shapes and densities, how to 

handle noise and outliers. This study has come up with a new clustering algorithm, 

using kernel-based methods for effective and efficient data analysis by exploring 

structures in the data. The proposed clustering algorithm incorporates local 

neighborhood information for making more efficient with respect to noise and 

outliers. The algorithm has been successfully tested on simulated and benchmark 

datasets (iris data, microarray gene expression data).  

 

 

 

1.6 Research Methodology 

 

The exploration of complex datasets, for which no or very little information 

about the underlying distribution is available, fundamentally relies on the 

identification of ‘natural’ group structures in the data, a task which may be tackled 
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using clustering techniques. A cluster analysis can be seen as a three step process as 

outlined in Figure 1.1 [11]. The same methodology is adopted in this study. 

 

The first step involves a number of data transformations including feature 

selection, normalization and the choice of a distance function, to ensure that related 

data items cluster together in the data space. When the data set is a set of vectors, as 

is the case with datasets considered in this study, it is often effective to linearly scale 

each attribute to zero mean and unit variance, and then apply the Gaussian radial 

basis function kernel or polynomial kernel [12]. The main advantage of this 

normalization is to avoid attributes in larger numeric ranges dominating those in 

smaller ranges. More advanced methods for kernel normalization are described in 

[13].  

 

The second step consists of the selection, parameterization and application of 

one or several clustering methods. The resulting partitionings are evaluated in the 

third step using cluster-validation techniques. Cluster-validation techniques have the 

potential to provide an analytical assessment of the amount and type of structure 

captured by a partitioning, and should therefore be a key tool in the interpretation of 

clustering results [11].  

 

The procedure of evaluating clustering results is known as cluster validity. 

Cluster validity methods may assist users in choosing clustering results 

independently from the clustering algorithms, the parameters and the number of 

clusters. In general there are three approaches to cluster validity: external, internal 

and relative criteria. For some datasets in our experiments reported here, we have 

class labels so external criteria are used to evaluate clustering results. The data for 

which class labels are not available, internal validity criteria are used. Please, see 

Chapter 2, Section 4.1 for more detail. 
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Figure 1.1    The three main steps involved in a cluster 

analysis: Preprocessing, cluster analysis, cluster validation 

 

 

  

Step 1: Pre-processing 
Feature selection 

Normalization 
Selection of similarity measure 

Step 2: Cluster analysis 
Selection of algorithm 

Selection of algorithm parameters 
Application of algorithm 

Step 3: Cluster validation 
Selection of validation techniques 

Application of validation techniques 
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CHAPTER 2 

 

 

 

A WEIGHTED FUZZY KERNEL BASED METHOD INCORPORATING 

LOCAL APPROXIMATION FOR CLUSTERING MICROARRAY DATA 

 

 

 

Abstract 

Data clustering analysis has been extensively applied to extract information from 

microarray gene expression data. However, finding good quality clusters in gene 

expression data is more challenging because of its peculiar characteristics such as 

non-linear separability, outliers, high-dimensionality, and diverse structures. 

Therefore, this study aims at combining kernel methods, capable of both handling the 

high dimensionality and discovering nonlinear relationships in the data, with the 

approximate reasoning offered by fuzzy approach. To this end, a robust Weighted 

Kernel Fuzzy C-Means incorporating local approximation (WKFCM) is presented. 

In WKFCM, fuzzy membership of each object is approximated from the 

memberships of its neighboring objects. It brings in the synergy of partitioning and 

density based clustering approaches and provides a substantial improvement in the 

analysis of the data. Comparative analysis with K-means, hierarchical, fuzzy C-

means and fuzzy self-organizing maps showed that, although different types of 

datasets are better partitioned by different algorithms, WKFCM displays the best 

overall performance, and has the ability to capture nonlinear relationships and non-

globular clusters, and identify cluster outliers.  

 

Keywords: Clustering; Kernel methods; Pattern recognition; microarray data analysis; 

gene expression data; Fuzzy C-means clustering (FCM) 

 



 

1. Introduction 

 

The task of clustering genes into functionally-similar clusters using 

expression data rests on the assumption that genes of similar function share similar 

expression profiles across various experimental conditions. Clustering algorithms 

have proved useful to help group together genes with similar functions based on gene 

expression profiles under various conditions or across different tissue samples [14-

17]. Such partitioning can facilitate data visualization and interpretation, and it can 

be exploited to gain insight into the transcriptional regulation networks underlying a 

biological process of interest. By expanding functional families of genes with known 

function together with poorly characterized or novel genes may help understand the 

functions of many genes which are not explored yet. 

 

Since the work of Eisen et al. [17] clustering methods have become a key 

step in microarray data analysis. Various clustering algorithms have been applied in 

the cluster analysis of genes, including HAC (hierarchical agglomerative clustering) 

[17], SOM (self-organizing maps) [18], CLIFF (Clustering via Iterative Feature 

Filtering) [19], and algorithms based on mixture models [20], neural networks [21], 

simulated annealing [22], and PCA (principle components analysis) [23]. There are 

also many works in co-clustering gene expression matrix, i.e., clustering genes and 

samples at the same time [24, 25]. 

 

However, microarray datasets tend to have very diverse structures due to the 

complex nature of biological systems. Because of this, none of the existing clustering 

algorithms perform significantly better than the others when tested across various 

datasets [11, 14, 16, 26, 27]. Popular algorithms, such as K-Means, hierarchical 

clustering and Self-Organizing Maps (SOM) [28], typically perform clustering on the 

basis of pairwise distances between genes. Consequently they may fail to reveal 

nonlinear relationships between gene expression profiles, and be unable to correctly 

represent a dataset with nonlinear structures [29]. Over the last few years, more 

sophisticated clustering approaches have been developed for microarray data 

clustering, such as CLIFF [19], co-clustering [24] and GenClust [26]. Though in 

some cases they perform better than the standard methods, none of them proved 

consistently better across different datasets [11]. Anyway, HAC remains the most 
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widely used clustering algorithm and has become a de facto standard for 

visualization of expression data, although it has been described to suffer from a 

number of limitations mostly deriving from the local decision making scheme for 

constructing clusters that joins the two closest genes or clusters without considering 

the data as a whole, and it is likely to be a poor choice for further analysis of the 

resulting clusters [16, 18, 30, 31]. But genes on any given array are not isolated 

entities: the expression level of a specific gene should affect, or share information 

with, its biological neighbors. It suggests that Microarray datasets represent the 

collective behavior of a population best studied jointly; and many current statistical 

techniques ignore this [32]. In addition, handling of outliers in microarray data is 

extremely important as one outlier can yield misleading results [14]. 

 

More recently, fuzzy clustering approaches have been considered because 

they may assign one gene to multiple clusters (fuzzy assignment), which may allow 

capturing genes involved in multiple biological processes. Fuzzy C-Means (FCM) 

associates each object with every cluster based on the relative distances between the 

object and the cluster centroids [33, 34]. During the last few years, a number of 

variants of FCM have been proposed including a variant that incorporates PCA and 

hierarchical clustering [35], FuzzySOM [36], and Fuzzy J-Means that applies 

variable neighborhood searching to avoid local minima [37]. However, these FCM 

based clustering approaches lack the ability to capture non-linear relationships [29]. 

Some of the fuzzy clustering approaches are based on Gaussian Mixture Models 

(GMM) [20, 38], which assume the dataset to be generated by a mixture of Gaussian 

distributions with certain probability. But, the expression data do not always satisfy 

the basic Gaussian Mixture assumption even after carrying out various 

transformations aimed at improving the normality of the data distributions [20]. 

 

Keeping in view the above mentioned observations, the aim of this study is to 

propose a clustering algorithm combining good performance and robustness by 

exploiting kernel-based methods which offer strength to deal with complex data non-

linearly separable in the input space and by incorporating fuzzy clustering approach, 

especially for the analysis of complex data with fuzzy structures such as microarray 

gene expression data. To this end,   a robust Weighted Kernel Fuzzy C-Means 

incorporating local approximation (WKFCM) is presented. WKFCM integrates local 
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approximation based on the influence of the neighboring objects with the kernel 

fuzzy approach. It brings in the synergy of partitioning and density based clustering 

approaches and provides a substantial improvement in the analysis of the target data.  

 

This paper is organized as follows. In the next section, it is briefly pointed out 

how kernel-based methods can be useful for clustering non-linearly separable and 

high-dimensional data. In section 3, the proposed algorithm–a Weighted Kernel 

Fuzzy C-Means incorporating local approximation (WKFCM)–is presented which 

can be useful for handling of non-linear separability, noise, and outliers in the data. 

Experimental settings, including evaluation measures, datasets and parameters used, 

are given in section 4. In section 5, comparative evaluation of WKFCM’s 

performance on microarray data is given. Finally the paper concludes in section 6. 

 

 

 

2. Kernel Methods and Clustering in Feature Space 

 

Over the last decade, estimation and learning methods utilizing positive 

definite or Mercer kernels have become rather popular, particularly in machine 

learning. Since these methods have a stronger mathematical slant than earlier 

machine learning methods (e.g., neural networks), the statistics and mathematics 

communities have also significant interest in these methods [1]. Among these 

methods, Support Vector Machines (SVM) is being widely applied in the machine 

learning community since it often shows better performance than other learning 

algorithms. A distinctive feature of SVM is the use of Mercer kernels [2] to perform 

the inner product (kernel trick). The great success of SVM has led to the 

development of a new branch of machine learning, Kernel Methods, i.e. the 

algorithms that use the kernel trick. The kernel methods are among the most 

researched subjects within machine learning community in recent years and have 

been widely applied to pattern recognition and function approximation. Two of the 

typical examples are support vector machines (SVM) [2, 3], and kernel principal 

component analysis [4].  
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 The fundamental idea of the kernel methods is to first transform the original 

low-dimensional inner-product input space into a higher dimensional feature space 

through some nonlinear mapping where complex nonlinear problems in the original 

low-dimensional space can more likely be linearly treated and solved in the 

transformed space. In the higher dimensional space, data points are spread out, and a 

linear separating hyperplane may be found. This concept is based on Cover’s 

theorem on the separability of patterns. According to the Cover’s theorem, an input 

space made up of nonlinearly separable patterns may be transformed into a feature 

space where the patterns are linearly separable with high probability, provided the 

transformation is nonlinear and the dimensionality of the feature space is high 

enough [5]. However, usually such mapping into high-dimensional feature space will 

undoubtedly lead to an exponential increase of computational time. Fortunately, 

adopting kernel functions to substitute an inner product in the original space, which 

exactly corresponds to mapping the space into higher-dimensional feature space, is a 

favorable option. Therefore, the inner product form leads us to applying the kernel 

methods to cluster complex data [6, 7]. 

 

Figure 1 illustrates that the two classes in input space may not be separated 

by a linear separating hyperplane. However, when the two classes are mapped by a 

nonlinear transformation function, a linear separating hyperplane can be found in the 

higher dimensional feature space.  Let a nonlinear transformation function φ  maps 

the data into a higher dimensional space. Suppose there exists a function κ , called a 

kernel function, such that, 

( , ) ( ) ( ).i j i jφ φ= ⋅x x x xκ  (1)

As already mentioned, a kernel function is substituted for the dot product of 

the transformed vectors, and the explicit form of the transformation function φ  is not 

necessarily known. Further, the use of the kernel function is less computationally 

intensive. The formulation of the kernel function from the dot product is a special 

case of Mercer’s theorem [13].  
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Figure 1    Mapping nonlinear data to a higher dimensional feature space where a 

linear separating hyperplane can be found. When mapped into a feature space via the 

non-linear map ( ) ( ) [ ] [ ] [ ] [ ]( )2 2
1 2 3 1 2 1 2
, , , , 2z z z x x x xφ = =x  

 

 

The standard “sum-of-squares” (such as Euclidean distance measure) based 

methods of partitioning (such as K-means, FCM) have proved to be effective for 

datasets having ellipsoidal cluster structures [8]. A disadvantage to these methods is 

that clusters can only be separated by a hyperplane. If the separation boundaries 

between clusters are nonlinear, for instance non-Euclidean structures in the data such 

as nonspherical shape clusters, then these methods fail. An attractive approach to 

solving this problem is to adopt the strategy of nonlinearly transforming the data into 

a high-dimensional feature space and then performing the clustering within this 

feature space. To allow non-linear separators, kernel FCM (described in the next 

section) first uses a function φ  to map data points to a higher-dimensional feature 

space, and then applies FCM in this feature space. Linear separators in the feature 

space correspond to nonlinear separators in the input space [4].  However, as the 

feature space may be of high and possibly infinite dimension, then directly working 

with the transformed variables is an unrealistic option. However, as mentioned above, 

it is unnecessary to work directly with the transformed variables. It is the inner-

products between points which are used and these can be computed using a kernel 

function in the original data space [2, 4]. This observation provides for a tractable 

means of working in the possibly infinite feature spaces.  

 

Examples of some well-known kernel functions are given in Table 1. We now 

develop the feature space FCM clustering method in the following section. 
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Table 1:  Examples of popular kernel functions 

Sigmoid Kernel ( , ) tanh( , )i j i jγ β= × +x x x xκ γ and β are user defined 

values 

Polynomial Kernel ( , ) , d
i j i j=< >x x x xκ  d is a positive integer 

Gaussian Kernel (Radial 

Basis Function) 

2 2( , ) exp( / 2 )i j i j σ= − −x x x xκ  σ is a user defined value 

 

 

We use a small example to motivate the kernel idea. Suppose we want to 

cluster the 100 two-dimensional points in Figure 2(a) into 2 clusters such that points 

on the inner circle are in one cluster and the remaining points are in the other. None 

of the K-Means or the Fuzzy C-Means can generate the clustering that we want to see 

because they only discover clusters that are linearly separable. 

 

Take the K-Means algorithm as an example. To decide whether x belongs to 

cluster V1 or V2, we compare distances ||x − v1|| and ||x − v2||. So all the points that 

are equally far from v1 and v2 satisfy the equation 

||x − v1|| = ||x − v2||,   

 i.e., xT (v1 − v2) + (||v2||2 − ||v1||2) / 2 = 0, 

which describes a hyperplane. 

 

However, if we map the points into three-dimensional space using 

2 2
1 1 2 2( ) [ , 2 , ]Tx x x xφ =x  (2)

then points on different circles become linearly separable as shown in Figure 2(b) 

[39]. The K-Means algorithm should now be able to identify the two clusters. 
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Though mapping points to a higher dimensional space, called kernel space or 

feature space, enables a simple algorithm like the K-Means algorithm to handle non-

linearly separable clusters, computing ( )φ x  can be slow especially when the kernel 

space has high dimensionality. However, if an algorithm only depends on the data 

through inner products, xT z, in the original space, then after the mapping it will only 

depend on ( ) ( )Tφ φx z . Suppose we are given a kernel function κ (x, z), such that 

( , ) = ( ) ( )Tφ φx z x zκ  

then we will not need to know φ or ( )φ x  to run the algorithm. 

 

For the mapping function φ  in (2), the corresponding kernel function is 
2( , ) = ( )Tx z x zκ , a degree 2 polynomial kernel, since 

( , )      ( ) (Tφ φ=x z x z)κ  

2 2 2 2
1 1 1 2 1 2 2 22 2x z x x z z x z= + +  

2 2
1 1 2 2( ) ( )Tx z x z= + = x z  

For a given set {x1, x2, ..., xn}, matrix K, where Kst = κ (xs, zt), 1 ≤ s, t ≤ n, is called a 

kernel matrix. Since 1 1[ ( ),..., ( )] [ ( ),..., ( )]T
n nφ φ φ φ=Κ x x x x  is the Gram matrix1 of the 

images in the feature space; it is a symmetric, positive semidefinite matrix, and since 

it specifies the inner products between all pairs of points x  , it completely 

determines the relative positions of those points in the embedding space. On the 

other hand, if a given symmetric matrix K is positive semi-definite, we can compute 

the Cholesky decomposition 

K = RT R, 

where R is an upper triangular matrix with non-negative diagonal. Then we can treat 

the columns of R as the images, thus K is a kernel matrix. 
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(a) 
 

 
 

(b) 
 
 

Figure 2    100 points distributed on two concentric circles:  

(a) in the original space, (b) images of the points in the kernel space. 
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Table 2:  Kernel matrix displays 

K 1 2 . . . n 

1 
2 
. 
. 
. 
n 

1 1( , )x xκ  

2 1( , )x xκ  
. 
. 
. 

1( , )nx xκ  

1 2( , )x xκ  

2 2( , )x xκ  
. 
. 
. 

2( , )nx xκ  

. . . 

. . . 
      . 

. 
      . 
. . . 

1( , )nx xκ  

2( , )nx xκ  

. 

. 

. 
( , )n nx xκ  

 

where the symbol K in the top left corner indicates that the table represents a 

kernel matrix. 

Definition: Gram matrix 

Given a set of vectors, S= {x1, x2, ..., xn}, the Gram matrix is defined as the n 

× n matrix G whose entries are ,ij i j=G x x . If we are using a kernel function κ to 

evaluate the inner products in a feature space with feature map φ, the associated 

Gram matrix has entries 

( ), ( ) ( , )ij i j i jφ φ= =G x x x xκ  

In this case the matrix is often referred to as the kernel matrix. We will use a 

standard notation for displaying kernel matrices as shown in Table 2, where the 

symbol K in the top left corner indicates that the table represents a kernel matrix. 

 

 The Gram matrix plays an important role in some learning algorithms. The 

matrix is symmetric since ij ji=G G , that is T =G G . Furthermore, it contains all the 

information needed to compute the pairwise distances within the dataset as shown 

above. This also reinforces the view that the kernel matrix is the central data type of 

kernel-based algorithms.  

 

 

_______________________________________ 
1The Gram matrix of A is ATA 
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3. Weighted Kernel Fuzzy C-Means (WKFCM) incorporating local 

approximation 

 

Clustering has received a significant amount of renewed attention with the 

advent of nonlinear clustering methods based on kernels as it provides a common 

means of identifying structure in complex data [6, 7, 9, 10, 40]. 

 

The aim of this study is to propose a clustering algorithm combining good 

performance and robustness by incorporating approaches of fuzzy clustering and 

kernel based methods, especially for analysis of complex data with fuzzy structures, 

such as microarray gene expression data. The algorithm approaches data clustering 

from a novel perspective. It is mainly based on two general assumptions: (a) clusters 

should be identified in the relatively dense parts of the dataset; (b) neighboring 

objects with similar features (expression profiles) must have similar cluster 

memberships so that the membership of one object is constrained or influenced by 

the memberships of its neighbors. Therefore, the membership of each single object 

(e.g., a gene or sample) is not only determined with respect to all other objects in the 

dataset or to some cluster centroids, but is also determined with respect to its 

neighboring objects. In addition to kernel space clustering, this approach also brings 

the notable advantage of capturing non-linear relationships, in a way similar to a 

nonlinear data dimensionality reduction approach called Locally Linear Embedding 

(LLE) [41, 42]. For LLE, the nonlinear relationships in a dataset are effectively 

captured by subdividing the general network of relationships across all objects into 

locally linear relationships between neighboring objects. Consequently, information 

about one object is approximated by the information obtained from its nearest 

neighbors. Inspired from this notion, we approached kernel fuzzy clustering based on 

neighborhood approximation to capture non-linear relationships in multidimensional 

data and to provide a substantial improvement in the analysis of the target data. The 

proposed clustering method, WKFCM, integrates the two above-mentioned key 

properties: (a) fuzzy membership assignment (gene-to-cluster relationship); (b) 

membership assignment under the influence of local approximation, where 

membership assignment of a gene also depends on the membership assignments of 

its neighboring genes (genes showing similar behavior). 
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3.1 Extraction of Local Structure Information 

 

Firstly the local structure information of the data is extracted. To this end, 

similarities between each pair of objects are calculated (a kernel function is used for 

measuring similarities, as described below), and the nearest neighbors are identified. 

The similarity measures between each object and its nearest neighbors are used to 

estimate the density around that object and to calculate a set of weights for local 

approximation in the next step. The set of densities forms a rough estimation of the 

distribution of the dataset, and the resulting values are also used in this step to 

identify possible cluster outliers.   

 

The K-nearest neighbors (KNN) for each gene are defined as k genes with the 

highest similarity according to a given similarity measure (kernel similarity measure). 

The weights defining how much each neighbor will contribute to the approximation 

of the membership of the object (say, objecti) are calculated as Wij, as shown in 

Figure 3, with the following relation:  

( )

1ij
j KNN i

w
∈

=∑ , (3)

 

Figure 3     Steps for extracting local structure information: (a) Assign neighbors to 

each data point xi by using the k nearest neighbors. (b) Compute the weights wij that 

best linearly approximate xi  from its neighbors, using the kernel similarity 

measures. 
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from the similarities sij between that gene (genei) and its nearest neighbors. The only 

requirement for a definition of weights is that, the neighbors that have higher 

similarities must get higher weights. The simplest one we use is: 

( )
( )

( , )
( , )

ij i j
ij

ij i jj KNN i
j KNN i

s
w

s
∈

∈

= =
∑ ∑

x x
x x

κ

κ
. (4)

In other words, the data to be fed to the main iterative procedure for clustering 

(described in the next subsection) becomes, 

( )
i ij j

j KNN i
w

∈

= ∑x x , (5)

The distance measure is transformed into similarity measure using kernel based 

transformation to highlight relative proximities of the objects. As the elements of the 

kernel matrix represent similarities between the respective objects, following the 

above reasoning, the weights for individual objects can be defined as: 

( )

( , )i j
j KNN i

i
NN

w
K

∈=
∑ x xκ

, (6)

where KNN is the number of nearest neighbors. 

 

The values of the weights for respective objects indicate the relative density 

around the objects or local density of the objects. The densely populated objects will 

get higher weights while the outliers and noise points will get lower weights. The 

first step is the extraction of local structure information and identification of cluster 

core objects (CCOs); in other words, starting cluster centroids or seed objects. In this 

step, the similarity (proximity) between each object and its K-nearest neighbors is 

used to calculate object density. Objects with the highest density among their 

neighbors are identified as CCOs and they serve as starting prototypes for the 

clusters, based on the fact that many other objects show similar behavior. In other 

words, CCOs are defined as individual objects having a particularly high number of 

neighbors. The number of clusters in the data can be estimated based on the number 

of CCOs. An example is shown in Figure 5 where two CCOs are identified in a 

simulated data consisting of two clusters. It is remarked here that higher is the 
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number of number of K-nearest neighbors (KNN), the less number of CCOs will be 

identified, resulting in the less number of generated clusters. 

 

To define possible cluster outliers, a density threshold can be applied so that 

objects with a density below the threshold are defined as possible outliers (objects 

with atypical behavior). In addition, this step adds features of the density based 

clustering approach to the partitioning based clustering approach. In a sense, this 

local approximation acts as a regularizer and biases the solution toward piecewise-

homogeneous labeling. As it can be observed in Figures 6 and 7 that after applying 

local approximation, the boundary points are shifted towards their cluster centroids; 

it results in arrangement of clouds of points smoother at the boundaries. To define 

outliers, if the outliers are expected in the data, we used the following threshold on 

densities (or weights of individual objects, i.e., weights written with single subscript; 

whereas the weights written with double subscript represent interconnecting weights): 

= 2   (7)

where    stands for mean density and    stands for standard deviation of the 

densities. 

This approach of incorporating local approximation brings in the following 

advantages: 1) It gives the estimation of the number of clusters present in the data by 

identifying cluster core objects (CCOs) which have higher density as compared to 

their neighboring objects; 2) the iterative procedure of the algorithm starts with the 

probable cluster centroids (CCOs); it results in fast convergence (less number of 

iterations) to a global solution; 3) by approximating data points based on the values 

of their nearest neighbors, the clusters of relevant points become even more compact, 

whereas the outliers or noise points are less affected (due to RBF kernel function), 

thus rendering them easy to get treated; it also helps in fast convergence of the 

algorithm (in less number of iterations) as the iterative procedure converges fast on 

compact and well separated data.  

 

After application of these initial steps, the main iterative procedure for 

clustering is applied, as discussed in the next subsection.  
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Figure 4    An example dataset (simulated Data-1) consisting of two clusters. 

 

 
 

Figure 5    Data objects are used to calculate for each object a density value 

corresponding to the average similarity to its nearest neighbors using equation (6). In 

the Figure, the size of each point is proportional to density of the respective object in 

Figure 4; Cluster Core Objects (CCOs) are then identified as objects with maximum 

local density. The two black color objects define two CCOs. These CCOs serve as 

starting prototypes for the main iterative clustering procedure. 
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Figure 6    Applying local approximation. The simulated Data-1 (Figure 4) after 

applying local approximation using RBF with σ =0.5 and KNN = 5. The clusters 

become compact and more separable on applying the approximation. 
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(a) 

 

 
(b) 

Figure 7    IRIS dataset. The data is projected along two major principal components. 

The three classes are represented by three different colors: (a) original dataset; (b) the 

dataset after applying neighborhood approximation using RBF with σ =0.7 and KNN = 

9. The clusters become compact and more separable on applying the approximation. 
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3.2 Approximation of Fuzzy Membership 

 

Mathematically, the standard FCM objective function of partitioning a dataset  

1 2{ , ,..., }nX = x x x  with N
i ∈x  (i.e., in N dimensional space) into c clusters, 

represented as 1 2{ , ,..., }cC C C C= , is given by 

2

1 1

c n
m

m ik i k
k i

J u
= =

= −∑∑ x v , (8)

where ⋅ stands for the Euclidean norm. Equivalently, (8) can, in an inner or scalar 

product form, be rewritten as 

1 1
( 2 )

c n
m T T T

m ik i i i k k k
k i

J u
= =

= − +∑∑ x x x v v v , (9)

where 1 2{ , ,..., }cV = v v v  with N
k ∈v  are the centroids or prototypes of the clusters 

1 2, ,..., cC C C ; T denotes matrix transpose; the parameter m is a weighting exponent on 

each fuzzy membership and the array U=[uik] is a fuzzy partition matrix satisfying 

[ ]
1 1

0,1 1, and 0 ,
c n

ik ik ik
k i

U u u i u n k
= =

⎧ ⎫
= ∈ = ∀ < < ∀⎨ ⎬
⎩ ⎭

∑ ∑ , (10)

where uik denotes the membership degree of the ith pattern belonging to the kth 

cluster. Or, 

 

[ ]

11 12 1

21 22 2

1 2

c

c
ik

n n nc

u u u
u u u

u

u u u

⎡ ⎤
⎢ ⎥
⎢ ⎥= =
⎢ ⎥
⎢ ⎥
⎣ ⎦

U . 

And,  [1, )m∈ ∞  

 

is a weighting exponent that controls the membership degree uik of each data point xi 

to the cluster Ck. As m→1, J1 produces a hard partition where uik ∈ {0,1}. As m 

approaches infinity, J∞ produces a maximum fuzzy partition where uik = 1/c. This 

fuzzy c-means-type approach has advantages of differentiating how closely a gene 

belongs to each cluster [34] and of being robust to the noise in microarray data [43]; 
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because it makes soft decisions in each iteration through the use of membership 

functions. 

 

With the above formulations, we are now in a position to construct the 

kernelized version of the FCM algorithm and modify its objective function with the 

mapping φ  as follows 

2

1 1
( ) ( )

c n
m

m ik i k
k i

J u φ φ
= =

= −∑∑ x v . (11)

Now, through the kernel substitution, we have 

2( ) ( ) ( ) ( ) 2 ( ) ( ) ( ) ( )i k i i i k k kφ φ φ φ φ φ φ φ− = ⋅ − ⋅ + ⋅x v x x x v v v , 

2( ) ( ) ( , ) ( , ) 2 ( , )i k i i k k i kφ φ− = + −x v x x v v x vκ κ κ , 

 

(12)

where ( , ) ( ) ( )i s is i sK φ φ= = ⋅x x x xκ  is a user defined mercer kernel function, which 

can be used to represent a dot product in the high dimensional feature space. If the 

Gaussian radial basis function (RBF) is adopted, viz. 

( )2

22
( , ) exp i s

i s isK
σ

−= = − x xx xκ . (13)

Then, in this case, ( , ) 1i i iiK= =x xκ , so (11) can be simplified as 

1 1
2 (1 ( , ))

c n
m

m ik i k
k i

J u
= =

= −∑∑ x vκ . (14)

For optimization, the objective function Jm can be minimized if we take its first 

derivatives with respect to vi and uik, and zero them, respectively, two necessary but 

not sufficient conditions for Jm  to be at local minimum will be obtained as described 

below. 
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3.2.1 Cluster Prototype Updating 

 

In order to minimize (14) with respect to vk, we take the derivative of Jm with 

respect to vk, and set the result to zero; so we have 

2
1

2 ( , ) ( ) 0
n

mm
ik i k i k

ik

J u
v σ =

∂
= − − =

∂ ∑ x v x vκ , (15)

1

1

( , )

( , )

n
m
ik i k i

i
k n

m
ik i k

i

u

u

=

=

=
∑

∑

x v x
v

x v

κ

κ
, 

or,        1

1

( , )

( , )

n
m
ik i k i

i
k n

m
ik i k

i

u

u

=

=

=
∑

∑

x v x
v

x v

κ

κ
. (16)

 

 

 

3.2.2 Membership Evaluation 

 

To optimize (14) with respect to iku , we can obtain the following Lagrange 

function without constraint, 

1 1 1 1
2 (1 ( , )) 1

c n n c
m

m ik i k ik
k i i k

J u u
= = = =

⎛ ⎞
= − − λ −⎜ ⎟

⎝ ⎠
∑∑ ∑ ∑x vκ , (17)

where λ  is the Lagrange coefficient. 

Rewrite (17) as follows: 

1 1 1 1
2 (1 ( , )) 1

c n n c
m

m ik i k ik
k i i k

J u u
= = = =

⎛ ⎞
= − − λ −⎜ ⎟

⎝ ⎠
∑∑ ∑ ∑x vκ , (18)

where (1 ( , ))i k− x vκ  is a weighted similarity measure in the kernel space. 

Taking the derivative of Jm  with respect to iku and setting the result to zero, we have, 

for m > 1, 
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12 (1 ( , )) 0mm
ik i k

ik

J mu
u

−∂
= − − λ =

∂
x vκ . (19)

Solving for iku we have 

1
1

(1 ( , ))

m

ik
i i k

u
mw

−⎛ ⎞λ
= ⎜ ⎟−⎝ ⎠x vκ

. (20)

Considering the constraint [0,1]iku ∈  and 
1

1
c

ik
k

u
=

=∑ , 1 ≤ i ≤ n, we have  

1
1

1
1

(1 ( , ))

mc

k i i kmw

−

=

⎛ ⎞λ
=⎜ ⎟−⎝ ⎠

∑ x vκ
, (21)

or,         
1

1
1

1

1
(1 ( , ))

m
m

c

k i k

m

m

−
−

=

λ =
⎛ ⎞⎛ ⎞⎜ ⎟⎜ ⎟⎜ ⎟−⎝ ⎠⎝ ⎠
∑ x vκ

. (22)

Substituting it into (20), the zero-gradient condition for the membership estimator 

can be re-written as 

1
1

1
1

1

(1 ( , ))

(1 ( , ))

m

m

i k
ik c

i l
l

u
−

−

=

−
=

−∑
x v

x v

κ

κ
. (23)

This solution also satisfies the remaining constraints of Equation (10). Therefore, the 

cluster centroids and membership degrees in (16) and (23) are optimized in each 

iteration by minimizing the functional Jm . 

 

 

 

3.3 Cluster Construction 

 

On calculating sets of fuzzy membership values, either clusters can be 

defined based on a one-to-one gene-cluster assignment, or, one object can be 

assigned to more than one cluster if it has a reasonably high membership values for 

multiple clusters. Also, some objects may not be assigned to any cluster if they don't 
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have one dominant membership value. The objects not assigned to any cluster can be 

regarded as outliers or noise points. Such points can be screened out from the clusters.  

 

WKFCM can be summarized in the following subsection. 

 

 

 

3.4 Algorithm WKFCM 

 

 The algorithmic steps of WKFCM are as follows: 

 

Algorithm Weighted Kernel Fuzzy c-Means (WKFCM)  

WKFCM (K, [c], KNN) 

Input:    K: kernel matrix, c: number of clusters (optional), set ε > 0 to a very 

small value as a termination criterion, NNK : number of nearest 

neighbors of a point, 

Output:  v1, ..., vc: partitioning of the points 

 

1. Input the dataset X = {x1, x2, ..., xn} with N
i ∈x  

2. For each object x, compute weights using equation (6),  

( )

( , )i p
p KNN i

i
NN

w
K

∈=
∑ x xκ

,                 (6) 

and find CCOs (cluster core objects) as initial cluster centroids (for 

c clusters: v1, ..., vc ), and identify outliers, if any. 

3. Approximate the data based on neighborhood information using the 

following relation: 

 
( )i ip pp KNN i

w
∈

=∑x x  

 

4. Set r = 0; initialize ( ) ( )r r
iku⎡ ⎤= ⎣ ⎦U  of xi belonging to cluster Ck for 1 ≤ 

k ≤ c, 1 ≤ i ≤ n such that 
1

1
c

ik
k

u
=

=∑ . 

5. Update the partition matrix using equation (23)  
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1( )
1

1( )
1

( 1)

1

(1 ( , ))

(1 ( , ))

r
m

r
m

r i k
ik c

i l
l

u
−

−

+

=

−
=

−∑
x v

x v

κ

κ
               (23) 

6. Update the centroids ( 1) ( 1) ( 1) ( 1)
1 2{ , , ..., }r r r r

cV + + + += v v v  for 1 ≤ i ≤ c 

using equation (16) 

( )

( )

( 1)

( 1) 1

( 1)

1

( ) ( , )

( ) ( , )

r

r

n
r m

ik i k i
r i

k n
r m

ik i k
i

u

u

+

+ =

+

=

=
∑

∑

x v x
v

x v

κ

κ
              (16) 

7. Stop if the following termination criterion is met: 
( 1) ( )r rV V ε+ − <

 

( )( 1) ( )such as max , for 1 and1 0.0001r r
kj kjv v k c j N+ − ≤ ≤ ≤ ≤ ≤  

where
1 2{ , ,..., }cV = v v v , or, the maximum number of iterations is 

reached. Otherwise, set r=r+1 and return to step 5. 

 

 

 

4. Experimental Settings  

 

Gene expression data are generated by DNA chips and other microarray 

techniques. The raw data produced by microarray often come along with noise, 

missing values and systematic variations [44]. Preprocessing, such as estimation of 

missing values [45], normalization [46, 47], is needed. After the above preprocessing 

steps, gene expression data can be represented as a real-valued matrix, in which the 

entry at row i and column j is the measured expression level of genei under conditionj, 

as shown in Figure 8. 

 

For comparative evaluation of WKFCM, the evaluation measures, datasets 

and parameters used are described in the following subsections. 
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 condition1 … conditionj … conditionN 

gene1 
11x  … 

1 jx  … 
1Nx  

… … … … … … 

genei 
1ix  … 

ijx  … 
iNx  

… … … … … … 

genen 
1nx  … 

njx  … 
nNx  

 

Figure 8    Gene expression data matrix 

 

 

 

4.1 Evaluation Measures for Clustering 

 

Evaluating clustering results is a tricky business. However, in situations 

where data points are already categorized (labelled), we can compare the clusters 

with the “true” class labels and calculate classification rate. To evaluate the goodness 

of the clustering produced by the algorithms on the test data without true class labels, 

two validity measures were used in this study: the Figures of Merit (FOM), and the 

Davies-Bouldin Index (DBI). 

 

 

 

4.1.1 Classification accuracy 

 

To compare the clustering results of different algorithms on the data for 

which class labels are known, classification accuracy or classification rate is defined 

as: 

 

Number of correctlyclassified pointsClassification accuracy (%) = 100
Total number of points

×  
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4.1.2 Figures of Merit 

 

The FOM of Yeung et al. [48] estimates the predictive power of a clustering 

method based on the jackknife approach. The method measures the root mean square 

deviation in the left-out condition of the individual gene expression level relative to 

their within-cluster means. As each condition is used as the validation condition, it 

calculates the sum of FOMs over all the conditions. Meaningful clusters exhibit less 

variation in the remaining conditions than clusters formed by random. Thus, a lower 

value of FOM represents a well-clustered result, representing that a clustering 

method has high predictive power. 

 

The use of Figures of Merit (FOMs) has been proposed by Yeung et al. [48, 

49] to characterize the predictive power of different clustering algorithms. FOM is 

estimated by removing one experiment at a time from the dataset, clustering genes 

based on the remaining data, and then measuring the within-cluster similarity of the 

expression values in the left-out experiment. The principle is that correctly co-

clustered genes should retain a similar expression level also in the left-out sample. 

The assumption (and limit) of this approach is that most samples have correlated 

gene expression profiles. The most commonly used FOM, referred to as "2-Norm 

FOM" [48], measures the within-cluster similarity as root mean square deviation 

from the cluster mean in the left-out condition. An aggregated FOM is obtained by 

summing up all the FOMs of all left-out experiments and is used to compare the 

performance of different clustering algorithms (the lower the FOM, the better the 

predictive power of a clustering algorithm). Since it is a rather novel measure, a 

formal definition is provided below. 

 

For a given dataset, let R denotes the raw data matrix. Assume that R has 

dimension n × N, i.e., each row corresponds to a gene and each column corresponds 

to an experimental condition. Assume that a clustering algorithm is given the raw 

matrix R with column e excluded. Assume also that, with that reduced dataset, the 

algorithm produces c clusters R1, ..., Rc. Let ( , )g er  be the expression level of gene g 

and ( , )i em  be the average expression level of condition e for genes in cluster Ri. The 

2-Norm FOM with respect to c clusters and condition e is defined as: 
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( )2

( , ) ( , )
1

1FOM( , )
k

k i

c

g e i e
i g R

e c r m
n = ∈

= −∑ ∑ . (24)

Notice that FOM(e,c) is essentially a root mean square deviation. The aggregate 2-

Norm FOM for c clusters is then: 

1

FOM( ) FOM( , )
N

e

c e c
=

=∑ . (25)

Both formulae (24) and (25) can be used to measure the predictive power of an 

algorithm. The first gives us more flexibility, since we can pick any condition, while 

the second gives us a total estimate over all conditions. Moreover, since the 

experimental studies conducted by Yeung et al. [48, 49] show that FOM(c) behaves 

as a decreasing function of c, an adjustment factor has been introduced to properly 

compare clustering solutions with different numbers of clusters. A theoretical 

analysis by Yeung et al. [48] provides the following adjustment factor: 

n c
n
− . (26)

When (24) is divided by (26), (24) and (25) are referred to as adjusted FOMs. We 

use the adjusted aggregate 2-Norm FOM for our experiments, and we refer to it 

simply as 2-Norm FOM. 

 

 

 

4.1.3 Davies-Bouldin Index (DBI) 

 

The Davies-Bouldin Index (DBI) aims at identifying sets of clusters that are 

compact and well separated [50]. Small values of DBI correspond to clusters that are 

compact, and whose centres are far away from each other. For any partition 

1 2 ...: cW X C C C↔ ∪ ∪ , where Ci represents the ith cluster of such partition, the DB 

index is defined as 
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1

( ) ( )1( ) max
( , )

c
i j

i ji i j

C C
DBI W

c C Cδ≠
=

⎧ ⎫Δ + Δ⎪ ⎪= ⎨ ⎬
⎪ ⎪⎩ ⎭

∑ , (27)

here ( , )i jC Cδ  defines the inter-cluster distance between the clusters Ci  and Cj; 

( )iCΔ  represents the intracluster distance of cluster Ci , and c is the number of 

clusters of partition W. 

 

Different methods may be used to calculate intercluster and intracluster 

distances [11]. Mathematical definitions of the intercluster and intracluster distances 

used in our experiments are given in the following subsections. For details, please 

see [11]. 

 

4.1.3.1 Intercluster Distances 

 

Six intercluster distances may be used for the calculation of the Davies-

Bouldin validity indices. The single linkage distance defines the closest distance 

between two samples belonging to two different clusters. The complete linkage 

distance represents the distance between the most remote samples belonging to two 

different clusters. The average linkage distance defines the average distance between 

all of the samples belonging to two different clusters. The centroid linkage distance 

reflects the distance between the centres of two clusters. The average of centroids 

linkage represents the distance between the centre of a cluster and all of samples 

belonging to a different cluster. Hausdorff metrics are based on the discovery of a 

maximal distance from samples of one cluster to the nearest sample of another 

cluster. In this study, average linkage distance is used which is defined below: 

1 1 2 2

1 2 1 2
,1 2

1( , ) ( , )
x C x C

C C d x x
C C

δ
∈ ∈

= ∑ ,   (28)

where 1C  and 2C  are clusters from partition W; 1 2( , )d x x  defines the distance 

between any two samples, 1x  and 2x , belonging to 1C  and 2C , respectively; 1C  and 

2C  provide the number of samples included in clusters 1C  and 2C , respectively. 
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4.1.3.2 Intracluster Distances  

 

Three intracluster distances may be used to calculate the Davies-Bouldin 

validity indices. The complete diameter distance represents the distance between the 

most remote samples belonging to the same cluster. The average diameter distance 

defines the average distance between all of the samples belonging to the same cluster. 

The centroid diameter distance reflects the double average distance between all of 

the samples and the cluster's centre. In this study, average diameter distance is used 

which is defined below: 

1 2
1 2

1 2
,

1( ) ( , )
( 1)

i

i
x x Ci i
x x

C d x x
C C ∈

≠

Δ =
− ∑ , (29)

where iC  is a cluster from partition W; 1 2( , )d x x defines the distance between any 

two samples, 1x  and 2x , belonging to iC ; iC  represents the number of samples 

included in cluster iC .  

 

 

 

4.2 Microarray Datasets and Analysis Parameters 

 

To assess the performance of WKFCM and compare it with other popular 

algorithms, such as K-Means, Hierarchical clustering [35], Fuzzy C-means (FCM) 

[33], Fuzzy SOM (FSOM) [36], we used three different datasets: (i) Peripheral Blood 

Monocytes (PBM) dataset [26], (ii) yeast cell cycle (YCC) expression dataset [51], 

and (iii) hypoxia response (HR) dataset [15]. Further details on the datasets and 

parameters used are provided in the following subsections. 

 

 

4.2.1 Peripheral Blood Monocytes (PBM) dataset  

 

It is a reduced version of a Peripheral Blood Monocytes (PBM) dataset 

originally used by Hartuv et al. [52] to test their clustering algorithm. The dataset 
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contains 2329 cDNAs with a fingerprint of 139 oligos (performed with 139 different 

Oligonucleotide probes) derived from 18 genes.  The spotted cDNAs derived from 

the same gene should display a similar profile of hybridization to the 139 probes and 

therefore be clustered together. Since FOM analysis is too time demanding, Di Gesu 

et al. [26] reduced the dataset (PBM) to contain 235 cDNAs. So, the dataset used for 

our experiments is also a 235×139 data matrix. 

 

 

 

4.2.2 Yeast Cell Cycle (YCC) Data 

 

This yeast cell cycle data is a part of the studies conducted by Spellman et al. 

[51]. The complete dataset contains about 6178 genes under 76 experimental 

conditions. The reduced yeast cell cycle (YCC) dataset is a subset of the original 

YCC dataset selected by Yeung et al. [48, 49] for FOM analysis and is composed of 

698 genes under 72 experimental conditions. We also used the same dataset for our 

experiments. 

 

 

 

4.2.3 Hypoxia Response (HR) Data 

 

The hypoxia response (HR) dataset has been used by Chi et al. [15] to 

investigate cell type specificity and prognostic significance of gene expression 

programs in response to hypoxia in human cancers. The dataset was downloaded 

from Stanford Microarray Database with default filtering parameters provided by the 

web interface This way, a data subset of 6613 genes under 57 experimental 

conditions was obtained. After filtering out genes with more than 80% null values, 

we selected top 1000 genes with the highest expression variations.   
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4.2.4 Parameters 

 

The following parameters were used for all the datasets: cosine correlation 

was used as a distance metric for all other methods except WKFCM; un-weighted 

pair-group average linkage for hierarchical clustering; 600 as a maximum number of 

iterations and ε=0.0001 as the converging criteria for all methods except hierarchical 

clustering. Clusters with a large range of cluster numbers were generated for the 

comparison. The fuzziness parameter m=1.2 was used for FCM, FSOM and 

WKFCM. In addition, for WKFCM, we used Gaussian RBF kernel with KNN=4. 

 

 

 

5. Evaluation of WKFCM 

 

5.1 Experimentation on Simulated Data-2 

 

The simulated dataset (Data-2) is a two-dimensional set formed by 111 points 

(86 points in one cluster, 19 points in the other cluster, 6 outliers). The Data-2 is 

shown in Figure 9. For comparison, we tried K-Means SOM [28] and Neural Gas 

[53]. These algorithms misclassified especially the outliers. Then we tried WKFCM 

on this dataset. The WKFCM can identify outliers so it gave the best performance as 

shown in Figure 10. 
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Figure 9    A simulated dataset (Data-2); 86 points in one cluster, 19 points in the 

other cluster, 6 outliers. Both of the clusters are represented with a different gray 

level. Filled disks indicate the data points belonging to respective clusters. Circles 

represent outliers.  

 

 
 

Figure 10    Average WKFCM, SOM, Neural Gas and K-Means performances on 

simulated Data-2; 111 patterns, 2 features, 2 classes plus outliers. The results have 

been obtained using ten different runs for each algorithm.  
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5.2 Experimentation on IRIS Data 

 

IRIS dataset (IRIS dataset can be downloaded from the address: 

http://www.ics.uci.edu/~mlearn/databases/IRIS/) is the most famous real data 

benchmark in Machine Learning. IRIS dataset was proposed by Fisher in 1936 [54]. 

This dataset is formed by 150 points that belong to three different classes. One class 

is linearly separable from the other two, but the other two are not linearly separable 

from each other. Since the dimension of IRIS data is 4, IRIS data is usually 

represented by projecting the data along their principal components. IRIS data 

projected along the two components is shown in Figures 7(a). We tried WKFCM, K-

Means, Neural Gas and SOM on IRIS data using three centers, one center for each 

class. The results using SOM, Neural Gas, K-Means and WKFCM are shown in 

Figure 11.  

 

 

 
 

Figure 11    Average WKFCM, SOM, Neural Gas and K-Means performances on 

IRIS data; 150 patterns, 4 features, 3 classes. The results have been obtained using 

thirty different runs for each algorithm. 
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5.3.3 Experimentation on Microarray Data 

 

The clustering performance was firstly evaluated using a Figure Of Merit 

(FOM), 2-Norm FOM. 2-Norm FOM analysis (as shown in Figures 12, 13 and 14) 

indicated that no clustering algorithm was the best on all the datasets, with WKFCM, 

FCM and FSOM being the best, respectively, on the reduced PBM, HR and YCC 

data.  

 

Whereas, according to the Davies-Bouldin Index analysis (as shown in 

Figures 15, 16 and 17), WKFCM emerged as the best algorithm on all the three 

datasets. As WKFCM may generate non-globular clusters with more heterogeneous 

size distribution, its results for the DBI analysis proved to be the best. Whereas for 

the FOM analysis, FOM is calculated by averaging the deviations in the left-out 

condition not cluster by cluster, but by averaging over the whole dataset. Therefore, 

large clusters with high internal variability have a higher weight in FOM calculation 

than small, compact clusters. 
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Figure 12    Clustering validation and comparison by 2-Norm FOM–lower values of 

2-Norm FOM are better. 2-Norm FOM on the reduced peripheral blood monocyte 

(PBM) dataset.  
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Figure 13    Clustering validation and comparison by 2-Norm FOM–lower values of 

2-Norm FOM are better. 2-Norm FOM on the reduced hypoxia response (HR) 

dataset. 
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Figure 14    Clustering validation and comparison by 2-Norm FOM–lower values of 

2-Norm FOM are better. 2-Norm FOM on the reduced yeast cell cycle (YCC) dataset. 
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Figure 15    Clustering validation and comparison by Davies-Bouldin Index–lower 

values of DB Index are better. DB Index on the reduced peripheral blood monocyte 

(PBM) dataset.  
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Figure 16    Clustering validation and comparison by Davies-Bouldin Index–lower 

values of DB Index are better. DB Index on the reduced hypoxia response (HR) 

dataset.  
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Figure 17    Clustering validation and comparison by Davies-Bouldin Index–lower 

values of DB Index are better. DB Index on the reduced yeast cell cycle (YCC) 

dataset. 

 

 

To provide a quantitative readout of the comparative analysis between the 

various algorithms, we adopted a procedure to rank the algorithms in the validation 

analysis based on the area under the index line plots (area under the curve, in a way). 

The algorithm that had the smallest area under the index line plot was assigned a 

rank of 1 (the best performance), and the others obtained a progressively higher 

value of rank (lower performance). The results of this ranking procedure are shown 

in Table 3. The results illustrate that no single clustering algorithm showed always 

the best performance on all the datasets and with all validation metrics. However, 

WKFCM proved to be the best in many cases, and its performance profile across the 

various datasets and validation metrics, used in this study, is better than those of the 

other algorithms. This indicates that WKFCM can prove to be an alternative 

clustering strategy. Furthermore, it can be noted from the results that FCM and 

FSOM display somewhat similar performance, as these are related algorithms. 
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Table 3:  Ranking of each clustering algorithm across all comparative validation 

cases (lower value of rank stands for better performance) 

Dataset 

(reduced) 

Validation 
case 

WKFCM Hierarch. K-Means FSOM FCM

PBM 2-Norm FOM 

DB Index 

1 

2 

5 

1 

4 

5 

2 

4 

3 

3 

HR 2-Norm FOM 

DB Index 

4 

1 

5 

4 

3 

5 

2 

2 

1 

3 

YCC 2-Norm FOM 

DB Index 

4 

1 

5 

5 

3 

4 

1 

2 

2 

3 

 

 

As in real life, birds of a feather flock together. And, objects do influence 

their neighboring objects. WKFCM uses this aspect of life. While, in other fuzzy 

clustering algorithms like Fuzzy C-Means, the fuzzy memberships of data points are 

determined by their similarity with a series of calculated cluster prototypes. Whereas, 

WKFCM first uses pairwise similarity measures to define the neighbors of each 

object and how close each object is to its nearest neighbors, and then it approximates 

the fuzzy memberships of each object under the influence of its neighbors. In other 

words, the neighborhood relationships are calculated for all objects, and are used to 

constrain the fuzzy memberships. In this way, WKFCM performs clustering using 

not only the expression data, but also the local information extracted from them, 

which allows reliable capturing of both linear and non-linear relationships. In some 

sense, this local approximation (by incorporating neighborhood information) acts as 

a regularizer and biases the solution toward piecewise-homogeneous labeling. Such 

regularization is also helpful in finding clusters in the data corrupted by noise. 

Working with these features in the kernel space leads to decent clustering results. 
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 The possible applications of WKFCM can be extended to other than gene 

expression datasets. WKFCM can be applied to any dataset if a neighborhood can be 

defined for each object. In comparison with the other clustering algorithms, WKFCM 

is more robust with respect to outliers and noise, since it has a mechanism that 

permits discarding outliers and noise. However, one main quality of WKFCM lies in 

producing nonlinear separation surfaces among data. WKFCM can separate classes 

of data that are not linearly separable by the other clustering algorithms. 

 

WKFCM’s main limitation is the computation time required by the algorithm. 

However, the availability of faster machines and low cost of memory encourages the 

applicability of WKFCM in real world applications. 

 

 

 

6. Conclusions 

 

A Kernel based Method, Weighted Kernel Fuzzy C-Means incorporating 

local approximation (WKFCM), has been presented in this paper.  WKFCM is 

especially suitable for clustering data with fuzzy structures, having nonlinearly 

separable clusters, such as microarray gene expression data. 

 

WKFCM is a new algorithm that we specifically tested on microarray gene 

expression data. It brings significant improvements in the partitioning of genes based 

on their expression profiles. Its good performance is derived from a combination of 

advantageous features, some of which are distinctive, like the ability to capture 

dataset-specific structures by using kernel transformation, and by defining 

neighborhood relations and the subsequent neighborhood approximation of fuzzy 

memberships, so that non-globular and non-linear clusters can also be captured. 

Particularly, the neighborhood approximation, along with distinctive features of 

kernel methods, makes WKFCM distinct from all other clustering approaches. It has 

the mechanism for identifying outlier genes whose expression patterns do not allow 

reliable assignment to any cluster. Our results also confirm that no clustering strategy 

is always the best for any data type, which keeps the avenues of choice among 

different algorithms open. These results encourage the use of WKFCM for the 
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solution of real world problems. Future work includes extension of experimental 

validation to image segmentation. 
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CHAPTER 3 

 

 

 

CONCLUSIONS 
 

 

 

3.1 Introduction 

 

Traditionally, theory and algorithms of machine learning and statistics has 

been very well developed for the linear case. Linear modeling techniques explicitly 

assume linear relations between the input and output variables, but in many real-life 

case studies, the relations are typically observed to be nonlinear. In kernel methods, 

the implicit kernel induced feature space interpretation allows to extend the linear 

methods to kernel methods for nonlinear modeling. In this study we have 

investigated Kernel Methods for Clustering, namely Kernel Methods that do not 

require target data.  

 

 

 

3.2 Conclusion 

 

In this study, a Weighted Kernel Fuzzy C-Means (WKFCM) has been 

presented. WKFCM is especially suitable for clustering data with fuzzy structures, 

such as microarray gene expression data.  

 

WKFCM is a new algorithm, that we specifically tested on microarray gene 

expression data, that brings significant improvements in the partitioning of genes 

based on their expression profiles. Its good performances are derived from a 
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combination of advantageous features, some of which are distinctive, like the ability 

to capture dataset-specific structures by defining neighborhood relations and the 

subsequent approximation of fuzzy memberships influenced by neighborhood, so 

that non-globular and non-linear clusters can also be captured and do not get 

fragmented by the process. In particular, it is the novelty of neighborhood 

approximation that makes WKFCM distinct from all other clustering approaches. It 

has the mechanism for defining outlier genes whose expression patterns do not allow 

reliable assignment to any cluster. Other interesting features are common to fuzzy 

clustering algorithms, like non-univocal assignment of memberships to genes. Our 

results also confirm that no clustering strategy is always the best for any data type, 

which renders the choice between different algorithms.  

 

 

 

3.3 Future Work 

 

As WKFCM is not computationally very efficient, therefore a first line of 

research involves the optimization or efficient implementation of the WKFCM. 

Another future research line is the development of the specific application oriented 

kernels, instead of the gaussian one, that can be used in the WKFCM. Another future 

work could be the extension of WKFCM for clustering incomplete data. 

 

Finally the application of the WKM for the solution of real problems will be 

performed in the next future. And, it will prove to be in line with the national thrust 

of prosperous Malaysia. 
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