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ABSTRACT 

 

 

 

 

 The cost of chemicals prohibits many technically feasible enhanced oil recovery 

methods to be applied in the oilfields. This research produced surfactants from phenols 

that were extracted from the pyrolysis oil of oil palm shells which are a byproduct of the 

palm oil industry.  Xanthans which are imported can be produced from many available 

local sources such as starches and fruits. All of the additives produced were tested for 

enhanced oil recovery use and were found to have suitable properties. The recoveries for 

surfactant polymer flooding measured in the laboratory were comparable with the values 

reported in literature i.e. between 7 to 15 %. This work has proved that expensive 

chemicals can be produced locally using local sources and byproducts, consequently 

posing a potential savings in EOR processes. 

 

 



 iv

 

 

 

 

ABSTRAK 

 

 

 

 

Kos bahan kimia telah menghalang banyak proses pengeluaran minyak tertingkat 

yang baik secara teknikal untuk digunakan di lapangan minyak. Kajian ini telah 

menghasilkan surfaktan daripada fenol yang dikeluarkan dari minyak pirolisis 

tempurung minyak sawit yang merupakan bahan buangan industri sawit.  Xanthans yang 

diimpot boleh dibuat daripada bahan tempatan yang sediada seperti kanji dan buah 

buahan. Kesemua bahan tambahan yang dihasilkan telah diuji untuk kegunaan 

pengeluaran minyak tertingkat dan didapati mempunyai ciri–ciri yang sesuai. Perolehan 

banjiran surfaktan/polimer yang diukur dalam makmal adalah baik jika dibandingkan 

dengan nilai yang dilaporkan dalam literatur iaitu antara 7 hingga 15 %.  Usaha ini telah 

membuktikan bahan kimia boleh dikeluarkan dengan menggunakan bahan tempatan dan 

bahan sampingan, sekaligus mempunyai potensi untuk mengurangkan perbelanjaan 

dalam proses PMT. 
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CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

 

 

1.1 Overview 

 

 

1.1.1 Introduction on enhanced oil recovery (EOR)  

 

 

Enhanced oil recovery (EOR) refers to reservoir processes that recover oil not 

produced from secondary processes. Primary recovery uses the natural energy of the 

reservoir to produce oil and gas. Secondary recovery uses injectants to re-pressurize the 

reservoir and to displace oil to producers. Enhanced oil recovery processes target what is 

left. The processes focus on the rock/oil/injectant system on the interplay of capillary and 

viscous forces (Stosur, 2003). 

 

There are many types of EOR processes. Thermal processes are the most common 

type of EOR, wherein a hot invading face, such as steam, hot water or a combustible gas, is 

injected in order to increase the temperature of oil and gas in the reservoir and facilitate 

their flow to the production wells. Another type of EOR process consists of injecting 

miscible phase with the oil and gas into the reservoir in order to eliminate the interfacial 

tension effects. The miscible phase can be miscible hydrocarbon, CO2 or an inert gas. 

Another lesser used EOR technique is called chemical flooding, where chemicals are 
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injected into the reservoir. The polymer is used to improve the sweep efficiency by 

changing the mobility ratio. The surfactant is used to reduce the interfacial tension between 

the oil and the displacing fluid.  

 

According to Austad and Milter (2000), chemical flooding of oil reservoirs is one of 

the most successful methods to enhance oil recovery from depleted reservoirs at low 

pressure. However, it is well documented in their publishing that chemical flooding is only 

marginally economical, or in most cases very costly. It was concluded by most oil 

companies at the end of 1980s that the method was not economical, or the financial and 

technical risk was too high presenting compare to the oil price at the time. Researches 

declined drastically during the 1990s. However, there are still some researchers who are 

trying to improve the technique by simplifying the flooding process, improving the 

efficiency of the surfactants or developing new surfactants. 

 

Many EOR methods have been devised to squeeze the extra oil out of the rocks. 

Beginning from injection of water to various types of gases and liquids, singly or in 

combination, many studies have been reported to be a success technically, however the 

additional cost of injection in relation to the cost of oil often kept the study at the laboratory 

level. Polymer-surfactant flooding is a process of displacing oil that combined reduction of 

surface tension that helped to release oil from pore spaces due to the surfactant and an 

improvement in the sweep efficiency due to the high viscosity of the polymer that provides 

the drive in pushing the oil towards the well.  Since the 70s hydrolysed polyacrylamide 

(HPAM) or xanthan are the main additives. The number of field applications of xanthan, 

however, is much less than HPAM due to the higher xanthan cost.  Injection of surfactant is 

relatively new and much of it now is in generating foam to augment CO2 injection. 

Similarly, additional cost is incurred with use of surfactant. 

 

 

1.1.2 Introduction of surfactant 

 

 

In 2002, Berger and Lee developed a new type of surfactant that could be used at 

very low concentrations to produce ultra low interfacial tensions (IFT) for sandstone and 

limestone formations. These surfactants could be used for Alkaline Surfactant Polymer 
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(ASP) floods, surfactant floods and also as an additive for water floods. These new 

surfactants had their advantages, particularly their effectiveness at low concentration levels, 

and their high salt tolerance and did not require alkali to produce ultra low interfacial 

tensions. The authors used the olefin sulfonic acid to simultaneously alkylate and sulfonate 

the aromatic compound and synthesize a new family of anionic surfactants. The aromatic 

compounds that could be used include benzene, toluene, xylene, naphthalene, phenol, 

diphenylether and substituted derivatives of these compounds.  The authors reduced the cost 

of the alkylation and sulfonation process.  

 

Zaitoun et al. (2003) conducted a series of experiments on surfactant screening and 

evaluation for surfactant flood in the Chihuido de la Sierra Negra field in Argentina. They 

developed a new anionic surfactant that provides solubility in high salinities and low 

interfacial tension at low concentration. They used a sulfoalkylated 

nonylphenol/formaldehyde oligomer to reduce adsorption of the primary surfactant. The 

synthesis of this material had been described by Berger (2002).  

 

Purwono and Murachman (2001) described that Sodium Lignosulphonate (SLS), 

which is produced as a result of sulfonation of lignin formed from the waste pulp industries 

and hydrolysis of oil palm husks, had potential to be used in EOR. Surfactant or co-

surfactant from the pyrolysis of oil palm husks could also be used as EOR chemicals. 

Mainly alcohols like methanol, ethanol and propanol were produced from the pyrolysis of 

oil palm fibres. They used the surfactant in the form of microelmusions during the chemical 

process experiment. The methane produced from the pyrolysis of palm oil fibres and fruit 

stems could be used as tertiary oil recovery flood material since hydrocarbons gases were 

dissolved in the oil to reduce the oil viscosity. The process is known as miscible process. 

However, in their works, they did not describe the method to produce the surfactant.  

 

Surfactant use for EOR is not a recent development in petroleum field. However, the 

cost of the surfactants has been the main reason for the limited use in the EOR processes. 

One problem with many surfactants is their high cost of manufacture and the raw material.  

The above mentioned studies show that the research groups have paid much attention to the 

alkylated and sulfonated aromatic compounds which included phenol and its derivatives to 

synthesize new surfactants for EOR uses (Berger and Lee, 2002). They produced a new 

series of alkylaryl sulfonic acids that did not require costly alkylation units and hazardous 
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catalyst and employed relatively inexpensive equipment. Besides, Purwono and 

Murachman (2001) used the palm oil husks from industrial waste as raw materials to 

develop the chemicals for EOR.   

 

Since Malaysia is world’s largest palm oil producer, it generates significant amount 

of oil palm wastes. The wastes include large amount of solid wastes and a wastewater called 

palm oil mill effluent (POME). Thirty one million tons of fresh fruit bunch is locally 

produced annually and processed in 265 mills, from which 14.8 million tons of oil palm 

empty bunch, 9.1 million tons of fibre and 3.7 million tons of fruit shell are generated as 

solid wastes, and more than 10 million tons of palm oil mill effluent (POME) are generated 

as wastewater (Wong, 2002). Currently, a part of fibre and fruit shell wastes are utilized as 

boiler fuels for steam generation in some palm oil mills. Unfortunately, no experiment has 

been done using the oil palm wastes as the raw materials to develop the chemicals for EOR 

in Malaysia.  

 

In 1999, Islam et al. reported the pyrolysis oil from fluidized bed pyrolysis of oil 

palm shell contained a high fraction of phenol based compounds. Jamil and co-worker 

(2000) had described another successful fluidized bed pyrolysis technique that produced 

pyrolysis oil with high contains of phenol and its derivatives from oil palm shell. Wong et 

al. (2003) also concluded that there was 25.6 wt % of phenol and phenolic compounds from 

oil palm shell.  Extraction of the pyrolysis oil from oil palm shell yielded valuable phenolic 

compounds. It was believed that the phenolic compounds can be further processed to 

produce useful chemical products. 

 

 

1.1.3 Introduction on xanthan gum  

 

 

Malaysia has a great variety of refreshing tropical fruits. Some are seasonal while 

others are available throughout the year. Conversely tropical Malaysian fruits are plentiful 

all year round in Malaysia. Local fruits which are especially popular include papaya, 

passion fruit, watermelon and pineapple. The possibility of using local tropical fruits and 

starches as an alternative substrate for xanthan production is reported in this thesis.  
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Thirty percent of the cost of producing xanthan is estimated to be due to the carbon 

source. Since Malaysia has an abundance of cheap starches and local fruits, xanthan 

produced using cheap local sources poses a promising substitute to imported xanthan. For 

enhanced oil recovery, the cost is expected to be further reduced since little processing of 

the xanthan is needed as compared with food grade xanthan. Although the properties of 

xanthan gum have been extensively studied on the variations in xanthan properties when 

different operating conditions, nutrients and carbon sources were used (J. A. Casas, V.E. 

Santos and F. Garcia Ochoa, 2000). A starch consists of two major components.Chemically, 

it contains amylose, a linear polymer with a molecular weight in the range of 100,000 -

500,000 and amylopectin, a highly branched polymer with a molecular weight in the range 

of 1-2 million (L.S. Guinesi et al., 2006). If xanthans produced using various starches were 

to result in similar xanthans, seasonal fluctuations in starch supply may be overcome and 

the cheapest source may be used at any time. 

 

In this study, we aim to produce surfactant and xanthan gum from waste and local 

sources for additives in enhanced oil recovery. The surfactant was produced from pyrolysis 

oil of oil palm shells. The surfactant produced from oil palm shells industries by 

simultaneously alkylating and sulfonating the phenolic compounds extracted from the 

pyrolysis oil of oil palm shell. There are several advantages for selecting oil palm shell as a 

starting raw material to produce surfactant for EOR processes. First and foremost, it is an 

inexpensive industrial waste and always readily available. Secondly, it is not a petroleum 

derivative. Therefore, pyrolysis oil derived from oil palm shell has been selected as the 

starting raw material. There are very few previous works on the production of surfactant 

from oil palm shell by alkylating and sulfonating the phenolic compounds in pyrolysis oil. 

The research on the recycling of oil palm shell to surfactant is a relatively new area. Thus, 

in this work, the production of the surfactant from pyrolysis oil of oil palm shell is 

presented. 

 

We also report a laboratory study on the medium formulation and culture conditions 

for the growth of X. campestris and for the production of the extracellular polysaccharide 

from local fruit and starches as sole feedstock source. In this sense the objective of this 

work was to determine the feasibility of producing a lower cost xanthan gum alternative 

from local fruits and starches. This study also focused on the ten types of local fruits and 

four starches as local carbon sources to produce economically of xanthan gum. In order to 
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make a comparative analysis of xanthan gum produced, four starches which are tapioca, 

rice, sweet potato and sago as carbon sources were used to the same conditions. The local 

fruits and starches were selected as a carbon sources because it was readily available and 

inexpensive. In the present work also study is the determination of the amylose and 

amylopectin content based on thermal degradation of starches by thermogravimetric 

analysis (TGA). The flow properties of the xanthan gum and surfactant produced were 

compared with a commercial xanthan used in oilfields. The additives were characterised 

and applied in laboratory displacement experiments.  

 

 

1.2 Statement of Problems 

 

 

In this study, the new surfactant and xanthan gum as additives was developed from the 

oil palm shell, local starches and fruits. The oil palm shell, local starches and fruits were 

selected as a starting material because it was readily available and inexpensive. Since the 

research on the production of surfactant from pyrolysis oil of oil palm shell and xanthan 

gum from local starches and fruits have not been explored and developed to any significant 

extent, thus, this study would solve the following problems: 

 

1. How to extract the phenolic compounds from the pyrolysis oil? 

2. How to synthesize the surfactant from the extracted phenolic compounds of the 

pyrolysis oil? 

3. How to produced xanthan gum from local fruits and starches as carbon sources via 

shaker fermentantion and fermentation. 

4. How is the oil recovery performance if the locally produced surfactant and xanthan 

gum are applied in the EOR processes, such as surfactant polymer flooding? 

 

 

 

 

 

 

 



 7 

 

1.3 Objectives  

 

The objectives of this study are: 

 

1. To extract the phenol and phenolic compounds from produced pyrolysis oil 

2. To synthesize a surfactant from pyrolysis oil of oil palm shell and xanthan gum 

from local starches and fruits via shaker fermentantion and fermentation for 

enhanced oil recovery applications. 

3. To characterize the locally produced surfactant and xanthan gum properties. 

4. To investigate the additional incremental oil recovery by the locally produced 

surfactant and xanthan gum after waterflooding through surfactant-polymer 

flooding experiment. 

 

 

1.5 Scopes 

 

 

1. Pyrolysis oil from oil palm shell will be produced using fluidized bed pyrolysis 

technique at 450 oC, particle size of 212 – 252 µm and feed rate of 0.6 kg/hr. 

 

2. Phenol and its derivatives from the pyrolysis oil will be extracted using liquid-

liquid extraction. 

 

3. Surfactants from the extracted phenol of pyrolysis oil from oil palm shell will be 

synthesized by simultaneously alkylating and sulfonating the extracted phenol with 

C14 and C16 alpha olefin sulfonic acid. The weight ratio of extracted phenol to 

olefin sulfonic acid will be set to 100:30, 100:60 and 100:90. Six types of surfactant 

will be produced.   

 

4. Xanthans from local starches and fruits juice will be produced via fermentation and 

shaker fermentantion. Ten types of xanthans from local fruits juice and four types 

from starches will be produced.  
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5. Locally produced surfactants will be classified using Fourier Transform Infra-Red 

(FTIR) analysis and the anionic active matter will be determined. Surface tension of 

the surfactant at ambient temperature, 26o C, will be measured at various 

concentrations. The surfactant concentration will be set to vary from 0.05 wt. % to 

5.0 wt. %. 

 

6. Oil displacement experiment in sand pack model will be conducted using the 

locally produced surfactant and xanthans to test their flooding efficiency at 26 oC. 

Six types of surfactant, 14 of xanthan gum will be used. The injected surfactant slug 

size will be set to 2 PV and the surfactant concentration will be set to 0.5 wt%.  

 



 

 

 

 

CHAPTER 2 

 

 

 

 

LITERATURE REVIEW 

 

 

 

 

2.1 Surfactant-polymer flooding  

 

 

Enhanced oil recovery (EOR) consists of injecting a displacing fluid into 

injection wells in order to displace the oil and gas in a reservoir towards producing 

wells. The major EOR processes include thermal, miscible, and chemical methods. 

Thermal recovery methods add heat to the reservoir by the use of steam or in-situ 

combustion to reduce oil viscosity. Miscible recovery methods are based on injecting 

solvents that will mix with the oil under reservoir conditions to dissolve and displace 

more oil, such as carbon dioxide, CO2, light hydrocarbon gases and nitrogen. 

Chemical EOR methods are designed to improve the sweep efficiency by adding 

chemicals, such as polymer or surfactant to the injected water in order to reduce 

interfacial tensions or create a favourable mobility ratio, and thus enhance oil 

production.   

 

In enhanced oil recovery, surfactants can be used in micellar polymer 

flooding, surfactant flooding, alkaline surfactant polymer (ASP) flooding or in foams 

for mobility control of blocking and diverting. Surfactants can be used in several 

ways to enhance oil production: by reducing the interfacial tension (IFT) between oil 
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trapped in small capillary pores and the water surrounding those pores, thus allowing 

the oil to be mobilized; by solubilizing oil in micellar systems; by forming emulsions 

of oil and water; by changing the wettability of the oil reservoir in alkaline methods 

or by simply enhancing the mobility of the oil (Taber et al., 1997). 

 

In selecting a suitable surfactant for EOR application, one of the criteria for 

economic success is minimizing surfactant loss to adsorption. Factors affecting 

surfactant adsorption include temperature, pH, salinity, type of surfactants and type 

of solids found in the reservoir. Usually the only factor which can be manipulated for 

EOR is the type of surfactant to be used; the other factors being determined by 

reservoir conditions (Laura et al., 2000). 

 

From a technical point of view, chemical flooding of oil reservoirs is one of 

the most successful methods to enhance oil recovery from depleted reservoirs at low 

pressure. Surfactants and polymers are the principal components used in chemical 

flooding. The surfactants lower the IFT between the reservoir oil and injected water, 

while the polymer as agent to lower water mobility or water–oil mobility ratio to 

create good mobility control for the surfactant slug. The oil is then displaced by the 

viscous forces acting on the oil by the flowing water. The surfactant chemical floods 

that involve combination of other chemical methods including: 

 

• Micellar polymer flooding 

• Surfactant polymer flooding 

• Microemulsion flooding 

• Alkaline surfactant polymer flooding 
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Flow direction 

Surfactant polymer flooding is shown in Figure 2.1. The various regions of 

immiscible flow during a typical displacement of oil by a surfactant solution are 

illustrated. The various zones are described as: 

 

Region 1:  Water flooded residual oil saturation; only water is flowing. 

Region 2:  An oil bank is formed; both oil and water are flowing. 

Region 3:  Surfactant slug forming the low IFT region, two or three phase 

flow of oil, brine, and microemulsion depending on the actual 

phase behaviour. 

Region 4:  Polymer solution for mobility control, single phase flow of 

water. 

 

 

 

 

 

 

Figure 2.1 Schematic illustration of a surfactant polymer flooding 

 

 The capillary number, Nc, is related to the residual oil saturation through the 

desaturation curve illustrated by Figure 2.2. Nc is defined as the ratio between the 

viscous and local capillary forces and can be calculated from (Gogarty, 1976): 

σ
µυ w

cN =  

where υ is the effective flow rate, µw is the viscosity of displacing fluid, and σ is the 

IFT. If the wettability preference of the rock is taken into account, the formula for Nc 

becomes (Thomas et al., 1987): 

θσ
µυ

cos
w

cN =  

where θ is the contact angle measured through the fluid with the highest density. The 

capillary number, corresponding to the break in the desaturation curve, is designated 

as the critical capillary number, N cri. Thus, to improve the oil recovery relative to a 

 Region 1 
Sorw 

Region 2 
Oil Bank 

Region 3 
Surfactant 

Region 4 
Polymer 
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waterflood by using chemicals, Nc must be significantly higher than the critical 

capillary number, Nc >> N cri.  

 

 For an ordinary waterflood under water-wet conditions, Nc is usually in the 

range of 10-7 to 10-5. The critical capillary number may be in the range of 10-5 to  

10-4, whereas complete desaturation of the nonwetting phase (oil) may occur at a 

capillary number in the range of 10-2 to 10-1 (Lake, 1989). The waterflooded residual 

oil saturation may be in the range of 30 to 40%. These data are mainly based on 

model cores, such as Berea cores and other outcrop sandstone cores which have 

never been in contact with reservoir crude oil. Much lower values are, however, 

observed under mixed-wet conditions. This implies that 10 times more difficult to 

remobilize capillary trapped discontinuous oil, compared to continuous oil. 

 

 
 

Figure 2.2 Schematic capillary desaturation curve for a nonwetting phase   

(Lake, 1989) 

 

In order to be able to mobilize a significant amount of the waterflooded 

residual oil, it is expected that the capillary number must be increased by a factor of 

103 to 104. The only practical way to do this is to reduce the IFT between the 

reservoir oil and the injected water by the same factor using surfactants, which 

normally means that the IFT should be between about 0.01 and 0.001mN/m. 
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Flow direction 

 The goal of research on surfactant flooding during the 1990s was to develop 

surfactants that can recover additional oil in a cost-effective manner during a normal 

waterflood using produced brine or seawater as injection fluid. In order to avoid 

many of the problems associated with complicated chemical slugs with high 

concentration of surfactants and cosurfactants/ alcohols, the following criteria should 

apply (Austad et al., 2000): 

 

• The only chemicals used are surfactant and polymer 

• Low chemical concentration (surfactant 0.1 – 0.5 wt%; polymer < 

500ppm) 

• No imposed salinity gradient or other phase gradients 

• The chemicals should be insensitive to multivalent cations 

• The flooding conditions should be a two-phase flood with the 

surfactant and polymer present in the aqueous phase, forming an oil-

in-water microemulsion, termed Type II(-)  

 

The flooding performance is termed Low Tension Polymer Flood, LTPF, or 

low surfactant concentration enhanced waterflood. Low Tension Polymer Flood 

(LTPF) or low surfactant concentration enhanced waterflood has been suggested as 

one of the way to improve the chemical flooding. Coinjection of low concentration 

surfactant and a biopolymer, followed by a further mobility control buffer, leads to 

much reduced overall chemical consumption. This method approach addresses a cost 

effective chemical flooding (Kalpakci et al., 1990). Figure 2.3 shows a LTPF 

flooding sequence. 

 

 

  

 

 

 

 

Figure 2.3 Schematic illustration of a LTPF 

 

 
Oil Bank Residual 

Oil 
Surfactant 
Polymer 
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2.1.1 Field Tests 
 

 

 Surfactant use for oil recovery is not a recent development in petroleum field. 

Surfactant polymer flooding was tested in several pilots in 1960s.  In 1967, Gogarty 

of Marathon described the Maraflood Oil Recovery Process. A small pore volume 

injection (5 to 15 PV) of high concentration (5 to 12 %) surfactant was injected to 

displace oil and water.  

 

Large-scale field tests of surfactant polymer flooding were carried out in the 

late 1970. A large-scale application of the Maraflood oil recovery process was 

applied on the (113 acres) Henry Unit in Crawford Country, Illinois (Robinson 219-

R Project). The oil recovery was around 25 % ROIP.  

 

Vargo (1978) and Holm (1982) presented the micellar/polymer project in 

Bell Creek field (40 acres) in Montana. This project was a technical success, but an 

economic failure. 10 % OOIP was produced and the chemical cost was estimated to 

be $12/bbl. 

 

Gilliland and Conley (1976) reported surfactant flooding in Big Muddy (1.25 

acres). The oil recovery was 36 % of ROIP. The injected chemical slug was 0.25 PV 

surfactants containing 2.5 % petroleum sulfonate, 3 % isobutyl alcohol, 0–2 wt% 

sodium hydroxide and 200 ppm xanthan. The chemical slug was then followed by 

0.5 PV polymer drive.  

  

Whiteley and Wave (1977) and Widmyer et al. (1979) reported on the Salem 

unit LTPF project. This project used a surfactant slug containing 2 % petroleum 

sulfonate in softened water (6,000 ppm each of Na2CO3 and NaCl, 1,000 ppm 

sodium tripolyphosphate). The chemical slug then followed by xanthan polymer slug. 

The oil recovery was in between 37 % and 43 % ROIP. Tracers were used in attempt 

to determine sweep efficiency, changes in flow path distribution and chemical 

utilization.   
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Maerker and Gale (1992) and Reppert et al. (1990) reported pilot test for the 

Loudon field. Approximately 68 % of waterflooded residual oil was recovered by 

injecting a 0.3 PV chemical slug contained 2.3 wt% of surfactant with coinjection 

xanthan biopolymer without cosolvent, followed by 1.0 PV or higher polymer 

viscosity polymer drive. The chemical formulation containing a blend of two PO-EO 

sulfates, R–O–(PO)m–E(O)n SO3Na. The retention of surfactant was low (less than 

0.08 mg/g of rock). 

 

 Michels et al. (1996) represented enhanced waterflooding design with dilute 

surfactant concentrations for North Sea conditions. It was concluded that alkyl – PO 

– EO gyceryl sulfonate surfactants could be used in a dilute (0.1 wt %) surfactant 

flood at North Sea reservoir temperature (<120 oC) without polymer drive but with a 

sacrificial agent.   

 

Most pilot reported in 1990s were seen to have higher oil recovery than those 

in 1970s and 1980s. The improvements in chemicals and understanding of process 

mechanisms were the causes for these successes. These field tests indicated that 

surfactant polymer flooding can be technically successful. However, the success of 

surfactant flooding in EOR depends on many factors, including formulations of the 

chemical used, the cost of the surfactants, the availability of chemicals, 

environmental impact and oil prices in the market.  

 

 Recently, there are surfactants in particular have emerged from the literature 

search as being newer, intriguing ideas for EOR applications. For example, 

sulfonated alkyl aromatics have been reported as a new series of surfactants for EOR 

applications (Berger and Lee, 2002). The new surfactants are different structures 

where the sulfonated group is attached to the alkyl chain as opposed to the benzene 

ring. One advantage claimed for this new type of surfactant is that it can be produced 

in one step process.  
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 Alkyl polyglycosides (APG) are suggested as being candidates for EOR 

applications (Balzer, 1991). Iglauer et al. (2004) concluded that APG surfactants 

may be formulated in brine solutions that can create IFT approaching 0.01 dyne/cm, 

or less, versus simple alkane hydrocarbons.  

 

 The recent literatures have paid more attention to the new candidates for 

EOR and to create low IFT conditions. 

 

 

2.2 EOR Chemicals  

 

 

EOR chemicals have to be formulated into stable products that meet the 

requirements for it to be usable in the oil field. First, it has to be stable in a wide 

range of temperatures, depending on storage conditions. In the oil field, it should be 

easy and safe to handle with normal precautions. Viscosity is also one of the 

requirements for extreme weather conditions (-10 oC to 45 oC), not exceeding 800 cP 

at the lowest temperature. Other considerations, such as flash point, toxicity and 

biodegradability may also be on the checklist. 

 

Surfactant–brine–oil phase behaviour is the most important feature of a 

surfactant polymer flooding. Possible combinations of oil, brine, and surfactant will 

give different phase behaviour. The terminology of surfactant-system phase 

behaviour has developed through Wilson (1960), Nelson and Pope (1977) and Healy 

and Reed (1976). The phase behaviour of the chemical formulation has to be 

evaluated to define which formulation has the best potential to recover additional oil. 

The formulations are first blended with alkali and polymer. Then an equal amount of 

crude oil and polymer blend are further mixed together in test tubes by a shaking 

machine. The mixture of crude oil and chemicals is set for about one week of 

equilibration at 60 oC. The appearance and numbers of phases are observed and 

recorded. The best case is considered when only two distinct phases are observed: 

one water phase and one oil phase, and no third mixed phase are seen.  
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Adsorption of surfactant on reservoir rock is another important consideration 

in surfactant flooding formulations. It is well known that high equivalent molecular 

weight surfactants are absorber preferentially on the rock surface while the lower 

equivalent molecular weight surfactants show a very little adsorption. Since the high 

equivalent weight surfactants are responsible for most interfacial tension reduction, 

their losses decrease the surfactant slug ability to displace the residual oil in the 

reservoir. The solution to reduce the adsorption is either adds sacrificial agents into 

the formulation or pre-flood the reservoir with sacrificial agents. It is also possible to 

adjust the molecular spectrum (equivalent molecular weight distribution) of the 

formulation to minimize the adsorption.  

 

In the typical adsorption test, a field core is initially flooded with 3 pore 

volume (PV) of formation water to satisfy any ion exchange. Then the core is cut 

into pieces and dried at 80 oC. The crushed core rocks are then mixed mildly with the 

surfactant solution for 1 day and set for 7 days before the test. The adsorption is 

determined using a heterogeneous titration method. The surfactant adsorption values 

range normally between 100 to 450 mg of surfactant/100 g of rock. Tolerable ranges 

are less than 200 mg of surfactant /100 g of rock. 

 

Other important criteria in EOR surfactant flooding is to determine if the IFT 

can be reduced enough to produce incremental oil. A spinning drop interfacial 

tensiometer is usually to measure IFT. Since the spinning drop test is a dynamic test, 

IFT is a function of contact time. Until recently, no single surfactant or mixture of 

surfactants was able to decrease the IFT between water and oil to about  0.01 and 

0.001 mN/m by adding a small concentration of surfactant (about 0.1 to 0.5 wt %) to 

the water injected in an ongoing water flood.  
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2.2.1 Surfactants 

 

 

 A typical surfactant monomer is composed of a non polar (lypophile) portion, 

or moiety, and a polar (hydrophile) moiety; the entire monomer is sometimes an 

amphiphile because of this dual nature. Figure 2.4 shows the molecular structure of 

two common surfactants and illustrates a shorthand notation for surfactant 

monomers. The monomer is represented by a “tadpole” symbol, with the non polar 

moiety being the tail and the polar being the head. 

 

Surfactants are classified into four groups depending on their polar moieties. 

Anionic surfactants are dissociated in water in an amphiphilic anion, and a cation, 

which is in general an alkaline metal (Na+, K+). They are the most commonly used 

surfactants. They include alklybenzene sulfonates, lauryl sulfate, di-alkyl 

sulfosuccinate, lignosulfonates etc. They relatively resistant to retention, stable, and 

can be made relatively cheaply. 

 

Cationic surfactants are dissociated in water into an amphiphilic cation and 

an anion, most often of the halogen type. A very large proportion of this class 

corresponds to nitrogen compounds such as fatty amine salts and quaternary 

ammoniums, with one or several long chains of the alkyl type, often coming from 

fatty acids. These surfactants are in general more expensive than anionic, because of 

a high pressure hydrogenation reaction to be carried out during their synthesis. They 

are highly adsorbed by the anionic surfaces of interstitial clays.  
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Figure 2.4   Representative surfactant molecular structures (Larry, 2000) 

 

Nonionic surfactants do not ionize in aqueous solution, because their 

hydrophilic group is a non-dissociate type, such as alcohol, phenol, ether, ester, or 

amide. These surfactants do not form ionic bonds but, when dissolved in aqueous 

solutions, exhibit surfactant properties by electronegativity contrasts between their 

constituents. Nonionics are much more tolerant of high salinities than anionics and 

historically have been poorer surfactants. 

 

When a single surfactant molecule exhibit both anionic and cationic 

dissociations it is called amphoteric or zwitterionic. This is the case of synthetic 

products like betaines or sulfobetaines and natural substances such as amino acids 

and phospholipids. These surfactants have not been used in oil recovery.  

 

a) Sodium dodecyl sulfate 

b) Texas no.1 sulfonate 

c) Commercial petroleum sulfonates

R = hydrocarbon group (nonpolar)
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  The unique amphiphilic property of surfactants has made them useful in oil 

field applications. Their abilities to solubilize, emulsify/demulsify, foam, alter 

interfacial tension, viscosity and friction have made them ingredients in a variety of 

fluids. However, on a volume basis, the greatest potential usage would be surfactant 

flooding for enhanced oil recovery (Larry, 2000). The 1970s and 1980s were active 

periods for research on surfactants for EOR, and a large number of patents were 

issued. The following surfactants classes are representative of the large number of 

surfactant candidates for EOR: 

 

• Alcohol ether sulfates 

• Alcohol ethoxylates (alkoxylates) 

• Alkyl aryl sulfonates and petroleum sulfonates 

• Alkyl phenol ethoxylates 

• Dialklyl sulfosuccinates 

• Quaternary ammonium (cationic) surfactants 

 

 

2.2.1.1 Alcohol Ether Sulfates (AES) 

 

 

AES can be represented by the following structure: 
−−−−−− 322 )( SOOCHCHOR n  

where R represents a linear or branched alkyl moiety of primary and secondary 

alcohols or the alkylbenzene part of alkylphenol. Although not shown above, AES 

may contain repeating units of butylene oxide, propylene oxide (PO) or mixtures of 

PO and ethylene oxide (EO).  
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2.2.1.2 Alcohol Ethoxylates (Alkoxylates) 

 

HOCHCHOR n)( 22 −−−−−  

where R represents a linear of branched alkyl moiety of a primary or secondary 

alcohol. Although the ethoxylate structure is shown, alcohol alkoxylates can contain 

units of ethylene oxide, propylene oxide, butylene oxide or mixtures. Alkyl phenol 

ethoxylates technically are alcohol ethoxylates; however, they are discussed 

separately below. 

 

 

2.2.1.3 Alkyl Aryl Sulfonates and Petroleum Sulfonates  

 

 

Alkyl aryl sulfonates, by definition, have a branched or linear alkyl group 

attached to a sulfonated aromatic structure (benzene, substituted benzene, 

naphthalene, etc.). This definition could also be applied to petroleum sulfonates. 

Alkyl aryl sulfonates history probably begins in the 1930s with kerylbenzene 

sulfonates, which were synthesized by alkylating benzene with chlorinated kerosene, 

and the generic name “alkylarylsulfonate” was applied (Feighner, 1976). An 

improved detergent alkylarylsulfonate was introduced after World War II. The alkyl 

group was tetrapropylene, and the surfactant was known as dodecylbenzene 

sulfonate of DDBS, TPBS or ABS, also known as “hard” alkylate because of its poor 

biodegradability. In 1965 the linear alkyl version was introduced to give good 

biodegradability, and this started a worldwide conversion to “soft” alkylate which is 

almost complete. 

 

Petroleum sulfonates are distinguished somewhat from alkyl aryl sulfonates 

by often containing more than one alkyl group (e.g., dialkyl benzene sulfonates), by 

higher molecular weight and oil solubility thereby making them useful in motor oils, 

and by the feedstock. Petroleum sulfonates are commonly associated with white oil 

manufacturing, and are formed by the oleum (SO3 plus sulfuric acid) sulfonation of 

streams such as raffinate from lubricating oil streams or bottoms from other 

operations. Thus, they are a by-product of petroleum refining and are often called 
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natural sulfonates. These petroleum sulfonates such as alkyl orthoxylene sulfonates 

are produced to replace the natural products, usually when a more defined chemical 

structure is needed. The concept of producing petroleum sulfonates from crude oil, 

specifically for EOR, has been investigated. 

 

 

2.2.1.4 Alkyl Phenol Ethoxylates (APE) 

 

 

 

 

 

where R = C8 – C16 linear or branched alkyl chain, and n = 1 – 30. The structure 

above shows the para positional isomer which accounts for 90% or more of the ring 

substitution positions; however, meta and ortho isomers also occur at lesser 

frequency. Phenol (or hydroxylbenzene) is mostly prepared as a subproduct of 

acetone manufacturing via the peroxidation of cumene (isopropyl benzene). 

 

APE is produced by two ways, depending on the available raw material. The 

first method consists in alkylating the phenol according to a classical Friedel-Crafts 

reaction. The second method consists in adding an alpha-olefin such as propylene 

trimer or tetramer, or isobutylene dimmer, on an aromatic ring.  

 

The most common APE is nonylphenol ethoxylate (NPE) containing around 

9 EO and is prepared from the propylene trimer which produces a multitude of 

highly branched alkyl chains. A C8 APE, called octylphenol ethoxylate (OPE) is 

prepared from the dimmer of isobutylene to produce the 1, 1, 3, 3-tetramethylbutyl 

chain.  
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2.2.1.5 Dialkyl Sulfosuccintates 

 

O                         O 

║                         ║ 

R-O-C-CH-CH2-C-O-R 

│ 

SO3
⎯ 

where R = linear of branched alkyl groups, usually C6, C8, C9. 

 

The dialkyl sulfosuccinates are more of an industrial-use surfactant class 

rather than for use in detergents. These surfactants are the best wetting agent; they 

are also foaming agents, dispersants and emulsifiers. However, their usage is limited 

by their price which is high in the anionic category. 

 

 

2.2.1.6 Quaternary Ammonium Surfactant  

 

R1 

│ 

R – N+ – R2 

│ 

R3 

where the R groups may be methyl groups, linear or branched aliphatics, or 

aromatics.  

 

Quaternary ammonium compounds or “quat” that are monoalky structures 

typically have a C12-16 alkyl chain and three methyl groups bonded to the quaternary 

nitrogen atom. Dialkyl quats have two alkyl groups and two methyl groups. Quats 

can also have aromatic structures such as benzyl group as one of the R groups. Also, 

the quaternary nitrogen can be in pridine or an imidazole structure. Quats are 

included in the list of surfactants for EOR, but technically they are used in other oil 

field operations, particularly on drilling mud. 
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It has been known that surfactants lower oil/water interfacial tensions, thus 

reducing capillary forces such as those trapping the remaining oil. This raises the 

possibility of releasing trapped oil droplets by injecting surfactants into the reservoir, 

early demonstrations of the technical feasibility of enhanced oil recovery by 

surfactant flooding (sometimes referred to micellar or chemical flooding) were done 

in the laboratory by Novosad et al. in 1982 and in field tests by Lake and Pope in 

1979 and by Holm in 1982. In addition to the technical feasibility, economic 

feasibility must also be determined; however, the economic feasibility depends on 

the complex factors such as oil prices, international economies, and the cost of 

surfactants. Generally the cost of the surfactant is the single most expensive item in 

the cost of a chemical flood. These costs include both the initial investment in 

purchasing the surfactant, as well as the cost of replacing surfactant which has been 

lost to adsorption. Since these surfactants are synthesized from petroleum, their costs 

will rise at least as fast as that of the oil they are used to produce. So simply waiting 

for oil prices to increase will not necessarily make EOR economically feasible 

(Laura et al., 2000).  

 

 

2.2.1.7 Fast Pyrolysis Principles  

 

 

Pyrolysis is being considered to be an emerging, new and potential 

technology to produce value-added products, fuels and chemicals from oil palm 

waste. Chemicals have been produced from biomass in the past, are being produced 

at present, and will be produced in the future due to the demand for the organic 

chemicals have increased on a worldwide basis. For example, isolation of chemicals 

at the industrial scale has been performed to recover commodity compounds such as 

methanol, acetone, acetic acid and mixture of phenols (Solter and Elder, 1983). 

Chum and Black (1990) fractionated phenolic/neutral fraction from pine sawdust 

derived pyrolysis oil using liquid-liquid extraction. Isolation of phenols from 

Eucalyptus wood pyrolysis tar was carried out with the objective of recovering 

valuable pure phenols, such as phenol, cresols, guaiacol, 4-methylguaiacol, catechol 

and syringol by Carlos et al. (1997). 
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Pyrolysis may be described as the thermal degradation of materials in the 

complete absence of inadequate presence of oxygen (Bridgewater and Bridge, 1991). 

Three products are usually obtained from pyrolysis process: gas, liquid and char. 

Both the product yield and chemical composition of pyrolysis oil can be varied 

according to the pyrolysis methods and process conditions (Soltes, 1988). 

 

Fast pyrolysis is a high temperature process in which biomass is rapidly 

heated in the absence of oxygen. As a result it decomposes to generate mostly 

vapours and aerosols and some charcoal. Liquid production requires very low vapour 

residence time to minimize secondary reactions of typically 1 second, although 

acceptable yields can be obtained at residence times of up to 5 seconds if the vapour 

temperature is kept below 400 oC. After cooling and condensation, a dark brown 

mobile liquid is formed which has a heating value about half that of conventional 

fuel oil. While it is related to the traditional pyrolysis processes for making charcoal, 

fast pyrolysis is an advanced process which is carefully controlled to give high yields 

of liquid (Bridgwater et al., 1999). 

 

Research has shown that maximum liquid yields are obtained with high 

heating rates, at reaction temperatures around 500oC and with short vapour residence 

times to minimize secondary reactions. A compilation of published data is shown in 

Figure 2.5 for typical products from fast pyrolysis of wood (Toft and Bridgwater, 

1996). 

Figure 2.5 Typical yields of organic liquid, reaction water, gas and char from 

fast pyrolysis of wood, wt % on dry feed basis (Toft and Bridgwater , 1996). 
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A variety of reactor configurations have been investigated. Pyrolysis, perhaps 

more than any other conversion technology, has received considerable creativity and 

innovation in devising reactor systems that provide the essential ingredients of high 

heating rates, moderate temperatures and short vapour product residence times for 

liquids. A thorough review of the technologies has recently been completed 

(Bridgwater and Peacocke, 1999). There are three main methods of achieving fast 

pyrolysis. 

1. Ablative pyrolysis in which wood is pressed against a heated surface and 

rapidly moved during which the wood melts at the heated surface and leaves 

an oil film behind which evaporates. This process uses larger particles of 

wood and is typically limited by the rate of heat supply to the reactor. It leads 

to compact and intensive reactors that do not need a carrier gas, but with the 

penalty of a surface area controlled system and moving parts at high 

temperature. 

 

2. Fluid bed and circulating fluid bed pyrolysis which transfers heat from a heat 

source to the biomass by a mixture of convection and conduction. The heat 

transfer limitation is within the particle, thus, requiring very small particles of 

typically not more than 3 mm to obtain good liquid yields. Substantial carrier 

gas is needed for fluidization or transport. 

 

3. Vacuum pyrolysis which has slow heating rates but removes pyrolysis 

products as rapidly as in the previous methods which thus simulates fast 

pyrolysis. Larger particles are needed and the vacuum leads to larger 

equipment and higher costs. Total liquid yields are typically lower at up to 

60±65% compared to 75±80 wt% from the previous two methods. 
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While a wide range of reactor configurations have been operated (Bridgwater, 

1999), fluid beds are the most popular configurations due to their ease of operation 

and ready scale-up. A typical bubbling fluid bed configuration is depicted in Figure 

2.6 with utilization of the by-product gas and char to provide the process heat. The 

figure includes the necessary steps of drying the feed to less than 10% water to 

minimize the water in the product liquid oil, and grinding the feed to around 2 mm to 

give sufficiently small particles to ensure rapid reaction. This configuration is used 

below for processing waste wood. 

 

 

 

Figure 2.6 Conceptual fluid bed fast pyrolysis process (Bridgwater and Peacocke, 

1999). 

 

 

2.2.1.8 Pyrolysis Oil  

 

 

Biomass pyrolysis oil differs a great deal from petroleum-based fuels in both 

physical properties and chemical composition. There are many applications of 

pyrolysis oil, such as liquid fuel, transport fuel, and as a source of chemicals (Spitzer 

and Tustin, 2001). Pyrolysis oil can be upgraded to high quality hydrocarbon fuels 

and recoverable for production of valuable chemicals as well.  
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According to Diebold and Bridgwater (1997), the commercial uses of the fast 

pyrolysis oil are as a source of high valued specialty chemicals in the short term and 

as petroleum fuel substitute in long term. The high valued specialty chemicals 

include hydroxyacetaldehyde, food flavours for meat preservation, the recovery of 

levoglucosan sugars to ethanol, organic acid for road de-icing and phenolics for 

phenol formaldehyde resins (Ani and Zailani, 1996).   

 

Wong (2002) reported that as comparing phenol price at RM 3270/ton with 

the production cost of palm shell based phenol at RM 923.60/ton, the price was less 

71.76 %. Thus, the usage of palm shell based phenol to replace the petroleum based 

phenol is very promising.  

 

The physical properties of pyrolysis oil from different raw materials are 

given in Table 2.1. Islam et al. (1999) described the chemical composition of oil 

palm based pyrolysis oil (Table 2.2). It was found that the pyrolysis oil contained a 

very low concentration of paraffin and no polycylic aromatic hydrocarbons. The oil 

palm shell based pyrolysis oil contained a high concentration of phenolics and acetic 

acid.  

 

Table 2.1: Physical properties of different pyrolysis oils 

Physical 

properties 

Kai Spila et al. 

(1997) 

Kai Spila et al. 

(1997) 

Islam et al. 

(1999) 

 Pine Oil Hardwood oil Palm Shell Oil 

Ash (wt%) 0.07 0.09 0.1 

(ASTM D482)    

Moisture content 

(wt%) 11.1 23.3 10 

(ASTM 4928-89)    

Calorific value 

(MJ/kg) 19.2 18.1 22.1 

(ASTM D240)    

Density (g/cm3) 1.266 1.23 1.2 

(ASTM D 5004)    
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Viscosity ( at 50oC) 

(cSt) 46 50 14.63 

(ASTM D 445)    

pH 2.6 2.8 2.7 

Flash Point (oC) 18 >106 54 

(ASTM D 93)    

Pour point (oC) 76 -9 -10 

(ASTM D 97)    

Distillation (oC)    

(ASTM D 86)    

IBP(initial boiling 

point) ND ND 94 

10%   100 

30%   120 

50%   155 

70%   182 

75%   190 

80%    

90%    

Decomposed at   190 

     
 *ND = Not determined 
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Table 2.2: Identification and quantification of chemical compounds in pyrolysis oil 

from oil palm shell (Islam et al., 1999) 

Chemical compounds 

Quantification 

(wt% of pyrolysis oil from oil palm shell) 

Phenol 28.3 

Acetic acid 16.9 

3-hydroxy 2-propanone 7.78 

2 methoxy phenol 4.82 

Ally acetate-2 ene 4.73 

2-Furanaldehyde 4.41 

2,6-dimethoxy phenol 2.75 

Methyl crotonate 2.69 

Ortho-hydroxy phenol 2.16 

Butandial 2.13 

2-methoxy -4 methyl phenol 2.02 

3-methyl cyclopentanedione 1.38 

4-propene 2-methoxy phenol 1.36 

Cyclopentanone 1.34 

4-ethyl -2 methoxy phenol 1.09 

2-methyl pentyl ether 0.838 

2-Butanone 0.837 

2-methyl phenol (o-cresol) 0.79 

2-methyl propane 0.524 
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2.2.2 Extraction of Phenol from Pyrolysis Oil 

 

 

In 1980, Gallivian and Matschei obtained a phenolic fraction from wood 

pyrolysis oil by aqueous alkaline extraction, followed by acidification of the aqueous 

phase. The phenols were recovered by organic solvent extraction. The biomass-

derived phenols could replace 25 – 75 % of commercial phenol used in the 

production of adhesives.  

 

In accordance with this invention the oil derived from pyrolysis of 

lignocelluloses waste materials was first mixed with a strong basic solution such as a 

sodium hydroxide solution. The resulting black colour mixture with a pH range of 

from about 11 to about 13 was then contacted with an appropriate solvent such as 

methylene chloride in a suitable extraction unit. A first extract was removed from 

this unit comprising the neutral fraction of the oil which was subjected to distillate 

operation to remove the solvent and recover the neutral fraction.  

 

The raffinate from this unit was mixed with mineral acid, such as sulfuric 

acid, or with carbon dioxide to lower its pH to the range of from about 7.5 to about 

9.0, before it was introduced into a second extraction unit wherein it was contacted 

with a solvent such as methylene chloride. By this extraction step the phenolic 

fraction was removed with the solvent as the second extract which was distilled to 

recover the solvent and the phenolic product. The second raffinate from the second 

extraction unit was mixed with a mineral acid such as sulfuric acid to reduce its pH 

to the range of from about 1.0 to about 4.0, the tarry residues separated and the 

mixture was then introduced into a third extraction unit wherein it was contacted 

with methylene chloride. The third extract from this unit, after the removal of the 

tarry product was distilled to separate the solvent and recover the organic acids 

fraction. The third raffinate from the third extraction unit was neutralized and 

transported to a waste disposal system. 
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 The phenolic fraction obtained by this extraction method was used as total or 

partial replacement for petroleum-derived phenol in making phenol-formaldehyde 

resins. Generally, the extraction method is summarized by the flow sheet in Figure 

2.7. 

 

 The previous extraction method by Gallivian et al. (1980) used pyrolysis oils 

which were usually formed at ill-defined temperatures and which had undergone 

phase separation cracking and some condensation, and suffered from very low yields. 

Chum and Black (1990) published an improved and simplified process of 

fractionating fast-pyrolysis oils derived from lignocellulosic materials.  

 

 The process included mixing the oils with an organic solvent having at least a 

moderate solubility parameter and good hydrogen bonding capability, the solvent 

extracted the phenol and neutral fractions from the oils. The organic solvent-soluble 

fraction contained the phenol and neutral fractions was separated from the mixture 

and admixed with water to extract water-soluble materials.  
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Figure 2.7    Flow sheet of extraction of phenol from pyrolysis oil  

(Gallivan et al., 1980) 

Distillate oil from pyrolysis oil of sawdust or bark 

• Azetropic distillation 
with toluene 

• Dried with anhydrous 
sodium sulfate 

• Evaporation 

Neutral fraction 

Mixing with sodium hydroxide 

Extracted with methylene chloride/ether (70oF) 

Aqueous layer Organic layer 

Mixed with CO2/H2SO4 

pH 7.5 to 9 

Extracted with methylene chloride/ether (70oF) 

• Dried with anhydrous 
sodium sulfate 

• Evaporation 

Phenolic fraction 

Aqueous layer Organic layer 

Mixed with CO2/H2SO4 

pH 1.0 to 4.0 

Extracted with methylene chloride/ether (70oF) 

Tarry residues Aqueous layer Organic layer 

Amorphous solid Organic acid fraction 
Neutralized and Disposed 
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The organic solvent soluble fraction was then separated from the water 

fraction and admixed with an aqueous alkali metals bicarbonate solution to extract 

strong organic acids and highly polar compounds from the solvent fraction. Finally, 

the residual organic solvent-soluble fraction was separated, and the organic solvent 

was removed to produce phenol-containing compositions. 

 

 In general, the whole oil was first dissolved in the organic solvent preferably 

in oil: solvent ratio of 0.5:1 to 1:3 by weight. The preferred solvent was ethyl acetate. 

The oil was initially filtered to separate char which was carried over from the 

pyrolysis reactor operations. Upon standing, the solvent/oil mixture then separated 

into two phases, the solvent-soluble phase and the solvent-insoluble phase. Chemical 

spectroscopic analysis revealed that the ethyl acetate-insoluble fraction contained 

carbohydrate and carbohydrate-derived products. 

 

 The ethyl acetate-soluble fraction, containing the phenol/neutral fractions, 

was then separated and washed with water to remove the remaining water-soluble 

carbohydrate and carbohydrate-derived materials, preferably in a 1:6 to 1:1, water: 

oil weight ratio. The ethyl acetate-soluble fraction was then further extracted with an 

aqueous metal bicarbonate solution, preferably an aqueous sodium bicarbonate 

solution, 5% by weight. The pH of the bicarbonate extraction solution was 

preferably maintained at approximately 8-9.5, and a 6:1 to 0.5:1 bicarbonate solution: 

oil weight ratio was preferably utilized. The aqueous bicarbonate layer extracted the 

strong organic acids and highly polar compounds, and the remaining ethyl acetate-

soluble layer contained the phenols and neutral fractions.  

  

 This ethyl acetate-soluble layer was then separated, and the ethyl acetate 

solvent was evaporated using any known evaporation technique, including vacuum 

evaporation techniques. The dried phenol/neutral fraction typically contains 0.5-1% 

of water with traces of ethyl acetate.  
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 The phenols/neutrals fraction could be further fractionated into isolated 

phenolics and neutrals if desired. This could be accomplished by utilizing a 5% by 

weight solution of sodium hydroxide in a volume ratio of 5:1 of solution: extract. 

The aqueous layer was then acidified to a pH of about 2 utilizing a 50% solution of 

phosphoric acid although other acids could be used. It was then saturated with 

sodium chloride and extracted with ethyl acetate. Evaporation of the solvent led to 

the isolation of the phenolics fraction; evaporation of the initial ethyl acetate solution 

free from phenolics led to the neutrals fraction.  

 

In 1997, Carlos et al. investigated the possibility of isolating valuable 

phenols from raw wood tar at laboratory scales with a potential application at a 

higher scale. Isolation of phenols from Eucalyptus wood pyrolysis tar was carried 

out with the objective of recovering valuable pure phenols, such as phenol, cresols, 

guaiacol, 4-methyl guaiacol, catechol and syringol.  

 

The procedure consisted of four main steps: 

(1) The wood tar-derived oil containing the desired phenols was dissolved in 

ethyl acetate; 

(2) An aqueous alkaline solution was added to extract phenols by converting 

them into water-soluble phenolate ions;  

(3) Phenols were regenerated by acidification of the aqueous layer with sulfuric 

acid; and  

(4) A phenolic-rich fraction was recovered by ethyl acetate extraction of the 

acidic aqueous layer. The procedure was performed at room temperature. 

 

The detailed procedure was as follows:  

 

a)  An accurate amount of primary oil weighing between 2 and 6 g was 

dissolved in ethyl acetate at a 1: 1 weight ratio to improve the flow ability 

and to decrease the density of the original oil. 

b)  The solution was mixed with an aqueous sodium hydroxide solution in a 1: 1 

ratio by weight in a 125 ml separatory funnel. The phases could be clearly 
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distinguished at this ratio. The funnel was shaken and phases were separated 

on standing and pH was measured. 

c)  The alkaline extraction of the solvent phase was repeated five times with 

fresh alkali solution.  

d)  The combined aqueous phases were collected in a 125 ml separatory funnel 

and the phenols were regenerated by acidifying the solution with a solution 

of sulfuric acid 50% by weight to a pH near 6. It had been observed that 

phenols were better extracted from the aqueous phase at a pH below 7.  

 

Ethyl acetate was used as the organic solvent to recover the phenols from the 

aqueous phase. An earlier study has shown that ketones and esters were good 

solvents for the removal of phenols from water (Won and Prausnitz, 1975). Ethyl 

acetate in particular, had been used for the extraction of wood tar phenols with 

optimum results. The extraction was repeated four times with a 0.5:1 

solvent/aqueous phase weight ratio.  

 

The extraction procedure was carried out using NaOH solutions of 2, 0.3 and 

0.05 M to determine the effect of pH on the recovery of phenols. Complete recovery 

of phenols was achieved at a pH of 12-13 by using a concentrated alkaline solution. 

A scheme of the liquid-liquid extraction procedure is shown in Figure 2.8. 

 

In 2000, Jamil et al. extracted the phenolic compounds from the pyrolysis of 

oil palm shell. A standard solvent was selected for the purpose of extraction of 

phenols from the pyrolysis oil. The requirements for the organic solvent were low 

boiling point, relatively low solubility in water, high solubility in oil. 

 

The preferred solvent was ethyl acetate. The whole oil was dissolved in the 

ethyl acetate to oil: solvent ratio of 1:3 at pH of 3.1 and then filtered with Whatman 

filter paper of specification 12.5 cm 100 circles. The oil solvent mixture was 

collected in a separating funnel and the thick residual tarry portion was removed. A 

5% sodium bicarbonate solution was mixed with the oil solvent mixture at a 

proportion of 1:2 bicarbonate solution: oil weight ratio, the pH value of this standard 

solution was maintained at 8.9. As a result of mixing, the mixture separated into two 
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phrases. The aqueous bicarbonate layer extracted the strong organic acids and highly 

polar compounds, and the remaining ethyl acetate-soluble layer contained the 

phenols and neutral fractions. This ethyl acetate-soluble layer was then separated, 

and the ethyl acetate solvent was evaporated using an E-01611-00 Economy Rotary 

evaporator. 

 

 
 

Figure 2.8 Liquid-liquid extraction of phenols from primary oil (Carlos et al., 1997) 

 

After evaporating, the liquid product was collected and stored in refrigerator 

at 5 -10 oC. This was then subjected to Gas Chromatograph – Flame Ionization 

Detector (GC–FID) analysis using DB -1701160 mm x 0.25 mm x 0.25µm capillary 

column in order to identify the quantify the phenols content in the liquid product. 

The carrier gas used is helium. 

 

Oil phase from primary conversion 

Dissolution 

5 – stage alkaline extraction

Aqueous layer 

4–stage ethyl acetate 
extraction 

Ethyl acetate layer 
(Phenolic fraction) 

Aqueous layer 

Ethyl acetate 
layer 

1:1 by weight ratio 
of feedstock/Ethyl 
acetate 

Discarded 

Acidification to pH 6, 
Ethyl acetate 
extraction, 0.5:1 by 
weight ratio of 
EtOAc/Aqueous 
solution 

NaOH 1:1 by 
weight ratio of 
NaOH/ organic 
solution 
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 A simple flow sheet of extraction of phenol from oil palm shell pyrolysis oil 

is shown as below. This extraction method is similar to the Chum et al. (1980) s’ 

work. 

 
 
 
  

1. Selection of standard solvent:  
 Low price 
 Low boiling point 
 Relative low solubility in water 
 High oil solubility 
 Good hydrogen bonding capability 

    (Refer to U.S. PATENT 4 942 269) 
    

 
 
   Oil : solvent ratio  1:3  (by weight) 
      pH 3.1      
 
 
 
   Whatman filter paper (12.5 cm 100 circles) 
   Removal of residual tarry portion  
    
 
 
     
 
   Oil : solvent ratio  1:2 (by weight) 
   pH 8.9 
 
  After mixing, 
 
 
 
 
 

E – 016110 – 00 Economy Rotary Evaporator 
    Conditions: 

 Temperature: 78 oC 
 Pressure: 600 mm Hg vacuum 
 Rotation: 100 rpm 
 Vacuum oil pump 1/6 H.P 
 Water bath Type TE 2, 1000 watt 

 
Phenol Identification and Qualification 

Test with GC/FID analysis (Gas Chromatograph – Flame Ionization Detector) 

• DB – 1701 
• 60 mm x 0.25 mm x 0.25 µm 
• Methanol as standard solution 
• Carrier gas : helium 

 

Figure 2.9 Flow sheet of extraction of phenol from oil palm shell pyrolysis oil  

(Jamil et al. 2000) 

Pyrolysis oil 

Evaporation 

Mixing with standard solvent (ethyl acetate) 

Mixing 5% standard solvent (aqueous sodium bicarbonate solution) 

Filter and wash with water (water: oil 1:6 to 1:1) 

Standard solvent soluble layer contain phenol Standard solvent insoluble layer 

Collect liquid product
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2.2.3 Basic Chemistry of Sulfonation and Sulfatation 

 

 

Sulfonation and sulfation are major industrial chemical processes used to 

make a diverse range of products, including dyes and color intensifiers, pigments, 

medicinals, pesticides and organic intermediates. Additionally, almost 500,000 

metric tons per year of lignin sulfonates are produced as a by-product from paper 

pulping. Petroleum sulfonates are widely used as chemicals in chemical flooding in 

EOR. 

 

Sulfonation of an aromatic ring takes place according to an electrophilic 

subsititution, to produce an intermediate sigma complex that rearranges as an 

alkylbenzene sulfonic acid: 

 

ArH + X                       X-Ar-H                  Ar-X-H+ 

 

where Ar-H represents the aromatic ring an X electrophilic group: SO3, H2SO4, etc. 

 

 Symbol Ar-X-H+ is used because the sulfonic acid is a strong acid, i.e., 

completely dissociated, even at low pH. With an alkylbenzene R-Ø-H the reaction 

will be: 

R-Ø-H + SO3      R-Ø-SO3
-H+ 

R-Ø-H + H2SO4H+    R-Ø-SO3
-H+ + H2O 

 

There exist other mechanisms, such as addition on the double bond of an 

olefin or an unsaturated acid, or the nucleophilic substitution (SN2) in alpha position 

of a carboxylic acid.  

 

Sulfatation is the esterification of an alcohol by one of the two acidities of 

sulfuric acid or anhydride. It results in an alkyl ester monosulfuric acid.  

ROH + SO3      RO-SO3
-H+ 

ROH + H2SO4H+    RO-SO3
-H+ + H2O 
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2.2.4 Ethoxylated Alkyl-Phenols 

 

 

Phenol (or hydroxybenzene) is mostly prepared as a sub product of acetone 

manufacturing via the peroxidation of cumene (isopropyl benzene). Ethoxylated 

alkyl-phenols are produced by two ways, depending on the available raw material. 

The first method consists in alkylating the phenol according to classical Friedel-

Crafts reaction: 

 

 

 

 

 

 

The second method consists in adding an alpha-olefin such as propylene 

trimer or tetramer, or isobutylene dimer, on an aromatic ring. This technique results 

in nonyl, dodecyl and octyl phenols, with branched, thus non biodegradable alkylates. 

One of the most common alkylphenol has been for many years the ter-octyl-phenol 

produced by the Friedel-Crafts alkylation of phenol by isobutylene dimer. As seen in 

the following formula this substance exhibits two tertiary carbon atoms which are a 

challenge to biodegradation. 

 

Common commercial products are the octyl, nonyl and dodecyl-phenol with 

a degree of ethoxylation ranging from 4 to 40. Octyl and nonyl-phenols with EON = 

8-12 are used in detergents. With EON < 5 the attained products are antifoaming 

agents or detergent in non aqueous media. With EON ranging from 12 to 20, they are 

wetting agents and O/W emulsifiers. Beyond EON = 20 they exhibit detergent 

properties at high temperature and high salinity. 



 

 

41

 

The main use of alkyl phenols is as ingredients for domestic and industrial 

detergents, particularly for high electrolyte level: acid solution for metal cleaning, 

detergents for dairy plants, agrochemical emulsions and styrene polymerization. 

 

Since branched alkylates are not readily biodegradable, the trend has been in 

the past decades to go into more linear products. However the additional cost has 

restrained that trend, which has been susbtituted in the past decade by another way to 

cut price and toxicity alike, i.e. the elimination of the benzene ring altogether, e.g. 

the substitution by ethoxylated linear alcohols. The dilemma is that alcohol 

ethoxylates are not as good detergents as their counterpart phenol compounds, just as 

it is the case with alkylbenzene sulfonates versus alkane or olefin sulfonates. 

 

 

2.2.5 Synthesis of New Alkylaryl Sulfonic Acids as Potential Surfactant for 

EOR Application 

 

 

The most commonly used anionic surfactants in oil recovery are synthetic 

and “natural” alkylbenzene sulfonates, alkyl toluene sulfonates, alkyl xylene 

sulfonates, alkyl diphenylether sulfonates, alpha-olefin sulfonates, sulfonated or 

sulfated alkoxylated alkylphenols or mixtures of two or more of these surfactants.  

Many of the above surfactants can be easily synthesized by simultaneously 

alkylating and sulfonating the aromatics as described in Berger et al. (2002).  

 

Berger et al. (2000) developed a new process for producing novel sulfonated 

alkylaromatic compounds in which the aromatic group is sulfonated and alkylated in 

one step. The new process uses an alpha-olefin sulfonic acid to alkylate and 

sulfonate an aromatic compound, such as benzene or naphthalene; or a substituted 

aromatic compound, or any other polycyclic aromatic compounds, such as 

alkylbenzene, alkylnaphthalene, phenol, alkoxylated phenol, or alkoxylated 

alkylphenol. 
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The resulting alkylaryl sulfonic acids differ from existing products by having 

the sulfonate group attached to the alkyl chain rather than the ring. This allows for 

better solubility in water and more thermal stability than conventional alkyl or 

alkylaryl sulfonates.  

 

  Figure 2.10 compares the new process with the conventional process for 

making alkylaryl sulfonic acids and also shows the structural differences between the 

two products.  

 

  Conventional Process: 

 

        HF or AlCl3   + SO3   

  Olefin + Phenol           Alkyphenol                      Alkylphenol Sulfonic Acid  

 

  New Process: 

        + Phenol  

  Olefin + SO3      Olefin Sulfonic Acid                   Alkylphenol Sulfonic Acid 

 

 

 

 

 

 

Conventional                                      New Process 

Alkylphenol Sulfonic Acid               Alkylphenol Sulfonic Acid 

 

 

 

Figure 2.10 Comparison of conventional and new process alkylphenol sulfonic 

acid 

  

 

 

OH

CH3(CH2)m CH( C H 2 ) n+1 S O 3 H 

OH

C H 3 ( C H 2 ) m  CH(CH2)n CH3

SO3H 
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 The alpha-olefin sulfonic acid used is a mixture of alkene sulfonic acid and 

sultone. It is made by the thin-film sulfonation of an alpha-olefin using SO3. During 

the reaction, in the presence of water and heat, sultone is converted into 

hydroxyalkane sulfonic acid.  Subsequent removal of the water at elevated 

temperatures dehydrates the hydroxyalkane sulfonic acid, converting it back into 

sultone and additional alkene sulfonic acid.  This procedure is used in the synthesis 

process to convert the sultone to alkene sulfonic acid and allow it to react with 

aromatic compounds. The ratio of alkene sulfonic acid to sultone is from about 1:1 to 

about 1:4 in alpha-olefin sulfonic acid, depending on manufacturing temperature, 

pressure, flow rates and other parameters known to those skilled in the art. The 

position of the double bond of the alkene sulfonic acid, and the number of carbons in 

the sultone ring can also vary depending on these same parameters (Berger et al., 

2000). Figure 2.11 shows the reactions to produce the new family of surfactants.  

Where,  

R’ = H, alkyl (branched or linear) or alkoxylate (EO, PO BO or mixtures) or OH 

R” = H, alkyl (branched or linear) 

R”’ = H, alkyl (branched or linear) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.11 Reaction of alpha-olefin sulfonic acid with alkylaryl compounds 

CH3(CH2)nCH=CH(CH2)mSO3H

SO2

CH3(CH2)nCHCH2CH2CH2

alkene sulfonic acid

sultone

+H2O

-H2O

CH3(CH2)nCHCH2CH2CH2

O SO2

sultone

hydroxyalkane sulfonic acid

>100oC

CH3(CH2)nCH=CH(CH2)mSO3H
R'R"

R"'

+
R'R"

R'"

CH3(CH2)nCH2CH(CH2)mSO3H

new alkylaryl sulfonic acid

alkene sulfonic acid 140oC

aromatic compound O

CH3(CH2)nCHOHCH2CH2CH2SO3H
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 A catalyst may be useful to reduce the reaction temperature, the reaction time 

and improve yields.  Useful catalysts include sulfuric acid, methane sulfonic acid, 

methane di-sulfonic acid, sulfosuccinic acid, sulfomalonic acid, and other strong acid 

catalysts. Pressure may be necessary in order to reach the desired higher 

temperatures when using low boiling starting materials such as benzene and to 

prevent water from escaping during the early stages of the reaction. The free acid 

may be further reacted with any of a number of cations such as Na, K, NH4, Ca, Mg, 

Ba, Amines, etc. to form anionic surface active salts.  

 

 

2.2.5.1 Example of Preparation of Alkoxylated Alkylphenol Sulfonic Acid 

 

 

 

 

 

 

 

 

58 grams (0.2 Moles) of C14/16 AOS acid along with 71.6 grams (0.2 Moles) phenol 

+ 6 EO (Crisanol™ 0606) were added to a 250 ml glass round-bottomed flask 

equipped with a stirrer, thermocouple temperature controller and reflux condenser.  

The charge was gradually heated to 130 oC and held at temperature. A sample was 

taken periodically and analyzed for sulfonic acid concentration until the sulfonic 

content remained constant.  

 
 
 
 
 
 
 

 

+ 

O ( C H 2 C H 2 O ) x H 

C H 3( C H 2) n C H ( C H 2 ) m C H 2 S O 3H 

O ( C H 2 C H 2 O ) x H 

C 14/ 16A O S  A C I D 
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2.3 Xanthan gum 

 

 

 Xanthan gum is a polysaccharide with a β-D-glucose backbone like cellulose, 

but every second glucose unit is attached to a trisaccharide consisting of mannose, 

glucuronic acid, and mannose. The mannose closest to the backbone has an acetic 

acid ester on carbon 6, and the mannose at the end of the trisaccharide is linked 

through carbons 6 and 4 to the second carbon of pyruvic acid (Figure 2.12). The 

presence of anionic side chains on the xanthan gum molecules enhances hydration 

and makes xanthan gum soluble in cold water. Xanthan gum is produced by the 

bacterium Xanthomonas campestris, which is found on cruciferous vegetables such 

as cabbage and cauliflower. The negatively charged carboxyl groups on the side 

chains because the molecules to form very viscous fluids when mixed with water. 

Xanthan gum is used as a thickener for sauces, to prevent ice crystal formation in ice 

cream, and as a low-calorie substitute for fat. Xanthan gum is frequently mixed with 

guar gum because the viscosity of the combination is greater than when either one is 

used alone. The acetylation and pyruvylation levels vary depending on fermentation 

conditions but typical values. Typically pyruvate residues can be found on 30-40% 

of the terminal mannose residues whereas 60-70% of the internal mannose residues 

may contain acetate groups. Recent work has looked at the properties of GM 

modified strains of xanthan gum that are either deficient in acetate groups, pyruvate 

groups or both (R.Rosalam and R.England, 2005).  
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Figure 2.12 The repeating unit of xanthan gum (R.Rosalam and R.England, 2005). 

 

Xanthan gum solutions have ability to form highly viscous solutions at low 

concentrations and stable viscosity over a wide range of environmental conditions 

namely ionic strengths, heat and pH as well as enzymes. The effect of salt on 

viscosity depends on the concentration of the xanthan gum in solution. At low gum 

concentrations (below 0.3 % w/w), mono-valent salts such as NaCl, it can cause a 

slight decrease in viscosity. Conversely, NaCl addition at higher gum concentrations 

increases solution viscosity, the same effects occur with most divalent metals salts. 

Xanthan has several advantages as a mobility control agent in enhanced oil recovery. 

It is high pseudoplasticy (shear thinning properties), flocculent, stable to pH and 

temperature changes and to high salt concentrations, effective lubricant, thermal 

stability, salt compatibility and allows easy injectability. The special rheological 

properties of xanthan are technologically suitable for the ‘Enhanced Oil Recovery’ 

(EOR) applications. At low concentration, the gum forms high viscosity solution that 

exhibit pseudoplasticity. For the efficient displacement of oil the pumping of 

xanthan gum solution in the rocks is necessary. As a result oil held in the pores of 

the sand stone rocks is displaced. Currently, the world wide consumption of xanthan 

gum is approximately 23 million kg/y, approximately 5 million kg/y are used as a 

drilling fluid viscosifier in the oil industry. The petrochemical industry uses other 

plant-derived polysaccharide and synthetic polymers instead of xanthan gum based 
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on the relative costs of xanthan gum to the other polymers (F.kamal et. al. 2003 and 

P.adhikary et.al. 2004). 

 

Several researchers have investigated using less expensive carbon sources to 

produce xanthan gum. S.D. Yoo, et. al. 1999 used waste sugar beet pulp to produce 

xanthan gum. O.S.Azeez, 2005 demonstrated that cashew tree latex could be used to 

produce xanthan gum. Lopez and Cormenzana, 1996 investigated the use of olive-

mill wastewaters as low cost substrate for xanthan gum production. Variation in the 

amount of amylose and amylopectin in a starch changes the behaviour of the starch. 

The amylose component of starch controls the gelling behaviour since gelling is the 

result of re-association of the linear chain molecules. Amylopectin is usually larger 

in size. The large size and the branched nature of amylopectin reduce the mobility of 

the polymer and their orientation in an aqueous environment. Figure 2.13 (a) and (b) 

shows the structures of the amylose and amylopectin components of a starch 

molecule. The abundance in hydroxyl groups in the starch molecules impart 

hydrophilic properties to the polymer and thus its potential to disperse in water. 

Starch is the second most abundant biomass found in nature, next to cellulose.  

 

 
Figure 2.13 Building Units of Starch (a) Amylose and (b) Amylopectin 

 

 

(a) 

(b) 
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Xanthan gum is a polysaccharide with a β-D-glucose backbone like cellulose, 

but every second glucose unit is attached to a trisaccharide consisting of mannose, 

glucuronic acid, and mannose. The mannose closest to the backbone has an acetic 

acid ester on carbon 6, and the mannose at the end of the trisaccharide is linked 

through carbons 6 and 4 to the second carbon of pyruvic acid (Figure 2.14) The 

presence of anionic side chains on the xanthan gum molecules enhances hydration 

and makes xanthan gum soluble in cold water. 

 

Xanthan gum is produced by the bacterium Xanthomonas campestris, which 

is found on cruciferous vegetables such as cabbage and cauliflower. The negatively 

charged carboxyl groups on the side chains because the molecules to form very 

viscous fluids when mixed with water. Xanthan gum is used as a thickener for sauces, 

to prevent ice crystal formation in ice cream, and as a low-calorie substitute for fat. 

Xanthan gum is frequently mixed with guar gum because the viscosity of the 

combination is greater than when either one is used alone. The acetylation and 

pyruvylation levels vary depending on fermentation conditions but typical values. 

Typically pyruvate residues can be found on 30-40% of the terminal mannose 

residues whereas 60-70% of the internal mannose residues may contain acetate 

groups. Recent work has looked at the properties of GM modified strains of xanthan 

gum that are either deficient in acetate groups, pyruvate groups or both.  

 
 

Figure 2.14 The repeating unit of xanthan gum 
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Xanthan is produced in its native state as a twin stranded, right handed five 

fold helix. The stability of the helix is strongly affected by the ionic environment. 

Upon heating the xanthan helix goes through a transition to a disordered state and 

upon cooling it reverts to a helical structure. However it is believed that native 

xanthan exists in a form where chains are paired and once that has been lost and the 

xanthan molecules allowed to reorder the exact pairing cannot be retained and a 

partially crosslinked structure is formed as helices twist around various neighbors.  

 

Xanthan gum solutions have ability to form highly viscous solutions at low 

concentrations and stable viscosity over a wide range of environmental conditions 

namely ionic strengths, heat and pH as well as enzymes. The effect of salt on 

viscosity depends on the concentration of the xanthan gum in solution. At low gum 

concentrations (below 0.3 % w/w), mono-valent salts such as NaCl, it can cause a 

slight decrease in viscosity. Conversely, NaCl addition at higher gum concentrations 

increases solution viscosity, the same effects occur with most divalent metals salts. 

 

Xanthan has several advantages as a mobility control agent in enhanced oil 

recovery. It is high pseudoplasticy (shear thinning properties), flocculent, stable to 

pH and temperature changes and to high salt concentrations, effective lubricant, 

thermal stability, salt compatibility and allows easy injectability. 

 

The special rheological properties of xanthan are technologically suitable for 

the ‘Enhanced Oil Recovery’ (EOR) applications. At low concentration, the gum 

forms high viscosity solution that exhibit pseudoplasticity. For the efficient 

displacement of oil the pumping of xanthan gum solution in the rocks is necessary. 

As a result oil held in the pores of the sand stone rocks is displaced.  

 

The biosynthesis of microbial heteropolysaccharides such as xanthan is a 

complicated process involving a multi enzyme system. The initial step in the 

biosynthesis of xanthan is the uptake of carbohydrate, which may occur by active 

transport or facilitated diffusion. This is followed by phosphorylation of the substrate 

with a hexokinase enzyme that utilizes adenosine 5’-triphosphate. The biosynthesis 
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involves conversion of the phosphorylated substrate to the various sugar nucleotides 

required for assembly of the polysaccharide-repeating unit via enzyme such as UDP-

Glc pyrophosphorylase. UDP-glucose, GDP-mannose and UDP-glucuronic acid are 

necessary for the synthesis of xanthan with the appropriate repeating unit 

(P.adhikary et.al 2004).  

 

 

 



 

 

 

 

CHAPTER 3 

 

 

 

 

MATERIALS AND METHODOLOGY 

 

 

 

 

Production of chemicals from biomass always has been a goal of many 

researchers. This chapter describes the research methodology and procedures on the 

synthesis of surfactant and xanthan gum as additives from waste and local sources 

that potentially used in EOR applications. The chemicals and apparatus used in the 

experimental study are also presented in this chapter. 

 

 

3.1 Preparation of surfactants 

 

 

3.1.1 Procedures 

 

 

The procedures started from the production of pyrolysis oil, physical 

characterization of pyrolysis oil, extraction of phenol from pyrolysis oil, sulfonation 

of the extracted phenol, and analysis of produced surfactant until surfactant polymer 

flooding experiments are discussed in this chapter. Figure 3.2 shows the production 

process of surfactant. 
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Production of pyrolysis oil 

 

Characterization of pyrolysis oil 

 

Extraction of phenol from pyrolysis oil 

 

Sulfonation of extracted phenol 

 

 

Analysis of produced surfactant 

 

 

Sandpack flooding experiments 

 

 

Figure 3.1 Flow chart of surfactant production process 

 

 

3.1.2 Production of Pyrolysis Oil 

 

 

The first step in this study involves the application of a raw oil palm shell 

conversion to pyrolysis oil by a fluidized bed pyrolysis technology. The fluidized 

bed pyrolysis unit was set up by Dr. Farid’s biomass research group from Faculty of 

Mechanical Engineering, UTM, Skudai, Johor.   
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3.1.3 Material 

  

 

Oil palm shell waste was obtained from Kulai Palm Oil Mills of Federal 

Land Development Authority (FELDA), Johor. The oil palm shell waste was ground 

and sieved to a particle size of 212 – 425 µm. It was then dried in an oven for 24 

hours at 100 oC prior to pyrolysis process.  

 

 

3.1.4 Experiments 

 

 

The procedures start from grinding, sieving and oven – drying of the oil palm 

shells. Figure 3.3 shows the production process of pyrolysis oil. 

 

 

Grinding oil palm shell 

 

Sieving 

 

Oven drying 

 

Feed into reactor/production of pyrolysis oil 

 

 

Liquid collection 

 

 

Stored at low temperature 

 

Figure 3.2 Flow chart of pyrolysis oil production process 
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The equipment used to produce pyrolysis oil was a fluidized bed pyrolysis 

unit with silica sand as the bed material (Figure 3.4). The reactor was 5 cm diameter 

x 30 cm high, constructed of stainless still with full gas flow and temperature 

control. The volume of the reactor was 520 cm3. The reactor was heated externally. 

The incoming fluidizing gas was nitrogen and was preheated before entering the 

reactor. 

 

The silica sand in the fluidized bed was of mean size 256 µm diameter with a 

static bed depth of 6 cm. The fluidizing velocity was 1.7-3 units of the minimum 

fluidizing velocity. The biomass waster fed via a screw feeder and nitrogen gas 

stream to the fluidized bed at a feed rate of 0.6 kg/hr. The motor driven screw feeder 

was installed in order to feed the particles into the reactor. Two electric tubes heater, 

each 1kW power, supplied the heat to the pyrolysis reactor and the gas preheat 

chamber. The fluidization gas flow rate was measured and controlled by gas flow 

meters.  

 

The outlet from the fluidized bed was to a cyclone where the char was 

separated by a method knows as “blown-through” mode. In this method, the char 

was entrained and blown from the fluidized bed while retaining the sand in the bed. 

The vapours and the gases were passed through a water-cooler condenser to ice-

cooled collectors to trap the derived liquid oil. The fluidized bed oil consisted of a 

single liquid phrase.  

 

The preparatory stages included grinding, sieving and oven drying of the oil 

palm shells. It was employed the particle size of 212 – 425 µm. In this study, the 

operating temperature was 450 oC. The running time of the pyrolysis process was set 

to 30 min in each run at feed rate of 0.6 kg/hr. The nitrogen gas flow rate was      

1.26 m3/hr.  6 kg of pyrolysis oil was prepared as a starting raw material. Each time 

of the pyrolysis experiment produced around 250 g of pyrolysis oil. Total of 24 runs 

were done to collect the needed oil.    

 

The general layout of the pyrolysis process is shown in the Figure 3.3. The 

real picture of fluidized bed pyrolysis unit is shown in the Figure 3.4. 
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Figure 3.3 Pyrolysis process–general layout 

 

 
Figure 3.4 Fluidized bed pyrolysis unit.  
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3.1.5 Characterization of Pyrolysis Oil 

 

 

Physical and chemical analysis such as density, kinematic viscosity, pour 

point, heating value, flash point, acidity and miscibility were carried out to complete 

the characterization. The chemical composition in the pyrolysis oil was analyzed by 

FTIR and GC–MS. The methods tested on the physical properties of pyrolysis oil are 

showed as below. The process of which, has been detailed in the following 

subsections. 

 

 

3.1.6 Density 

 

 

The density was measured by using 50 ml pcynometer. 

a. Pcynometer was weighed, Wa.  

b. Pcynometer was then filled with sample. 

c. The mass of the pcynomer with sample was measured Wf. 

d. The density of sample was determined as follows: 

Density of sample = (Wa  - Wf )/ 50 ml 

 

 

3.1.7 Kinematic Viscosity 

 

 

The kinematic viscosity of pyrolysis oil was measured according to ASTM  

D 445. In this standard method the time was measured in seconds for a fixed volume 

of liquid to flow under gravity through the capillary of a calibrated at a closely 

controlled temperature. The model of the instrument used was Koehler KV 3000. 

The Koehler KV 3000 is shown in Figure 3.5. 
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The procedure for the measurement of kinematic viscosity is shown as follows: 

a. A calibrated viscometer was filled with sample.  

b. The viscometer was allowed to remain in the kinematic viscosity bath long 

enough to reach the test temperature, 40 oC. 30 minutes should be sufficient. 

c. The head level of the test sample was adjusted by using suction to a position 

in the capillary arm of the instrument about 7 mm above the first timing 

mark. 

d. The time required for the meniscus to pass from the first to second timing 

mark was measured in seconds to within 0.1 s as the sample flowing freely. If 

this flow time was less than 200 s, a viscometer with a capillary smaller 

diameter would be selected and operation would be repeated.  

e. The procedures from (a) – (d) were repeated to make a second measurement 

of flow time. Both measurements were recorded. 

f. If the two determined values of kinematic viscosity calculated from the flow 

time measurements agree within determinability of ±0.20 %, the kinematic 

viscosity that calculated from the average of these determined values was 

reported. If not, the measurements of flow times were repeated after a 

thorough cleaning and drying of the viscometers until the calculated 

kinematic viscosity determinations agree with the stated determinability.  
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Figure 3.5 Koehler KV 3000 

 

 

3.1.8 Pour point 

 

 

Pour point was determined according to ASTM D 97. The measurement of 

pour point is shown in Figure 3.6. The procedure for measurement of pour point is 

shown as follows: 

a. 50 ml of sample was filled in the test jar. 

b. The test jar was closed with the cork carrying the pour point thermometer. 

The position of the cork and thermometer was adjusted to fit tightly. The 

thermometer bulb was immersed to make sure the beginning of the capillary 

was 3 mm below the surface of the sample. 

c. The test jar was inserted into the jacket. The appearance of the sample was 

observed when the temperature of the sample was 9 oC above the expected 

pour point. The sample was cooled at a specific rate and examined at 

intervals of 3 °C for flow characteristics. 
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d. The test jar was transferred to the next lower temperature bath in accordance 

with the following schedule: 

• Sample was at +27 oC, move to 0 oC bath 

• Sample was at +9 oC, move to -18 oC bath 

• Sample was at -6 oC, move to -33 oC bath. 

e. The test jar was held on a horizontal position for 5 s as soon as the sample in 

the jar did not flow when titled. If the sample showed any movement, the test 

jar was replaced into the jacket immediately and the test of flow was repeated 

at next temperature, 3 oC lower.  

f. The test was continued until the sample showed no movement when the test 

jar was held in a horizontal position for 5 s. The observed reading of the test 

thermometer was recorded.  

g. The temperature recorded in previous step was added with 3 oC and reported 

as pour point.  

.  

 
Figure 3.6 Pour point measurements 
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3.1.9 Heating Value 

 

 

The heating value was measured as calorimetric value by ASTM D 240. The 

procedure of measurement of heating value is shown as follows: 

a. The sample was weighed and added into the cup.  

b. The cup was placed in the curved electrode and the fuse wire was 

arranged to the central portion. 

c. The bomb was slowly charged with oxygen to 3.0 MPa gage pressure at 

room temperature after the test sample and fuse were in place.  

The calorimeter reading was recorded 

 

 

3.2 Flash point 

 

 

The flash point was obtained according to ASTM D 3828 in a small scale 

closed-cup tester. The instrument used to determine flash point was Koehler Rapid 

Tester, model K 16491, as shown in Figure 3.7. The procedure of measurement of 

flash point is shown as follows: 

a. The temperature of the test cup and sample should be maintained at 3 oC 

below the expected flash point. 

b. A small portion (4 ml) of sample was introduced into the test cup.  

c. The test flame was lighted and adjusted it to a diameter of 4 mm. 

d. After a specified time (2 min), a test flame was applied and an 

observation made as to whether or not a flash occurred. 

e. The sample was removed from the test cup. The test cup was cleaned and 

the cup temperature was adjusted 5 oC lower or higher depending on 

whether or not a flash occurred previously. 

f. A fresh sample was introduced and tested. The procedure from (a) to (e) 

was repeated until the flash point was established within 5 oC. 

g. The procedure was then repeated at 1 oC intervals until the flash point 

was determined to the nearest 1 oC.  
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Figure 3.7 Kohler rapid tester model K16491 

 

3.2.1 Acidity 

 

 

The pH of pyrolysis oils is low due to the volatile acids, mainly acetic and 

formic acid (Spila et al., 1998). These acids with water are the main reasons for the 

corrosiveness of pyrolysis oils especially at elevated temperatures (Aubin and Roy, 

1980). The pH of pyrolysis oil was obtained by using pH meter model Orion 410A. 

 

 

3.2.2 Infra-Red (IR) characterization 

 

 

Perkin Elmer Spectrum One Fourier Transform Infra-Red (FTIR) 

spectrophotometer was used to characterize the pyrolysis oil produced from oil palm 

shell. The functional groups in the pyrolysis oil were determined from the infra-red 

spectrum. The absorption frequency spectra were recorded and plotted. The FTIR 

spectrophotometer provides the adsorption spectrum in percentage incident intensity, 
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along the wave numbers 4400 to 370 cm-1. The standard IR spectra of hydrocarbons 

were used to identify the functional group of the components of the derived liquids. 

 

 

3.2.3 Miscibility 

 

 

The miscibility of the pyrolysis oil with water and other solvents was tested. 

a. The following solvents were used. 

• Water 

• Methanol 

• Chloroform 

• Paraffin, alpha olefin (1-hexadecene) 

• NaOH (sodium hydroxide) 

b. 1 ml of solvent was added into pyrolysis oil at volume ratio of 1:1, the 

miscibility was observed.  

 

 

3.2.4 GC–MS analysis 

 

 

The GC–MS system used a J & W Scientific DB 1701 capillary column in a 

HP 5989x Hewlett Packard unit. Methanol was used as the standard solvent. The 

following conditions were used for the DB 1701 column. The library search was 

Wiley Database.  

Column dimensions : 60 m x 0.25 mm 

Film thickness  : 0.25 µm 

GC condition : Inlet system: split injector, He, 250 oC. 

 Oven temperature: 40 oC isotherm for 4 min, 3 oC min-1 to 

280 oC. Detection: FID/MS, 280 oC. 
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3.3 Extraction of Phenols from Pyrolysis Oil 

 

 

In this study, liquid-liquid extraction (solvent extraction) was used to extract 

the phenol and phenolic compounds from the pyroysis oil. Evaporation method was 

used to remove the solvent being used. The procedure of extraction is outlined as 

follows: 

 

1. 250 g of pyrolysis oil derived from oil palm shell was dissolved in 250 g of 

ethyl acetate with the oil to solvent in weight ratio of 1:1. 

2. The mixture was filtered with Whatman filter paper of specification of 12.5 

cm x 100 circles. 

3. The filtered oil–ethyl acetate mixture was then collected in a separating 

funnel as shown in Figure 3.8. 

4. A 5 wt % of sodium bicarbonate solution was prepared and the pH of the 

solution was maintained at approximately 8 – 9.5. 

5. 500 g of 5 wt % sodium bicarbonate solution was mixed with the oil–ethyl 

acetate mixture in the separating funnel with the oil-ethyl acetate mixture to 

sodium bicarbonate solution in weight ratio of 1:1. 

6. A resulting aqueous bicarbonate layer which contained strong organic acids 

and highly polar compounds was discharged. The ethyl-acetate soluble 

fraction contained phenol, phenolic compounds and neutral fractions. 

7. The ethyl-acetate soluble fraction was then filtered. 

8. The filtered ethyl-acetate soluble fraction was evaporated using E-01611-00 

Economy Rotary Evaporator. The evaporation was carried out at 60 oC with 

rotation speed of 90 rpm.  

9. The phenol and neutral fractions could be further fractionated into isolated 

phenolics and neutrals if desired. The ethyl-acetate soluble fraction from step 

7 was added with 5 wt % sodium hydroxide solution in a 1:1 ratio by weight 

in a separating funnel. The 5 wt % sodium hydroxide solution was 

maintained at pH 12 – 13. 

10. The funnel was shaken and phases were separated.  
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11. The alkaline aqueous solution contained phenols was acidified with a 

solution of sulfuric acid 50 % by weight to a pH near 6. Ethyl acetate was 

added into the neutralized aqueous solution in a 1:1 ratio by weight to extract 

the phenol and phenolic compounds. 

12. The ethyl acetate soluble fraction from step 11 was then separated and 

evaporated by the evaporation technique mentioned in step 8.  

 

The chemicals used are given in Appendix A. Table 3.1 shows the different 

extraction conditions set for the experiment run. 

 

 
Figure 3.8 Extraction of phenol from pyrolysis oil 

 

 

 



 65

Table 3.1: Different extraction conditions set 

Experiment No. 

Weight of pyrolysis oil used, 

kg Extraction 

1 0.2500 With NaOH 

2 2.0000 With NaOH 

3 0.5254 Without NaOH 

4 0.6523 Without NaOH 

5 0.3212 Without NaOH 

6 0.6823 Without NaOH 

7 0.8754 Without NaOH 

Total 5.3066  

 

 

3.3.1 Sulfonation  

 

 

 The sulfonation method in this study was according to Berger et al. (2000). 

The method used the alkene sulfonic acid to alkylate and sulfonate phenol, 

alkylphenol, alkoxylated phenol to produce corresponding sulfonic acid. The alkene 

sulfonic acid used to alkylate and sulfonate phenolic compounds was produced from 

the falling film sulfonation unit.  

 

 

3.3.2 Sulfonation of Alpha Olefin 

 

 

The sulfonation unit which was employed to produce alkene sulfonic acid 

consisted of a 5 mm I.D. falling film reactor. The experiment was conducted at 

Advanced Oleochemical Technology Division (AOTD) of Malaysia Palm Oil Board 

(MPOB). The sulfonation unit was set up by research group of AOTD. The alkene 

sulfonic acids used were 1–tetradecene and 1–hexadecene. The schematic of the 

sulfonation unit is shown in Figure 3.9.  
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Operation procedure: 

1. The heaters and circulators were switched on. 

2. The bottle was filled up with oleum. 

3. The pumping rate for oleum was set to be 0 g/min. 

4. The peristaltic pump was switched on and the pumping rate of sample was 

adjusted to 600 g/hr. 

5. Sample was allowed to flow through the thin film reactor for three minutes.  

6. The nitrogen was flowed into the system. The amount of total of nitrogen 

pushed in was measured and adjusted to give the SO3 diluted to 5 % weight 

in nitrogen by using manometer. 

7. The weight balance of sample injected into the thin film reactor was 

measured in every minute and adjusted to the desired feed rate. 

8. The oleum was injected and the peristaltic pump rate was adjusted to the 

desired feed rate. 

9. The reaction could be observed by the change in the colour of sample. The 

sample was in dark colour after reaction had been taken place. The 

temperature was also increased during the reaction.   

10. The weight of the sample and oleum was recorded in every minute. 

11. The alpha olefin sulfonic acid was collected directly from the falling film 

sulfonation unit and chilled to 0 oC. It was then immediately transferred to a 

freezer for storage until used. 

The calculations of the feed rate of sample, oleum and nitrogen are given in 

Appendix B and Appendix C. 

 

 

3.3.3 Sulfonation and Alkylation of Extracted Pyrolysis Oil 

 

 

Procedure: 

1. 100 g of extracted pyrolysis oil was added to a 500 ml round-bottom flask 

equipped with magnetic stirrer, thermometer, and water condenser. 

2. 30 g of C14 alpha olefin sulfonic acid was then added while the extracted 

pyrolysis oil was heated to 90 oC.  
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3. The mixture was held at 120 oC over a two hour period and periodically 

analyzed for increasing acid value (AV) until the value remained 

constant.  

4. After the acid value remained constant the sample was cooled.    

5. The final product was analyzed to determine the percentage of 

alkylphenol sulfonate produced from pyrolysis oil. CID titration using 

Hyamine 1622 is a method of determining surfactant activity of anionic 

materials.   

 

The experiment showed above was also carried out on the extracted pyrolysis 

oil with different weight ratio of C14 alpha olefin sulfonic acid (100:30; 100:60; 

100:90). The sulfonation process of extrated pyrolysis oil was then repeated using 

C16 alpha olefin sulfonic acid. Figure 3.10 shows the sulfonation and alkylation of 

extracted pyrolysis oil process.  

 

The sulfonated and alkylated pyrolysis oil was then neutralized with 50 % 

sodium hydroxide solution. The neutralized product was then dried with evaporation 

method and tested for the anionic active matter and surface tension.  

 

Seven different surfactants were produced. The types of surfactants are given 

in Table 3.2.  

 

Table 3.2: Types of the surfactant used in the experiment 

Surfactant 

Alkene 

sulfonic acid Type 

Extracted phenols:  

alkene sulfonic acid 

   (weight ratio) 

SURF1 Tetradecene Anionic 100:30 

SURF2 Tetradecene Anionic 100:60 

SURF3 Tetradecene Anionic 100:90 

SURF4 Hexadecene Anionic 100:30 

SURF5 Hexadecene Anionic 100:60 

SURF6 Hexadecene Anionic 100:90 

SURF7 Tetradecene Anionic 100:60 (not extracted phenol)
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Figure 3.9 Sulfonation unit with falling film reactor 
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Figure 3.10 Sulfonation and alkylation of extracted pyrolysis oil 

 

 

3.3.4 Analysis of Surfactant 

 

 

The acid value (AV) and the surfactant activity of the sulfonation product 

were determined. The product from the sulfonation process was then analyzed by 

FTIR. The functional groups presence in the surfactant can be determined from the 

infra-red spectrum. The surfactant was first evaporated after neutralization prior to 

analysis. The dried surfactant was mixed with potassium bromide (KBr) and pressed 

under pressure to form a thin KBr disc that was then scanned on the FTIR model.  
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3.3.5 Acid Value  

 

 

The following reagents were prepared: 

 Reagent A: 2 g of sodium hydroxide was dissolved in 500 ml methyl alcohol. 

The actual normality was determined by neutralization with potassium 

hydrogen phthalate by using 1 % of phenolphthalein as the indicator 

accurately.  

 Reagent B: 250 ml of isopropyl alcohol was added in the equal volumes of 

toluene. The mixture was then neutralized with reagent A by using 1 % of 

phenolphthalein as the indicator.  

 

Procedure: 

1. The size of sample was determined from the Table 3.3. 

 

Table 3.3: Estimation of sample size for acid value determination 

Acid value Approx. wt of sample, g Accuracy of weighing 

0 – 5 20 ± 0.05 g 

5 – 15 10 ± 0.05 g 

15 – 30 5 ± 0.05 g 

30 – 100 2.5 ± 0.001 g 

100 and over 1.0 ± 0.001 g 

 

2. 1 g of sulfonated pyrolysis oil was weighed into Erlenmeyer flask. 

Approximately 100 ml of reagent B and 1 ml of indicator were added and 

mixed until the sample was completely dissolved. 

3. The mixture from step 2 was titrated with the standard alkali solution 

which was reagent A mentioned above. It was shaken vigorously to the 

appearance of the first permanent pink colour of the same intensity as that 

of the neutralized solvent before addition. The colour must persist for 1 

min.The formula for calculation of acid value is shown in Appendix D.  
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3.3.6 Hyamine Titration for Anionic Active Matter using Methylene Blue 

Indicator 

 

The following reagents were used:  

 Reagent A: Chloroform, reagent grade 

 Reagent B: Ethanol, reagent grade, denatured was diluted to 50 % with 

deionised or distilled water 

 Reagent C: Indicator solution was prepared by adding 0.03 g methylene blue 

HCl, 12 g of 96 wt% of sulfuric acid (reagent grade), 50 g of sodium sulfate 

(reagent grade) into 100 ml distilled water. The solution was then diluted to 1 

liter with distilled water. 

 Reagent D: 2.1g Hyamine 1622 was added into 1 litre distilled water for 

preparation of 0.0045 Molar Hyamine solution. The solution was then titrated 

with 99 wt % of sodium dodecylsulfate to determine the actual molarity.  

 

Procedure: 

 

1. The neutralized sulfonated pyrolysis oil was weighed into a 250 ml 

volumetric flask.  

2.  A little reagent B (2 to 5 ml) was dispersed into the sample and diluted to 

250 ml with distilled water. 50 % ethanol was used to break foam as 

necessary. The aliquot was mixed well. 

3. 10 ml of aliquot from step 2 was pipette into a 100 ml glass stopper cylinder. 

4. 15 ml of reagent A and 25 ml of reagent C were added into the 100 ml glass 

stopper cylinder. 

5. The sample was titrated with reagent D. It was shaking well between each 

addition.  

6. The endpoint was reached when the intensity of the blue indicator was equal 

in the water and chloroform layers. 

7. The methylene blue indicator would dissolved in the chloroform (bottom) 

layer until the endpoint was near and it would went completely into water 



 72

(upper) layer if the endpoint was passed. The formula for calculation of 

anionic active matter is shown in Appendix D. 

 

3.3.7 Surface Tension Measurements 

 

 

Surface tensions of different surfactant concentrations’ solutions were measured 

by using a KRÜSS tensiometer at room temperature, 26 oC. The KRÜSS tensiometer 

K6 is shown in Figure 3.11. 

 

 
Figure 3.11 Tensiometer K6 
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3.4 Preparation of xanthan gum  

  

 

3.4.1 Microorganism  

 

 

 Xanthomonas campestris (NRRL B-1459) is the bacteria employed for 

xanthan production. Xanthomonas campestris was obtained from Northern Regional 

Research Laboratory, US Department of Agriculture. The bacteria were maintained 

on YM agar plates (3 g/L yeast extract, 3 g/L malt extract, 5 g/L peptone, 10 g/L 

glucose (dextrose), 20 g/L agar). Commercial xanthan gum was purchased from 

Fluka. 

 

 

3.4.2 Slant Culture Inoculum 

 

 

A lyophil preparation of  Xanthomonas campestris was opened aseptically 

and suspended in 7 mL sterile YM (Figure 3.12).This suspension was incubated at 

28° C for 24 hours and streaked on agar plates to check culture viability and purity 

(Figure 3.13) . Culture was grown on an agar slant and maintained at 4° C for future 

use. At two to three weeks intervals, the culture was transferred to a fresh YM agar 

slant, incubated for 20 to 24 hours and stored at 4° C. 
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Figure 3.12 Stock cultures of xanthomonas campestris in 7 mL sterile YM 

 

 
Figure 3.13 Colonies of xanthomonas campestris on a streak plate 

 

 

The 20 mL of 18-hour 50 mL culture was added with 10 % of glycerol  

(a cryogenic agent) divided into 20 microcentrifuge tubes and stored in the freezer at 

-4° C as stock cultures (Figure 3.14) 
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Figure 3.14 Stock cultures of xanthomonas campestris into microcentrifuge tubes 

 

 

3.4.3 Culture Media  

 

 

The inoculum growth medium was YM Broth : 3 g/L yeast extract, 3 g/L 

malt extract, 5 g/L peptone, 10 g/L glucose (dextrose). It was same as the glucose 

agar except agar was omitted. The production medium compositions are following : 

5 g/L K2HOP4 , 1.14 g/L NH3NO4, 0.1 g/L MgSO4. The pH has to be adjusted to 7.0 

– 7.2 by addition of H2SO4. Tap water was used to provide trace minerals. Media in 

laboratory glassware was autoclaved at 121° C. Sterilization time is 15 minutes. The 

formulas for yeast malt (YM) agar, YM broth and production medium recommended 

by United State Department of Agriculture’s Northern Regional Research 

Laboratory (NRRL). 
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3.4.4 Local fruit juices shaker fermentations 

 

 

3.4.4.1 Inoculum preparation 

 

Cultures were inoculated with a 10 % (v/v) inoculum prepared as follows. 

One standard loop fresh of cells grown on agar a plate was transferred to an 

Erlemneyer flask 200 mL containing 20 mL of YM Broth.  First-stage inoculated 

media was incubated for 24 hours at 200 rpm (rotary) at 28° C. The 24-hour 7 mL 

culture was transferred to Erlenmeyer flask 45 mL of YM broth in of Erlenmeyer 

250 mL. Cultivation was carried out by shaking at 200 rpm and 28° C for 18 hours. 

 

 

3.4.4.2  Experimental methods  

 

Experiments were carried out using Erlenmeyer flask 1000 mL and 

Erlenmeyer flask 500 mL containing 20 mL of medium and 30 mL of sterilized of 

local fruit which were incubated with rotary shaking at 200 rpm for 2 days at 28 ± 1º 

C. The amount of local carbon sources 15 % v/v used in the production medium. The 

fermentation conditions for the whole experiment at pH 7. Nevertheless dissolved 

oxygen was not controlled during incubation.  

 

An Optic ivymen incubator was used to culture cells in liquid inoculum. A 

HirayamaTM autoclaved was used to sterilize the equipment. A MemmertTM 

incubator functioned as an oven to dry and sterilize the equipment. A Bench 

centrifuge superminor was used to precipitate the cells.  

 

 

3.4.4.3 Local Fruits 

  

 Local fruits were obtained from supermarket which is containing pineapple, 

watermelon, papaya, sugarcane, honeydew, mango, coconut sap, guava, star fruit and 
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dragon fruit.  Figure 3.15 shows the preparation of local fruits as local carbon 

sources for xanthan production. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.15  Flow chart of preparation of local fruits 
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3.4.5 Analytical methods  

 

 

3.4.5.1 Extraction and purification process of Xanthan Gum  

  

 

Xanthan gum was extracted and purification process according to the 

schematic in Fig 3.17. Xanthan gum was recovered from the cell-free supernatant by 

precipitation with three volumes ethanol (96 %). The precipitate formed was 

removed, lyophilized and weighed. The xanthan gum precipitated was dried in the 

oven at 50° C for 72 hours.  

 

 

Extraction process 
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Purification process 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.16 Flow chart representatives of the extraction and purification process of 

xanthan gum produced using local carbon sources  

 

 

3.4.5.2 Pyruvate and acetate content   

 

 Xanthan samples (1000 ppm) were hydrolyzed in 1 M HCl for 2 hours at 80° 

C. Then 10 mL of H2O was added to follow extraction with ethyl acetate 

(CH3CO2C2H5). The procedure was repeated three times. The organic phase was 

removed through evaporation and the residue was diluted in water, filtered through a 

0.45 µm filter. A 0.2 M H3PO4 solution was used as eluent at a flowrate of 0.8 

mL/min. Pyruvate and acetate content were determined by HPLC using C18 column 

and the UV detector at 210 nm. 

Solubilization  
T = 85 º C, 10 min

Centrifugation 
3500 rpm 15 min

Precipitation in ethanol 

Drying 
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Filtration 
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3.4.5.3 Gelatinization of refined xanthan gum 

 

 

Chromium (III) acetate was added into refined xanthan gum (1500 ppm) with 

ratio 10 : 1. The mixture was stirred slowly at room temperature until it is fully 

dissolved. The solution was added into small glass bottle. Then, solution was placed 

into oven at 60º C. The observation was done within for 9 days. The strength of gel 

based on gel strength code.  

 

 

3.4.5.4  Viscosity measurements   

 

 

 The viscosity of the cell-free fermentation broth was measured with a 

Brookfield Engineering Laboratories Inc. viscometer (Model CPS) using spindle 18 

in the range of 0.1 – 120  S-1. Viscosity measurements were carried out at room 

temperature. The viscosity was then compared between xanthan gum commercial in 

distilled water and distilled water with 0.2 w/w % and 0.4 w/w % NaCl. The xanthan 

gums produced with concentration 1000 ppm were fully dissolved before viscosity 

was measured [12].  

 

 

3.4.5.5 FTIR analysis  

 

  

 The infrared spectra of xanthan gum were run in KBr discs using a Perkin 

Elmer spectrum one FTIR spectrophotometer in the frequency range of 4000 – 400 

cm-1. The dry polymer was mixed with potassium bromide (KBr) and pressed into 

pellets under pressure to form a thin KBr disc. Differential spectra of xanthan gum 

purified were also recorded.  
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3.4.5.6 Glucose Concentration 

 

 The glucose concentration of local fruit was determined by using a glucose 

analyzer ( Model YHI 2700). The fruit juices from local fruit were presented to the 

needle port for automatic sample injection. The analysis is based on membrane 

glucose.  

 

 

3.4.5.7 Solid-state NMR Spectrocopy 

 

 

 The molecular structure of xanthan gum produced was recorded using 13C 

NMR spectra. The 13C NMR spectra were acquired using Bruker Avance 400. The 

sample was packed in 4 mm zirconia rotors using Kel-F end caps and spun at speeds 

of 7 kHz. 

 

 

3.4.5.8 Oil Displacement Experiment 

  

 

Brine and paraffin were used as the aqueous and oleic phases in the 

experiments. Brine was 3 wt % NaCl solution. Sand pack flooding was conducted at 

the ambient temperature. Sand pack holder of 2.4 cm in diameter and length of 30 

cm were used. A SageTM Pump – Model M362 and pressure gauge were used. For 

each test, 150 – 250 µm of clean silica sand was packed. The silica sand was used 

only once for each run. The porosity of the sand pack was 44 – 49 %, and the 

absolute permeability to water was approximately 7.0 – 8.5 Darcy. The displacement 

tests were conducted horizontally. The polymer used in this study was xanthan from 

Fluka. The experiment included waterflooding succeeded by surfactant solution 

injection then followed by polymer flood. This was proposed to quantify the 

surfactant polymer flooding recovery as a tertiary method for water flooding.  
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The procedures are stated as follows (Babadagli et al., 2002): 

a) The sand pack was injected with brine until it was 100 % saturated.  

b) The sand pack was then injected with oil to irreducible water saturation, 

Swi. All the experiments were performed at a constant oil rate of            

0.3 ml/min. 

c) The sand pack was aged for 1 day before starting the waterflooding. 

d) The sand pack was then flooded by brine solution. The experiment was 

continued until 100 % produced water cut was reached. 

e) The oil remaining in the sand pack after the waterflood was then 

subjected to various injections of surfactant solution for further oil 

recovery. 

f) 2 PV chemical slug of 5 wt % surfactant was injected into the sand pack 

and it was followed by 2 PV of 500 ppm xanthan flood.   

g) The brine was then injected into the sand pack at a constant rate of 0.3 

ml/min.  

 

 Table 3.4 summarizes the information of the experiments. All the 

experiments were carried out at ambient temperature. Figure 3.17 is a schematic for 

the apparatus used in the displacement experiment.  

 

Table 3.4: Details of the oil displacement experiments 

 

Exp. 
No. Chemical type and concentration Experiment Type 
1 SURF1 - 0.5 % , Xanthan 500 ppm Brine + Surf.+ Polymer 
2 SURF2 - 0.5 %, Xanthan 500 ppm Brine + Surf.+ Polymer 
3 SURF3 - 0.5 %, Xanthan 500 ppm Brine + Surf.+ Polymer 
4 SURF4 - 0.5 %, Xanthan 500 ppm Brine + Surf.+ Polymer 
5 SURF5 - 0.5 %, Xanthan 500 ppm Brine + Surf.+ Polymer 
6 SURF6 - 0.5 %, Xanthan 500 ppm Brine + Surf.+ Polymer 
7 SURF7 - 0.5 %, Xanthan 500 ppm Brine + Surf.+ Polymer 
8 Xanthan commercial- 500 ppm Brine + Polymer 
9 Xanthan produced – 500 ppm  Brine + Polymer 
9 SURF1 - 0.5 % Brine + Surfactant 
• Surf. = surfactant 
• Exp. = experiment 
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Figure 3.17 Experimental apparatus for displacement experiment 
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CHAPTER 4 

 

 

 

 

RESULTS AND DISCUSSION 

 

 

 

 

This chapter presents the production of surfactant and xanthan gum as 

additives for enhanced oil recovery. It was also included the physical properties and 

the chemical compositional analysis of surfactant through fluidized bed reactor 

technology and xanthan gum through shaker fermentation. The extraction of 

phenolic compounds from pyrolysis oil and the production of surfactant are 

described. Next, the results of the analysis of the produced surfactant and xanthan 

gum are also presented. The analyses include the volumetric estimation of surfactant 

and the identification by FTIR. This chapter also describes the surfactant polymer 

flooding using the produced surfactants and xanthan gum. The results were 

evaluated in terms of the final oil recovery. 

 

 

4.1 Production of surfactants  

 

 

4.1.1 Physical and Chemical Characterization of Pyrolysis Oil 

 

The products obtained from the pyrolysis oil palm shell were liquid, gas and 

char. The liquid yield was found to be 40 wt % of the dry feedstock. The pyrolysis 
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oil produced was dark in colour, viscous liquid with a smoky odour. No phase 

separation was observed in the pyrolysis oil. The pyrolysis gas was flared to the 

atmosphere. The gas and char had not been studied.  

 

 

4.1.2 Physical Properties of Pyrolysis Oil 

 

 

Physical properties for the pyrolysis oil were determined using standard 

methods. The physical properties of the pyrolysis oil are summarized in the Table 

4.1 and compared to the Islam et al.’s study (1999).  

 

Table 4.1: Physical properties of palm shell pyrolysis oil and its comparison 

Physical properties Present study Islam et al.'s study 

 2006 1999 

Calorific value (MJ/kg) 16.2 22.1 

ASTM D240   

    

Density (g/cm3) 1.17 1.20 

   

    

Viscosity ( at 50 oC) (cSt) 6.62 14.63 

ASTM D 445   

    

pH 2.3 2.7 

    

Flash Point (oC) 60 54 

 (ASTM D 3828) (ASTM D93) 

    

Pour point (oC) -22 -10 

ASTM D 97   
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When comparing the viscosity obtained from Islam et al. (1999) which was 

14.63 cp, the viscosity of the pyrolysis oil in this study was lower (6.62 cp). The 

lower viscosity was due to the higher water content in the pyrolysis oil. The heating 

value of the pyrolysis oil was affected by the composition of the oil. The higher 

heating value of palm shell pyrolysis oil in this study was lower than previous study, 

which was 16.2 MJ/kg due to the presence of high percentage of moisture 

components. The water was not removed from the pyrolysis oil prior to the analysis. 

Extra cost is needed if fractionation of the oil was carried out. Pyrolysis oil contains 

low-boiling (below 100 oC) water-soluble compounds and hence conventional drying 

methods cannot be used. The amount of volatile water-soluble compounds in the 

pyrolysis oil is high and hence xylene distillation [ASTM D 95] in which the water is 

distilled away with a co-solvent, cannot be used too. (Oasmaa and Peacocke, 2001).  

 

The density of pyrolysis oil was 1.167 g/cm3, which was relatively low as 

well. For the pyrolysis liquids analyzed the low viscosity was an indication of a low 

pour point. The lower viscosity, 6.62 cp at 50 oC, with a low pour point -22 oC, was 

explained by the high water content and lower proportional of water-insoluble of the 

oil. The pyrolysis oil had a low pH value of 2.3.  The pH was affected mainly by 

volatile acids and the diluting effect of water. The flash point was 60 oC, which mean 

it can be stored safety at room temperature.  

 

The pyrolysis oil was acidic, unstable when heated, had a low heating value 

and contained more water. The properties of the pyrolysis liquids analyzed vary a lot 

depending on the feedstock and the pyrolysis process conditions. The oil palm shell 

in this study was stored in open air condition prior to the pyrolysis process.  

Exposure of the raw material to the atmosphere can be attributed to the difference in 

the properties of feedstock, e.g., loss of some light compounds and oxygen to the air. 

In addition, Islam et al. (1999) obtained the pyrolysis oil at a fluidized bed 

temperature of 500 oC, which is different with the reaction temperature in this study, 

450 oC.  In this study, the fluidized bed temperature could not be increased due to the 

limitation of the maximum current that could be achieved by the system. The system 

would be unstable if the heater was overheated. 
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 Four stages were observed when heating the pyrolysis oil.  

1. First stage, the viscosity of the pyrolysis oil increased due to the 

polymerization reactions.  

2. Second stage, an aqueous phase was separated out from the heavy lignin 

– rich phase. The liquid started boiling at 99 oC (below 100 oC).  

3. Third stage, gummy formation from the heavy lignin – rich phase when 

the temperature was raised to about 150 oC. 

4. Fourth stage, char or coke formation from the gummy phase at the 

temperature above 150 oC. The char or coke was a black shining material.  

 

The observation above is in agreement with the work by Oasmaa and 

Peacocke (2001). The distillation curve was not reported. Flashing occurred 

immediately when giving away 50 % of the volume at 150 oC.    

 

 

4.1.3 Solubility with Water and Other Solvents 

 

 

 The pyrolysis oil from oil palm shell was semi–soluble in water. Water was 

easily added into the pyrolysis oil from oil palm shell. However, black sticky 

material formed and stuck to the wall of the test tube when adding excess water into 

the oil. A phase separation occurred when adding more water to the pyrolysis oil. 

The water insoluble lignin derived fraction separated out of the aqueous phase. The 

physical appearance of the black sticky material showed that the water-insoluble 

fraction was separated. 
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Figure 4.1 The solubility of pyrolysis oil in methanol in 1:1 volume fraction 

 
Figure 4.2 The dissolubility of pyrolysis oil in hexadecene in 1:1 volume 

fraction 
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The solubility of pyrolysis oil in other solvents was affected by the degree of 

polarity. In this study, the pyrolysis oil fully dissolved in methanol and ethyl acetate, 

which were polar solvent. These solvents dissolved 100 % of the pyrolysis oil. The 

result is shown in Figure 4.1. Acetone was also a good solvent but not as effective as 

alcohols. It is believed that the pyrolysis oil contained high polarity compounds. The 

pyrolysis oil had high oxygen content due to aldehydes, ketones, carbohydrates, 

phenols, and lignin derived material. These compounds caused the polarity of 

pyrolysis oil and high solubility in polar solvent. 

 

The pyrolysis oil did not dissolve in hydrocarbons like hexane, n–paraffin 

diesel fuels and polyolefins. It also did not dissolve in alpha olefin such as 1- 

hexadecene. Figure 4.2 shows the dissolubility of pyrolysis oil in hexadecene with 

1:1 volume fraction. All the sample of pyrolysis oil produced in this study showed 

the same behaviour in the solubility tests.  

 

 

4.1.4 FTIR Characterization 

 

 

The functional groups of the pyrolysis oil were determined by absorption 

frequency spectra. All pyrolysis oils subjected to the FTIR analysis were derived 

from the same conditions: particle size 212 – 425 µm, nitrogen flow rate of 1.26 m3/ 

hr and operating temperature of 450 oC.  Due to the limitation of the pyrolysis 

equipment, a large amount of the pyrolysis oil could not be produced through only 

one run. A total of 24 runs were carried out to collect the needed pyroysis oil, 

approximately 6 kg. Therefore, in order to investigate the consistency of the 

equipment and the quality of the produced pyrolysis oil, four pyrolysis oils were 

taken from different production period and subjected to the FTIR analysis. They 

were labelled as pyrolysis oil A, B, C and D. The spectrums recorded after scanning 

on the FTIR are shown in Figure 4.3 to Figure 4.6. Same absorbance peak areas were 

found.  It can be seen that their peak patterns were very similar, showing that their 

functional groups should be also similar.  
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Figure 4.3  Infra-red spectrum of pyrolysis oil A produced from oil palm shell 

 

 
 

Figure 4.4  Infra-red spectrum of pyrolysis oil B produced from oil palm shell 
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Figure 4.5  Infra-red spectrum of pyrolysis oil C produced from oil palm shell 

 

 

 
Figure 4.6  Infra-red spectrum of pyrolysis oil D produced from oil palm shell 
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Table 4.2: FTIR functional groups and the indicated compounds of the pyrolysis oil 

 

Frequency range 

(cm-1) Group Family 

      

3500 – 3200  O−H stretch Alcohols, phenols (H-bonded) 

3400 – 2400  O–H stretch  − COOH ( in carboxylic acids) 

2000 – 1660   C=C stretch Aromatics  

1725 – 1705 C=O stretch Ketones 

1600 – 1450  C=C stretch Aromatics 

1475 – 1315  C−H bending Alkanes 

1260 – 1140  C–O stretch Phenols 

1300 – 1000 C−O stretch 

Alcohols, esters, ethers, carboxylic 

acids, anhydrides  

  900 – 690  

C–H out-of-plane 

bend   Aromatics  

 

The compositional groups are presented in Table 4.2. The IR absorption 

bands were analyzed refer to the Chemical Analysis by Rubinson (1987). The IR 

spectra of alcohols and phenols gave characteristic broad O–H stretching absorptions 

in the region of 3600–3200 cm-1. The presence of alcohols and phenols (H –bonded) 

O–H stretch in pyrolysis oil was indicated by the absorbance peak of O–H stretching 

vibration between 3500–3400 cm -1. The carboxylic acid was indicated by the 

absorbance peak of O–H stretching in between 3400–2400 cm-1.  

 

The absorbance peaks between 2000–1600 cm-1 represented the C=C 

stretching vibration indicated the presence of C=C bond in aromatic ring (usually 

shows several peaks). The frequency range of 1725–1705 cm-1 presented ketones of 

C=O stretching.  The peaks in between 1600–1450 cm-1 were another indication of 

the presence of aromatic ring due to the C=C stretching vibration. The possible 

presence of alkanes group was indicated by the strong absorbance peak of C–H 

bending in the regions 1615–1475 cm-1. The presence of the significant peaks at 
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1640 and 1700 cm-1 could be ascribed to C–O (carbonyl) stretching vibrations 

indicative of the ketones, phenols or aldehydes, or represent C=C stretching 

vibrations indicative of alkenes and aromatics. Absorptions due to the C–O 

stretching for alcohols and phenols also occurs in the fingerprint region, but can 

sometimes be distinguished since they tend to be stronger than surrounding 

absorptions. They occurred in the regions 1260–1140 cm-1 for phenols. C–H 

stretching and bending vibrations between 1475–1315 cm-1 indicated the presence of 

alkane groups in pyrolysis oil. The band at 1389 cm-1 was ascribable to bending 

vibrations for CH3 groups. The peaks between 1200–1000 cm-1 were indication of 

the presence of primary, secondary, tertiary alcohols, ethers and esters due to C–O 

stretching. Absorbance peaks of C–H out of plane bending between 900–650 cm-1 

indicated the presence of single, polycyclic and substituted aromatic compounds.  

 

 

4.1.5 GC – MS Characterization 

 

 

The results of the FTIR were confirmed with the GC–MS analysis. Two 

samples were subjected to GC–MS for the chemical compound identification, which 

are pyrolysis oil A and B. Both were produced at the same conditions: particle size 

212 – 425 µm, nitrogen flow rate of 1.26 m3/ hr and operating temperature of 450 oC 

but in different production period. GC–MS analysis was carried on these two 

samples in order to get an idea of the type of organic compounds in the pyrolysis oils 

which produced at the same conditions. Table 4.3 and Table 4.4 show the detailed 

analysis of the pyrolysis oil. The GC–MS chromatograms of the pyrolysis oils are 

given in Appendix E.   
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Table 4.3: Tentative GC–MS characterization of pyrolysis oil A from oil palm shell 

Chemical compounds Area percent, % 

Phenolics  

Phenol 36.19 

2 methoxy phenol (guaiacol) 4.58 

2,6-dimethoxy phenol 4.57 

2-methoxy-4 methyl phenol 2.40 

4-ethyl -2 methoxy phenol 2.21 

3-[(trimethylsily)oxy]-phenol 1.96 

2-methoxy-4(1-propenyl ) phenol 1.48 

2,6-dimethoxy-4-(2-propenyl) phenol 1.39 

4-hydroxy-3-methoxy benzaldehyde (vanillin) 0.96 

2-methyl phenol (o-cresol) 0.52 

4-methyl phenol (p-cresol) 0.49 

4-hydroxy-3,5-dimethoxy benzaldehyde 0.43 

2-methoxy -4-propyl phenol 0.26 

 Non- phenolics  

Triphenylphosphine oxide 12.97 

4-hydroxy benzoic acid 6.11 

4-hydroxy -methyl ester benzoic acid 2.04 

3-hydroxy-4 methoxy benzoic acid 1.91 

2-methyl-ethyl ester propenoic acid 0.44 

2 hydroxy-3-methyl-2 cyclopenten-1-one 1.36 

3-ethyl-2-hydroxy-2-cyclopenten-1-one 0.26 

1-(4-hydroxy-3-methoxyphenyl) - ethanone  0.42 

Others 17.08 

 

Due to the complexity of the chemical compositions in the pyrolysis oil, only 

the major peaks were selected from the chromatogram for the purpose of chemicals 

identification. From the chromatograms, it can be seen that the pyrolysis oils were 

such an unknown and complex mixture of organic compounds, therefore, there was 

no calibration of the MS detector was set due to the lack of an appropriate standard 
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mixture for calibration. Thus, the results of the chemical analysis can only be stated 

in area percent.    

 

Table 4.4: Tentative GC–MS characterization of pyrolysis oil B from oil palm shell 

Chemical compounds Area percent, % 

Phenolics  

Phenol 27.11 

2 methoxy phenol (guaicacol) 8.47 

2,6-dimethoxy phenol 6.16 

2-methoxy -4 methyl phenol 5.45 

2,6-dimethoxy-4-(2-propenyl) phenol 5.28 

4-ethyl -2 methoxy phenol 4.59 

2-methoxy -4(1-propenyl ) phenol 4.50 

1,2 Benzenediol (pyrocatechol) 3.31 

2-methyl phenol (o-cresol) 2.08 

2-methoxy - 4-(2-propenyl) phenol 1.83 

3-methoxy - 1,2 - benzenediol 1.22 

2-methoxy -4-propyl phenol 1.13 

4-hydroxy -3-methoxy benzaldehyde (vanillin) 1.04 

2-methoxy - 4-vinylphenol 0.94 

 Non – phenolics  

n-hexadecanoic acid 5.69 

Thiocamphor 3.80 

Furfural 2.08 

2,3,5 – trimethoxytoluene 2.00 

2-chloro-1-phenyl-1-penten-3-ol 0.71 

Others 12.64 

 

 

The results from the GC-MS analysis are matched with the results of the 

FTIR analysis. Thus, FTIR analysis can be used as a fast screen technique to observe 

the chemical compositions in the pyrolysis oil. As expected, a lot of aromatics and 

oxygenated compounds were found in the pyrolysis oil, such as phenols, ketones, 
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and acids. The results are also in agreement with the work by Islam et al. (1999) 

which reported that the pyrolysis oil from oil palm shell was highly dominant with 

oxygenated compounds and contained a high concentration of phenolic compounds.  

 

From Table 4.3 and 4.4, the phenol was found to be 36.19 area % and 27.11 

area %, in the pyrolysis A and B, respectively. Although the pyrolysis oils were 

produced in the same pyrolysis conditions, however, it can be seen that the estimated 

amount of chemical compositions was different. The type of chemicals found in 

pyrolysis A was also slightly different from that found in pyrolysis B.  Propanoic 

acid and benzoic acid were found in pyrolysis oil A but n-hexadecanoic acid was 

found in pyrolysis oil B. Some other oxygenates were found such as 

triphenylphosphine oxide, 2-hydroxy-3-methyl-2-cyclopenten-1-one, 3-ethyl-2-

hydroxy-2-cyclopenten-1-one, 1-(4-hydroxy-3-methoxyphenyl)-ethanone in 

pyrolysis oil A but furfural, 2-chloro-1-phenyl-1-penten-3-ol in pyrolysis oil B. 

Pyrolysis oil was extremely complex and may be composed of hundreds of organic 

compounds, the minor peaks in GC–MS chromatograms were classified as other 

chemical compounds. Other unidentified compounds were 17.08 area % and 12.64 

area % in the pyrolysis oil A and B, respectively. The unidentified compounds might 

be composed of some other aromatic and oxygenated compounds. 

 

However, it can be confirmed that the phenolic compounds were the major 

components in the pyrolysis oil. Both pyrolysis oil A and B were composed of 

phenol, 2 methoxy phenol, 2,6-dimethoxy phenol, 2-methoxy -4 methyl phenol, 2,6-

dimethoxy-4-(2-propenyl) phenol, 4-ethyl -2 methoxy phenol, 2-methoxy -4(1-

propenyl ) phenol, 2-methyl phenol and 2-methoxy -4-propyl phenol. The results are 

consistent with the study reported by Wong (2002). Jamil et al. (2000) also reported 

the phenol and it derivatives were more than 43 wt% of the total pyrolysis oil from 

oil palm shell. As a matter of fact, the concentrations of the phenolic compounds 

were very high in pyrolysis oil from oil palm shell.   
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4.1.6  Extraction of Phenolic Compounds 

 

 

The chemical composition analysis of the pyrolysis oil showed that there 

were several chemical compounds in the pyrolysis oil, such as acids, ketones, 

phenolics and other oxygenated compounds. Since the phenolic compounds are the 

major constituents in the oil, they have been looked as a potential substitute for 

petroleum-based phenol and can be used as the starting material in the synthesis of 

surfactant.  

 

 

4.1.7 Liquid–liquid Extraction of Phenols from Pyrolysis Oil 

 

 

As shown in Table 3.1 previously, experiment run no.1, liquid–liquid 

extraction was performed by using 5 wt % of sodium hydroxide in a weight ratio of 

1:1 to isolate the phenolic and neutral fractions. The alkaline aqueous solution, 

containing the phenols, was acidified with 50 % sulphuric acid and lastly extracted 

with ethyl acetate. In the step of extraction with aqueous sodium bicarbonate 

solution, a precipitate was formed (5 wt %) along with the soluble acid fractions. 

The precipitate was the salt produced from the neutralization process where the 

strong organic acid reacted with sodium bicarbonate. Carbon dioxide gas was 

released during the extraction process. 

 

Table 4.5: Yields of pyrolysis oil based on starting oil in experiment run no.1 

Yields of pyrolysis oil based on starting oil, wt % 

  EtOAc Insol. Organic Acids Phenol 

Pyrolsys oil 0 * 9.09 

   Solids: 5  
 EtOAC Insol. = ethyl acetate insoluble 

* Not Determined 
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The results from the experiment run no.1 are given in Table 4.5. Since the 

objective of this experiment is to extract the phenolic compounds, therefore the acid 

and neutral fractions were not determined. The yield of the phenolics fraction in the 

extract was 9.09 wt % of the pyrolysis oil derived from oil palm, which was lower 

than expected (~ 30 to 40 wt %). It was believed that there were some losses when 

transferring pyrolysis oil during the extraction process. The experiment was 

therefore repeated by using a large quantity of pyrolysis oil to minimize the losses.  

.  

 In experiment run no.2, 2 kg of pyrolysis oil derived from oil palm shell was 

used in the extraction process. In the extraction with sodium bicarbonate solution, a 

precipitate was formed (11.81 wt %) along with the soluble acids fraction. After 

extraction with a 5 wt % aqueous solution of sodium hydroxide and acidification to 

pH 6 with 50 % sulfuric acid, the yield of phenolic compounds was still low, 3.29 wt 

% based on starting pyrolysis oil.  The results for the experiment run no.2 are given 

in the Table 4.6. 

 

Table 4.6: Yields of pyrolysis oil based on starting oil in experiment run no.2 

Yields of Pyrolysis Oil Based on Starting Oil, wt% 

  EtOAc Insol. Organic Acids Phenol 

Pyrolysis oil 0 56.13 3.29 

        
EtOAC Insol. = ethyl acetate insoluble 

* Not Determined 

 

After utilizing 2 kg of pyrolysis oil derived from oil palm shell in the 

extraction, the total yield of phenol fractions was only 65.8 g. The results were 

unexpected and the step of extraction by using sodium hydroxide and acidification 

was unable to separate the phenol and neutral fraction efficiently. The concentration 

of sodium hydroxide (NaOH) used in this study was not strong enough to extract the 

phenolic fractions. According to previous study by Carlos et al. (1997), the 

recoveries of phenols after a single stage alkaline extraction with concentrated 

NaOH solution were higher than using five stages of cross-current extraction with 

diluted NaOH solution. They reported 70 wt % of phenol was extracted from 

Eucalyptus wood tar using a 5 M NaOH aqueous solution. In contrast, Chum et al. 
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(1990) suggested a 5 wt % of sodium hydroxide of solution in a volume ratio of 5:1 

of solution: extract was used. Thus, it can be concluded that the low yield of 

extracted phenols could be attributed to low amount and concentration of NaOH 

solution had been utilized in this study. Furthermore, in the extraction with NaOH 

solution, the two separated phases were difficult to identify because both were dark 

in colour. It could not be easily distinguished by observation. The losses could have 

occurred when separating these two separated layers.  

 

In the experiment run no.1 and no.2, the phenol extraction process ended 

only after the phenolic and neutral compositions were generally reduced to purified 

phenolics without any neutral fractions. However, the yield of the phenolics was 

found to be less than 10 wt % after extraction. In order to increase the yield of the 

extracted phenolic, a high concentration and volume of NaOH solution should be 

used. It should be noted that by using more solvent in the extraction process, the cost 

of extraction will increase. Hence, in the following experiment, the pyrolysis oil was 

extracted without using sodium hydroxide producing a combined phenolics and 

neutral fraction in pyrolysis oil.  

 

In experiment no.3, the yield of the phenol/neutral fraction was 10.65 wt %.  

The experiments was continued by using different quantity of pyrolysis oil with the 

same method described in Chapter 3 but without the step of extraction process by 

NaOH solution. The yields of the extraction are given in Table 4.7.  

 

Table 4.7: Yields phenol/neutral fraction from pyrolysis oil based on starting oil 

(without NaOH) 

Experiment 

no. 

Pyrolysis 

oil, 

Phenol/neutral 

fraction, Phenol/neutral fraction, 

 g g wt % 

3 525.41 55.97 10.65 

4 652.27 223.38 34.25 

5 321.18 43.90 13.67 

6 682.28 257.16 37.69 

7 875.39 189.69 21.67 
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total 3056.53 770.10  

  average yield 25.20 

 

 

From the Table 4.7 shown above, the extraction scheme described above 

allowed the isolation of 10 to 38 wt % of the starting pyrolysis oil derived from oil 

palm shell as a phenol/neutral fraction.   

 

4.1.8 Identification and Quantification of Extracted Pyrolysis Oil 

 

 

The phenol/neutral fractions in the extracted oil from raw pyrolysis oil were 

analyzed by FTIR and GC – MS. The results are shown as below.   

 

 
Figure 4.7  Infra-red spectrums of extracted phenolic and neutral fractions 

 

 

From the infra-red spectrum recorded, alcohols and phenols gave 

characteristic broad O–H stretching absorptions in the region of 3600–3200 cm-1. 

The presence of alcohols and phenols (H –bonded) O–H stretch in pyrolysis oil was 

indicated by the absorbance peak of O–H stretching vibration between 3500 – 3400 
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cm -1. Phenols showed absorption due to the C–O stretching and –OH deformation 

vibrations in the regions 1260 -1140 cm-1. Adsorption due to the C–O stretching for 

alcohols and phenols also occurred in the fingerprint region. The absorbance peaks 

between 2000–1600 cm-1 represented the C=C stretching vibration indicated the 

presence of C=C bond in aromatic ring (usually shows several peaks). Absorbance 

peaks of C–H out of plane bending between 900 – 650 cm-1 indicated the presence of 

single, polycyclic and substituted aromatic compounds. Ketones showed a strong 

absorption in the region from 1725 – 1705 cm -1. This band, usually the most intense 

in the spectrum, was due to C=O stretching vibration. Aliphatic groups were found 

in the extracted pyrolysis oil as well. The vibration modes were the C–H stretching 

around 3000 cm-1 and the –CH deformation modes around 1460 cm-1 and 1380 cm-1.  

 

The results were then confirmed with GC-MS analysis. Table 4.8 shows the 

phenolic compounds were extracted while the organic acids were being removed. 

The extracted oil contained 50.2 area % of phenols. The overall total concentration 

of phenol and phenolic compounds was up to 93.79 area % in the extracted oil. 

Besides the phenolic compounds, the extracted oil also contained about 6.72 area % 

of impurities. These impurities included 4.10 area % of thiocamphor and 2.11 area % 

of 2, 3, 5 – trimethoxytoluene which were the neutral compounds. These results 

show that liquid-liquid extraction process in this study was success to improve the 

purity of phenol and phenolic compounds in the pyrolysis oil from oil palm shell. 

The GC–MS chromatogram of the extracted oil is given in Appendix F.  

 

Table 4.8: Identification of chemical compounds in extracted oil (without NaOH) 

Compounds (major peaks) Area percent of total ,% 

Phenolics  

Phenols  50.20 

2 - methoxy phenol 12.05 

2,6-dimethoxy phenol 9.86 

2-methoxy - 4-methyl phenol 6.32 

2-methoxy -4(1-propenyl ) phenol 5.03 

4-ethyl -2 methoxy phenol 4.21 

2 - methyl phenol (o-cresol) 2.03 
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3- allyl - 6 methoxy phenol 1.67 

2- methoxy -4-propyl phenol 0.86 

3 - methoxy - 1,2 - benzenediol 0.65 

1,2 Benzenediol 0.48 

2- methoxy - 4-vinylphenol 0.44 

 Non - phenolics  

Thiocamphor 4.10 

2,3,5 - trimethoxytoluene 2.11 
    

 

 

4.1.9 Sulfonation of Alpha Olefin  

 

 

In this study, the alpha olefin sulfonic acid (AOS acid) from the reaction of 

an alpha olefin and SO3, before neutralization, was used to simultaneously alkylate 

and sulfonate the phenolic compounds in the extracted oil from pyrolysis oil of oil 

palm shell.  

 

The alpha olefin sulfonic acid was produced by the sulfonation of an alpha 

olefin using a thin film SO3 reactor. The alpha olefin sulfonic acid produced was a 

mixture of alkene sulfonic acid and sultone. AOS acids produced were based on C14, 

and C16 alpha olefin, which were 1- tetradecene and 1- hexadecene. Two types of 

AOS acids were produced, they were C14 AOS acid and C16 AOS acid.  

  

 

4.1.9.1 Sulfonation of 1 – Tetradecene (C14H28) using 1.2 Mole Ratio of SO3 

 

 

The C14 AOS acid was first produced from extracted pyrolysis oil and 

pyrolysis, followed by C16 AOS from extracted pyrolysis oil only. The calculations 

of the feed rate of tetradecene and oleum are given in Appendix B.     
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  At the first run of sulfonation of tetradecene, the amount of SO3 utilized in 

the experiment was 0.21 mols of SO3 per mole of olefin. It was found that the actual 

mole ratio sample to SO3 was 1 to 0.21 in the experiment. The theoretical value 

should be 1 to 1.2. Analysis of the final product gave 1.8985 mg KOH/g oil acid 

value, which was too low. The first run of the sulfonation of tetradecene failed due to 

the non-functional of evaporator of the SO3 thin film reactor. The evaporator was 

used to evaporate the oleum to release the gas SO3 for reaction. After repair, the 

sulfonation of 1- tetradecene was repeated.  

 

In the second run of sulfonation of tetradecene, the actual mole ratio of the 

sample to SO3 was found to be 1 to 1.39. The actual mole ratio in the experiment 

was similar to the theoretical value (1 to 1.2). The difference was trivial. The data 

recorded during the experiment is shown in the Appendix B.    

 

 Analysis of the final product, C14 AOS acid gave acid value of 127. The acid 

value is shown in Table 4.9. The acid value of 127 was used in the calculation of the 

degree of sulfonation. 62.23 % of C14 AOS acid was produced by assuming MW of 

275. A 0.5055 g of the acid/sultone product was analyzed after neutralization. The 

C14 AOS acid was neutralized with 50 % NaOH and the analysis showed the 

anionic active matter of the reaction product was 47.3 % active.  

 

Table 4.9: Acid value of C14 AOS acid 

wt of sample, g ml of titrant AV 

0.5218 2.48 130.0 

0.5957 2.70 123.9 

 average 127.0 

 

 

 The IR spectrum of the C14 AOS acid showed the presence of sultone bands 

at 1330 – 1360. The IR spectrum also showed the unsaturated sulfonic acid peaks at 

1720, 1163, 1040 and 900 cm-1.  It can be concluded that C14 AOS acid was 

successful being produced. The IR spectrums of tetradecene and C14 AOS acid are 

given in Appendix G. 
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4.1.9.2 Sulfonation of 1 – Hexadecene (C16H32) using 1.2 Mole Ratio of SO3 

 

 

Reaction product of 1 – �exadecane and SO3 was obtained with conditions 

where oleum was pumped at the rate of 16.04 grams per minute or approximately 1.2 

moles of SO3 per mole of olefin. The calculations of feed rate of �exadecane and 

oleum are given in Appendix C.  

 

Factor calculated in this experiment was same to the theoretical which was 1 

to 1.18. The results indicated the actual mole ratio of SO3 per mole of �exadecane 

was 1.18 to 1 in the reaction. Analysis of C16 AOS acid gave 96.46 AV. The acid 

value is shown in Table 4.10. The acid value of 96.46 was used in the calculation of 

the degree of sulfonation and 47.97 % of alkene sulfonic acid was produced by 

assuming MW of 279. A 0.5088 g of the acid/sultone product was analyzed after 

neutralization. The C16 AOS acid was neutralized with 50 % NaOH and the analysis 

showed the anionic active matter of the reaction product was 40.4 % active.  

 

Table 4.10: Acid value of C16 AOS acid 

wt of sample, g ml of titrant AV 

0.1737 2.78 98.81 

0.2375 3.62 94.10 

 Average 96.46 

 

 The IR spectrum of the starting material, 1 – �exadecane (Figure 4.8) and 

the final product, C16 AOS acid (Figure 4.9) showed the loss of C=C stretch at 1642 

cm-1. The presence of sultone bands at 1330 – 1360, 810 – 818 cm-1 and unsaturated 

sulfonic acid peaks at 1711, 1161, 1040 and 902 cm-1 indicated the conversion of 1 – 

�exadecane into alkene sulfonic acid. A broad hydroxyl band centring at 3482 cm-1 

from the hydroxyalkane sulfonate was found. The results confirm the formation of 

C16 AOS acid and sultone.   
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Figure 4.8   Infra-red spectrum of 1 – Hexadecene 

 

 

 
Figure 4.9 Infra-red spectrum of C16 AOS acid 
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4.1.9.3 Alkylation and Sulfonation of the Extracted Oil using Alpha Olefin 

Sulfonic Acid 

 

 

 The phenolic compounds in extracted pyrolysis oil was alkylated and 

sulfonated in one step using alpha olefin sulfonic acid (AOS acid) to synthesize the 

desired surfactants. There were six surfactants produced in this study using different 

type and weight ratio of alpha olefin sulfonic acid. The surfactants produced are 

shown in Table 4.11. 

 

Table 4.11: Experiment details for alkylation and sulfonation by AOS acid 

Exp. No. Type of AOS acid used Weight ratio Surfactant Name

S1 C14 100:30 SURF1 

S2 C14 100:60 SURF2 

S3 C14 100:90 SURF3 

S4 C16 100:30 SURF4 

S5 C16 100:60 SURF5 

S6 C16 100:90 SURF6 

  

 

 In the experiment of alkylation and sulfonation of extracted pyrolysis oil, the 

sampling was repeated every hour until the reaction was complete and the acid value 

was remained constant. Table 4.12 shows the acid value of C14 sulfonated pyrolysis 

oil and Table 4.13 shows the acid value of C16 sulfonated pyrolysis oil. 

 

 In Table 4.14, it is found that the anionic active matter of SURF 1 was the 

highest (40.4 % active) and the critical micelle concentration (CMC) was found to be 

the lowest (0.22 wt %) among all the surfactants. The determination of CMC of the 

surfactants is given in Appendix H. The surface tension of SURF 3 at concentration 

of 5 wt % was 33.2 mN/m, which is achieved the lowest value among these six 

different surfactants. These values indicated the SURF 3 was a good surfactant.  
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As shown in Table 4.14 and Table 4.15, analysis of SURF 4 gave the lowest 

value of anionic active matter (20.55 % active). The CMC and surface tension were 

found to be the highest at 0.28 wt % and 36.2 mN/m, respectively. SURF 4 was the 

poorest surfactant among the surfactants produced from pyrolysis oil.   

 

Table 4.12: Acid value of C14 sulfonated pyrolysis oil 

Time @ 90oC 

Acid Value (AV) 

(using C14 AOS acid in different weight ratio) 

 100:30 (SURF 1) 100:60 (SURF 2) 100:90 (SURF 3) 

0 hour 111.0 118.8 119.8 

1 hour 133.2 215.8 230.9 

2 hours 158.6 224.7 445.6 

3 hours 194.5 372.5 631.0 

5 hours 308.3 372.5 660.5 

 

Table 4.13: Acid value of C16 sulfonated pyrolysis oil 

Time @ 90oC 

Acid Value (AV) 

(using C16 AOS acid in different weight ratio) 

 100:30 (SURF 4) 100:60 (SURF 5) 100:90 (SURF 6) 

0 hour 140.3 187.0 190.0 

1 hour 180.3 233.8 250.0 

2 hours 240.3 294.3 288.0 

3 hours 374.0 327.3 450.0 

5 hours 374.0 558.0 589.0 
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Table 4.14: Anionic active matter and CMC of surfactants produced 

 

Type of 

Surfactant 

Percentage of anionic active matter, 

% active CMC, wt %

SURF 1 40.40 0.22 

SURF 2 28.80 0.24 

SURF 3 39.09 0.24 

SURF 4 20.55 0.28 

SURF 5 32.79 0.28 

SURF 6 36.00 0.24 

 

Table 4.15: Surface tension of surfactants in concentration of 5 wt % 

 

Type of Surfactant Surface tension, mN/m 

SURF 1 34.0 

SURF 2 33.5 

SURF 3 33.2 

SURF 4 36.2 

SURF 5 34.0 

SURF 6 35.0 

 

 

4.1.9.4 Alkylation and Sulfonation of the Pyrolysis Oil using Alpha Olefin 

Sulfonic Acid 

 

 The pyrolysis oil was alkylated and sulfonated in one step using alpha olefin 

sulfonic acid (AOS acid) to synthesize the desired surfactants. There was only one 

surfactant produced in this experiment using weight ratio of alpha olefin sulfonic 

acid (100 : 60). The surfactants produced are shown in Table 4.16. 
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Table 4.16: Experiment detail for alkylation and sulfonation by AOS acid 

 

Exp. No. Type of AOS acid used Weight ratio Surfactant Name

S7 C14 100:60 SURF7 

 

In the experiment of alkylation and sulfonation of pyrolysis oil, the sampling 

was repeated every hour until the reaction was complete and the acid value was 

remained constant. Table 4.17and Table 4.18 shown analysis of SURF7 which is 

gave value of anionic active matter (29.90 % active). The CMC and surface tension 

were found at 0.22 wt % and 33.0 mN/m respectively.  

 

 

Table 4.17: Anionic active matter and CMC of surfactants produced 

 

Type of 

Surfactant 

Percentage of anionic active matter, 

% active CMC, wt %

SURF 7 29.90 0.22 

 

Table 4.18: Surface tension of surfactants in concentration of 5 wt % 

 

Type of Surfactant Surface tension, mN/m 

SURF 7 33.0 

 

 

4.1.9.5 FTIR Characterization of Produced Surfactants  

 

 

The surfactant produced from pyrolysis oil of oil palm shell was 

characterized by using FTIR. The IR spectrums recorded of the seven produced 

surfactants from the pyrolysis oil show a similar pattern. The results indicate that 

chemical structure for these seven surfactants were similar. The spectrum recorded 

after scanning on the FTIR of surfactant SURF 1 is shown in Figure 4.10. The IR 
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spectrums of the other five types of surfactant (SURF 2, SURF 3, SURF 4, SURF 5 

SURF 6 and SURF7) are given in Appendix I. 

 

The presence of phenols O–H stretch was indicated by the absorbance peak 

of O–H stretching vibration between 3500 – 3400 cm-1. The absorbance peaks 

between 3000 – 2850 cm-1 represented the C–H stretching vibration. It showed the 

loss of sultone bands at 1330 – 1360 cm-1 and alkene group at 1711, 1161, 1040 and 

902 cm-1 indicating the conversion of alpha olefin sulfonic acid into alkylated, 

alkylphenol sulfonate. The peaks in between 1200 – 1140 were another indication of 

the presence of sulfonate groups due to the S=O stretching vibration. The region 

from 2000 to 1500 cm-1 is where C=O, C=N, and C=C bonds absorb. An adsorption 

in the range from 1660 – 2000 cm-1 shows the combination of a phenol with an 

olefinic group. 

 

 

4.2 Production of xanthan gum from local fruits  

 

 

4.2.1 Dry weight of xanthan gum produced  

 

 

The growth of Xanthomonas campestris had come to death phase after 48 

hours fermentation process. The dry weight of the xanthan gum was obtained after 

dried for 72 hours at 50° C. Figure 4.10 shows the result obtained for dry weight of 

xanthan gum produced from local fruits. It is found that the honeydew produced the 

higher yield of xanthan gum with 8.3550 g/L followed by xanthan gum from papaya 

and dragon fruit which is yield of xanthan 7.6850 g/L and 6.1230 g/L respectively. 

While the lower yield of xanthan gum from star fruit (3.5120 g/L).  
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Figure 4.10 Dry weights (g/L) of produced Xanthan gum 

 

 

4.2.2 FTIR Characterization of Produced xanthan gums 

 

 

4.2.2.1 Unrefined xanthan gum produced 

 

 

The producing of xanthan gum from local fruits juice was confirmed by IR 

spectroscopy. The FTIR spectra recorded under same conditions. From the FTIR 

spectra [Fig. (a), (b), (c), (d), (e), (f), (g), (h), (i),(j)]. The spectra are summarized in 

Table 4.19 It is evident that xanthan gum shows a broad absorption peak at 3422 cm-

1 (commercial xanthan gum), which is the region for the hydrogen-bonded OH 

groups. All of spectra for xanthan production from local fruits which is similarity 

with commercial xanthan gum. Two peaks, one around 1125 and the other at 1051 

cm-1, are attributed to the –C–O–C-O–C– acetal for xanthan gum from coconut sap 

only. It was differ from the others local fruits. The vibration peak of  -CH2, no 

appears in the spectra of xanthan gum from sugarcane and papaya and the peak of –

C-O-C- in the spectra of xanthan  gum from dragon fruit, guava and star fruit. It is 
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found that the vibration peak of C1-H of β-pyranose at 800 cm-1 appears in the 

spectra of xanthan gum from watermelon only.  

 

Table 4.19 FTIR Spectra Data (cm-1) of xanthan gum unpurified 

V, cm-1 

XG pine 

apple 

water 

melon 

sugar 

cane 

papaya honey 

dew 

mango coconut 

sap 

dragon 

fruit 

guava star 

fruit 

Assignment 

3422 3419 3416 3424 3426 3441 3433 3415 3411 3422 3429 O-H 

2908 2924 2924 - - 2930 2924 2929 2936 2929 2929 -CH2 

1626 1648 1625 1642 1641 1638 1636 1647 1642 1643 1639 

–C=O 

of pyruvate, 

δ OH  

1407 1401 1397 1394 1406 1399 1396 1407 1424 1407 1421 -COO- 

1264 1245 - 1250 1259 1297 1256 1251 - - - 
-C-O-C-, 

δ 

1089 1083 1071 1081 1081 1119 1120 1125  

1051 

1123 1124 1116 –C–O–C-O– 

C– acetal 

- - 800 - - -  - - - - C1-H of β-

pyranose 

 

 

4.2.2.2 Refined xanthan gum produced  

 

 

The purification process seems efficient to eliminate impurities, leading to 

products of food quality. The xanthan gum produced from local fruits is collected 

after harvest via shaker fermentation at 28 º C for 48 hours where it’s purified 

through a total controlled sterilizing process with chemical added and recovery with 

three volumes of 96 % ethanol. The FTIR spectra of refined xanthan gum recorded 

under the same conditions. The spectra are summarized in Table 4.16.  
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It is found that the vibration peak of –OH at 3569 cm-1 and 3607 cm-1 appears 

in the spectra of refined xanthan gum from coconut sap and guava respectively. 

Compared with that of unrefined xanthan gum coconut sap and guava (3415 cm-1 

and 3422 cm-1) (Table 4.20), the peak of refined xanthan gum shifts to high wave 

number, suggesting that the intermolecular interaction between unrefined xanthan 

gum molecules is stronger than that between refined xanthan gum. From the 

observation, xanthan gum from watermelon only appears the vibration peaks of the 

acetal at 1107 cm-1 of refined xanthan gum are stronger than those of unrefined 

xanthan gum at 1071 cm-1 , inferring that the chemical modifier reacts with the –OH  

of the unrefined xanthan gum to form the acetal. These results indicate that when 

refined xanthan gum dissolves in water, the attraction of the molecular cluster of the 

solid phase to the refine xanthan gum surface molecules at the surface of the swollen 

layer is much weaker, causing the refine xanthan gum surface molecules which swell 

completely to diffuse into the water phase more easily. Only refined xanthan gum 

from honeydew exhibited the vibration peak of C1-H of β-pyranose at 803 cm-1 

compared than others refined xanthan gum produced.  

 

Table 4.20 FTIR Spectra Data (cm-1) of xanthan gum purified after dry at 50° C 

V, cm-1 

pine 

apple 

water 

melon 

sugar 

cane 

papaya honey 

dew 

mango coconut

sap 

dragon 

fruit 

guava star 

fruit 

Assignment

3422 3419 3416 3417 3426 3437 3607 3399 3569 3404 O-H 

2924 2920 2930 2936 2930 2924 2924 2923 2919 2929 -CH2 

1646 1634 1635 1631 1645 1633 1648 1631 1646 1638 
–C=O 

of pyruvate 

1402 1396 1393 1401 - 1399 1401 1399 1399 - -COO- 

1250 1264 1253 1253 - 1245 1245 1263 - - -C-O-C- 

1072 1107 1079 1098 1108 1117 1067 1115 1122 1117 –C–O–C-

O– 

C– acetal 

- - - - 803 - - - - - C1-H of β-

pyranose 
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Table 4.17 shows the weight of refine xanthan gum after purification process. 

It is found that refine xanthan gum from sugarcane and honeydew gives higher 

percentage yield of xanthan, which is 79 % and 78 % respectively compared than 

other local fruits. While refined xanthan gum from dragon fruit exhibited lower 

percentage yield of xanthan after purification process.    

 

Table 4.17 Weight of refined xanthan gum after purification process 

 

Bil Xanthan gum Before (g) After (g) Percentage 

1 Pineapple 0.5048 0.3806 75.4 

2 Watermelon 0.3449 0.2525 73.2 

3 Papaya 0.5036 0.3779 75.0 

4 Sugarcane 0.5066 0.4048 79.9 

5 Honeydew 0.5054 0.3955 78.3 

6 Mango 0.5038 0.3655 72.5 

7 Coconut sap 0.5045 0.3550 70.4 

8 Guava 0.5000 0.3100 62.0 

9 Star fruit 0.5000 0.3100 62.0 

10 Dragon fruit 0.5000 0.3000 60.0 

 

 

4.2.2.3 Viscosity measurement 

  

 

The viscosities and shear stress of unrefined xanthan gum and refined 

xanthan gum in distilled water and NaCl were measured at different shear rate. 0.1 

gram of dried xanthan gum was dissolved in 100 mL of distilled water. While for 

brine solution, 0.2 % w/v and 0.4 %w/v of NaCl was added into the solutions. The 

solutions were prepared by first adding water to the xanthan gum and NaCl powder 

and gently mixing until all xanthan gum appeared dissolved. 
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The result of the viscosities and shear stress measurement indicates that the 

unrefined xanthan gum from local fruits more viscous than commercial xanthan gum 

at room temperature (Figure 4.11 and 4.12) . This shows that unrefined xanthan gum 

contributed to a better characteristic compared commercial xanthan gum. The 

difference characteristic may due by dissimilarity content of sucrose, glucose and 

others. Local fruits juice sources contain polysaccharide and disaccharide and need 

to hydrolyze to become monosaccharide for metabolism process in order to grow. 

When the demand of glucose for the metabolism process is fulfilled, the microbe 

will transform the remaining starches into xanthan gum as energy storage. Thus, it 

can be noticed that the substrates used would affect the properties and the structure 

of the produced biopolymer.  

 

The comparison of the unrefined xanthan gum in 0.2 % w/v and 0.4 % w/v 

NaCl, the viscosities and shear stress was shown as Figure 4.13, 4.14, 4.15 and 4.16. 

Meanwhile refined xanthan gum in 0.2 % w/v and 0.4 % w/v of NaCl, for their 

viscosities and shear stress was shown in Figure 4.17, 4.18, 4.19 and 4.20. In general, 

unrefined xanthan gum and refined xanthan gum in 0.2 % w/v of NaCl was higher 

compared than 0.4 % w/v of NaCl. Conversely it does not show significant 

difference for their viscosities and shear stress at any time.  

 

The viscosities and shear stress of refined xanthan gum solutions from all of 

local fruits was higher than that of unrefined xanthan gum in distilled water and 

NaCl at any time as shown in Figure. It was also found that the refined xanthan gum 

dispersed very rapidly to give lump free solution.  
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Figure 4.11 Comparison viscosity graph for xanthan gum commercial and unrefined 

in distilled water (DW) 
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Figure 4.12 Comparison shear stress graph for xanthan gum commercial  

and unrefined xanthan gum in distilled water (DW) 
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Figure 4.13 Comparison viscosities of unrefined xanthan gum in 0.2 % w/v NaCl 
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Figure 4.14 Comparison viscosities of unrefined xanthan gum in 0.4 % w/v NaCl 
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Figure 4.15  Comparison shear stress graph for unrefined xanthan gum in 0.2 % w/v 

NaCl 
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Figure 4.16 Comparison shear stress graph for unrefined xanthan gum in 0.4 % w/v 

NaCl 
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Figure 4.17 Comparison viscosity graph for refined xanthan gum in distilled water 

(DW) 
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Figure 4.18 Comparison shear stress graph for refined xanthan gum in distilled 

water (DW) 
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Figure 4.19 Comparison viscosities of refine xanthan gum in 0.2 % w/v of NaCl 
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Figure 4.20 Comparison viscosities of refine xanthan gum in 0.4 % w/v of NaCl 
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Figure 4.21 Comparison shear stress graph for refine xanthan gum in 0.2 % w/v of 

NaCl 
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Figure 4.22 Comparison shear stress graph for refine xanthan gum in 0.4 % w/v of 

NaCl 
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4.2.2.4 Gelatinization of refined xanthan gum 

 

 

 The gelling of refined xanthan gum was performed using bottle experiment. 

Refined xanthan gum with concentration 1500 ppm placed in the oven at 60 °C for 

days. The gelling of refined xanthan gum was observed based on gel strength code 

(Figure 4.23).  

 

 

0

1

2

3

4

5

0 50 100 150 200 250

Time (hour)

G
el

 st
re

ng
th

 c
od

e

 
 

Figure 4.23 The gelling of refined xanthan gum {1500 ppm, 10 : 1 ratio of  XG to 

Cr (III)} 
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Figure 4.24 Gelling of refined xanthan gum after 2 days at 60° C 

 

 
Figure 4.25 Gelling of refined xanthan gum after 6 days at 60° C 
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4.2.2.5 Glucose concentration of fruits juice  

 

The concentration of glucose used as the carbon sources during shaker 

fermentation at 28º C as can be seen in Figure 4.26. It is found that local honeydew 

gives highest glucose content of 61.2 g/L and the lowest concentration of glucose 

which is watermelon is 12.8 g/L only. From the observation, it was concluded that 

the yield of produced xanthan gum relies on the glucose concentration of local fruits.  
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Figure 4.26 Glucose concentration of fruits juice as carbon sources 

 

 

4.2.2.6 Pyruvate and acetate content  

 

 

Xanthan gum is used extensively for enhanced oil recovery as a mobility 

control agent, in drilling operations to increase the suspension capacity of the drilling 

mud, and in gels to improve the volumetric sweep efficiency. Flow properties, 
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injectivity, and adsorption characteristics depend on acetate and pyruvate content of 

xanthan. The degree of pyruvilation and acetylation of xanthan gum was determined 

using High Performance Liquid Chromatograpy (HPLC). There is no significant 

difference in the acetate and pyruvate content of difference local carbon sources as 

shown in Figure 4.27 and Figure 4.28 respectively. It shows that xanthan gum 

produced from papaya and mango refined exhibited highest content of acetate with 

0.07 g/mL. Meanwhile the lowest of acetate content which is xanthan gum produced 

from pineapple and honeydew with 0.01 g/mL. It was similar with pyruvate content 

from xanthan gum refined from local fruits. From the observation, xanthan gum 

produced from sugarcane exhibited highest of pyruvate with 1.12 g/mL and followed 

by xanthan gum produced from pineapple with 0.66 g/mL. While xanthan gum 

produced from papaya exhibited lowest concentration of pyruvate with 0.45 g/mL.  
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Figure 4.27 Acetate content of 72 h xanthan samples from shaker fermentor 
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Figure 4.28 Pyruvate content of 72 h xanthan samples from shake fermentor 

 

 

4.2.2.6 Solid state 13C NMR 

 

 

Solid state 13C NMR spectroscopy was used to investigate the structure of 

xanthan gum. The spectra can be divided into five main regions. In general, chemical 

shift signal at 180 ppm is due to carbonyl groups.  The chemical shift signals at 108 

ppm which originated from the C-1 carbon of mannose (acetyl and pyruvate group) 

and the resonance at 45 ppm, it is from glucuronic acid.  Meanwhile chemical signal 

at 79 ppm is due to sp3-hybridized carbons bonded to either nitrogen or oxygen. 

Furthermore chemical shifts from 27 – 35 ppm are due to sp3-hybridized carbons 

attached to carbons and/or hydrogens. Conversely the entire of resonances from 

xanthan gum purified from honeydew juice were higher compared than xanthan gum 

purified from mango juice. The breadth and shape of the peaks in the spectra 

indicates that both forms of biopolymer are amorphous.  
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4.3  Dry weight of xanthan gum produced from local starches via shaker 

fermentation 

 

The growth of Xanthomonas campestris had come to death phase after 48 

hours fermentation process. The dry weight of the xanthan gum was obtained after 

dried for 72 hours at 50° C. Figure 4.29 shows the result obtained for dry weight of 

xanthan gum produced from local fruits. It is found that sago produced the higher 

yield of xanthan gum with 9.9690 g/L followed by xanthan gum from sweet potato 

and tapioca which is 8.7370 g/L and 6.3255 g/L respectively. While the lower yield 

of xanthan gum from rice starch (5.5190 g/L).  
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Figure 4.29 Dry weights (g/L) of produced xanthan gum from starches  
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4.3.1 IR spectroscopy   

 

 

4.3.1.1 Unrefined xanthan gum produced 

 

The producing of xanthan gum from local starches was confirmed by IR 

spectroscopy. The FTIR spectra recorded under same conditions. From the IR 

spectra [Fig. (a), (b), (c), (d)]. The spectra are summarized in Table 4.18. It is 

evident that xanthan gum shows a broad absorption peak at 3422 cm-1 (commercial 

xanthan gum), which is the region for the hydrogen-bonded OH groups. Conversely 

no peak absorption of C1-H of β-pyranose at 850 cm-1 for commercial xanthan gum 

compared than xanthan gum produced. All of spectra for xanthan production from 

local starches which is similarity with commercial xanthan gum.  

 

Table 4.18 FTIR Spectra Data (cm-1) of xanthan gum unpurified 

 

V, cm-1 

XG Rice Tapioca Sweet 

potato 

Sago Assignment 

3422 3386 3408 3390 3400 O-H 

2908 2915 2915 2915 2922 -CH2 

1626 1646 1650 1650 1646 
–C=O 

of pyruvate  

1407 1410 1399 1406 1381 -COO- 

1264 1145 1126 1141 1115 -C-O-C- 

1089 1026 1022 1016 1024 
–C–O–C-O– 

C– acetal 

- 850 850 850 853 C1-H of β-

pyranose 
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V, cm-1 

XG Rice Tapioca Sweet 

potato 

Sago Assignment 

3422 3401 3389 3397 3404 O-H 

2908 2930 2930 2915 2915 -CH2 

1626 
1650 1653 1650 1650 –C=O 

of pyruvate  

1407 1421 1429 1418 1418 -COO- 

1264 1134 1134 1134 1119 -C-O-C- 

1089 1021 1020 1022 1024 –C–O–C-O– 

C– acetal 

- 850 853 853 857 C1-H of β-

pyranose 

 

 

4.3.1.2 Refined xanthan gum produced  

 

 

The purification process seems efficient to eliminate impurities, leading to 

products of food quality. The xanthan gum produced from local starches is collected 

after harvest via shaker fermentation at 28 º C for 48 hours where it’s purified 

through a total controlled sterilizing process with washed 3 times of 99 % of ethanol. 

The FTIR spectra of refined xanthan gum recorded under the same conditions. The 

spectra are summarized in Table 4.19.  

 

It is found that the entire of the vibration peak of the spectra of refined 

xanthan gum from rice, tapioca and sago only which is shifts to high wave number if 

comparing with unrefined and refined of xanthan gum.. It is suggesting that the 

intermolecular interaction between unrefined xanthan gum molecules is stronger 

than that between refined xanthan gum. It is also causes of inferring that the 

chemical modifier reacts. It is different with xanthan gum produced from sweet 
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potato.  The commercial xanthan gum also no vibration peak of C1-H of β-pyranose 

at 850 cm-1, even though after process purification of xanthan gum.  

 

Table 4.19 FTIR Spectra Data (cm-1) of xanthan gum purified after dry at 50° C 

 

V, cm-1 

XG Rice Tapioca Sweet 

potato 

Sago Assignment 

3422 3401 3389 3397 3404 O-H 

2908 2930 2930 2915 2915 -CH2 

1626 
1650 1653 1650 1650 –C=O 

of pyruvate  

1407 1421 1429 1418 1418 -COO- 

1264 1134 1134 1134 1119 -C-O-C- 

1089 1021 1020 1022 1024 –C–O–C-O– 

C– acetal 

- 850 853 853 857 C1-H of β-

pyranose 

 

 

4.3.1.3 Viscosity measurement 

  

 

The viscosities and shear stress of unrefined xanthan gum and refined 

xanthan gum from local starches in distilled water and sodium chloride were 

measured at different shear rate. 0.1 gram of dried xanthan gum was dissolved in 100 

mL of distilled water. While for brine solution, 0.2 % w/v and 0.4 %w/v of NaCl 

was added into the solutions. The solutions were prepared by first adding water to 

the xanthan gum and NaCl powder and gently mixing until all xanthan gum fully 

dissolved. 

 

The result of the viscosities and shear stress measurement indicates that the 

unrefined xanthan gum from local starches in distilled water (DW) more viscous 
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than commercial xanthan gum at room temperature (Figure 4.30 and 4.31) . This 

shows that unrefined xanthan gum contributed to a better characteristic compared to 

commercial of xanthan gum. The difference characteristic may due by dissimilarity 

content of sucrose, glucose and others. Local starches sources contain 

polysaccharide and disaccharide and need to hydrolyze to become monosaccharide 

for metabolism process in order to grow. When the demand of glucose for the 

metabolism process is fulfilled, the microbe will transform the remaining starches 

into xanthan gum as energy storage. Thus, it can be noticed that the substrates used 

would affect the properties and the structure of the produced biopolymer.  

 

The comparison of the refined xanthan gum in between 0.2 % w/v and 0.4 % 

w/v of NaCl, the viscosities and shear stress was shown as Figure 4.32, 4.33, 4.34 

and 4.35 respectively. In general, refined xanthan gum in 0.2 % w/v of NaCl was 

higher viscous compared than refined xanthan gum in distilled water (DW) and 0.4 

% w/v of NaCl . Conversely it does not show significant differences for their 

viscosities and shear stress at any time.  
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Figure 4.30 Comparison viscosity graph for xanthan gum refined in distilled water 

(DW) 
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Figure 4.31 Comparison shear stress graph for xanthan gum refined xanthan gum in 

distilled water (DW) 
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Figure 4.32 Comparison viscosities of refined xanthan gum in 0.2 % w/v NaCl 
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Figure 4.33 Comparison viscosities of refined xanthan gum in 0.4 % w/v NaCl 
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Figure 4.34  Comparison shear stress graph for refined xanthan gum in 0.2 % w/v 

NaCl 
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Figure 4.35 Comparison shear stress graph for refined xanthan gum in 0.4 % w/v 

NaCl 

 

 

4.3.1.4 Pyruvate and acetate content  

 

 

Xanthan gum is used extensively for enhanced oil recovery as a mobility 

control agent, in drilling operations to increase the suspension capacity of the drilling 

mud, and in gels to improve the volumetric sweep efficiency. Flow properties, 

injectivity, and adsorption characteristics depend on acetate and pyruvate content of 

xanthan. The degree of pyruvilation and acetylation of xanthan gum was determined 

using HPLC (Figure 4.36 and 4.37).  

 

 

There is no significant difference in the acetate and pyruvate content of 

difference local starches. It shows that refined xanthan gum produced from sweet 

potato exhibited highest content of acetate with 0.08 g/mL. Meanwhile refined of 

xanthan gum from sago, rice and tapioca starches were exhibited the lowest of 

acetate content which is with 0.01 g/mL respectively.  
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It was similar with pyruvate content from xanthan gum refined from local 

starches. From the observation, xanthan gum from rice starch exhibited highest of 

pyruvate with 0.54 g/mL and followed by xanthan gum produced from sweet potato 

and tapioca starches with 0.49 g/mL and 0.46 g/mL respectively. While xanthan gum 

from sago starches was exhibited lowest concentration of pyruvate with 0.30 g/mL.  
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Figure 4.36 Acetate content of 72 h xanthan samples from shaker fermentor 
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Figure 4.37 Pyruvate content of 72 h xanthan samples  
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4.3.1.5 Gelatinization of refined xanthan gum 

 

 The gelling of refined xanthan gum was performed using bottle experiment. 

Refined xanthan gum with concentration 1500 ppm placed in the oven at 60 °C for 

days. The gelling of refined xanthan gum was observed based on gel strength code 

(Figure 4.38).  
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Figure 4.38 The gelling of refined xanthan gum {1500 ppm, 10 : 1 ratio of  XG to 

Cr (III)} 
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Figure 4.39 Gelling of refined xanthan gum after 2 days at 60° C 

 

 
 

Figure 4.40 Gelling of refined xanthan gum after 5 days at 60° C 
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4.3.1.6  Measurement of amylose and amylopectin using TGA  

 

 

 The amylose and amylopectin contents in starches from tapioca, rice, sweet 

potato and sago were determined by Thermal Gravimetric Analysis (TGA) under 

nitrogen at 20º C min-1 between 25 – 950 ºC as shown in Figure 4.41 – 4.44. Many 

studies have attempted to determine exact of amylose and amylopectin. Methods 

have been based on structural or functional differences between the two theoretical 

macromolecules present in starch. L. Yu and G. Christie (2001), investigated the 

starches transitions using differential scanning calorimetry (DSC). T.S.Gibson et.al. 

(1997) used Concanavalin A to measure amylose in cereal starches and flours They 

were found that advantages of this method which is no further purification.In this 

study, the values of amylose and amylopectin which is based on the thermal 

degradation of starches ( % weight loss) using TGA. 

 

The TG plot shows the percentage loss in weight as a function of temperature. 

Three distinct zones can be seen  

 

a – Represents the evaporation of water and other volatile materials below 150º C 

b – The main degradation zone 

c – The propagation reaction  

 

Table 4.20 gives the temperatures of degradation which are represented as Ti, 

Tp, Tf. where Ti, Tp, Tf refers to initial, peak and final temperature. 

 

Table 4.20 Thermogravimetric analysis of starches  

 

Samples Ti ºC Tp ºC Tf ºC 

Amylose 250 315 350 

Amylopectin 250 325 400 
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The TGA curves presented a mass loss at 25-174 ºC related to the water 

elimination. Thermal behaviour of starches at 250 – 350 ºC can be related to the 

degradation of amylose, whereas the thermal degradation of amylopectin in starches 

at 250 – 400 ºC. A carbonaceous residue has been described for thermal degradation 

of starches at 500oC under nitrogen. 

 

Values of the amylose and amylopectin content were obtained from TGA 

curves presented in Table 4.21. Based on the degradation temperature (% weight loss) 

of starches, the amylose contents are 32.19, 53.49, 31.59 and 43.15 % for tapioca, 

rice, sago and sweet potato respectively. Meanwhile the amylopectin contents are 

60.67, 64.25, 68.38 and 68.81 % for tapioca, rice, sago and sweet potato respectively 

 

Table 4.21 Thermal degradation of starches using TGA 

 

Starches Temperature range/º C Cellulose Mass loss/ % 

251.92 - 351.92 Amylose 32.19 
Tapioca 

251.92 – 391.92 Amylopectin 60.67 

252.98 – 352.98 Amylose 53.49 
Rice 

252.98 – 392.98 Amylopectin 64.25 

252.72 – 352. 72 Amylose 31.59 
Sago 

252.72 – 392. 72 Amylopectin 68.38 

256.42 – 356. 42 Amylose 43.59 
Sweet potato 

256. 42- 396.42 Amylopectin 68.81 
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Figure 4.41 Thermogravimetric curves for tapioca starch measured at heating rate  

of 20º C min-1 under nitrogen 

 

 
 

Figure 4.42 Thermogravimetric curves for rice starch measured at heating rate of 

20º C min-1 under nitrogen 
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Figure 4.43 Thermogravimetric curves for Sago starch measured at heating rate of 

20º C min-1 under nitrogen 

 

 
 

Figure 4.44 Thermogravimetric curves for Sweet potato starch measured at heating 

rate of 20º C min-1 under nitrogen 
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4.3.2 Surfactant Polymer Flooding  

 

 

4.3.2.1 Surfactant produced and polymer commercial as additives 

 

 

Seven displacement experiments were carried out by using seven different 

types of surfactants. The types of surfactants are given in Table 4.45 previously. 

Table 4.23 summarizes the information about the experiments in this study. All the 

experiments were carried out at ambient temperature. The details of the experiment 

are shown in the Table 3.4 previously.  

 

 
Figure 4.45      Infra-red spectrum of SURF 1 
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Figure 4.46 The oil recoveries due to waterflooding and subsequent surfactant 

polymer flooding 

 

The oil recovery by waterflooding and the additional recovery due to tertiary 

surfactant polymer flooding are shown in the Figure 4.46.  The graph was plotted in 

terms of the recovery of OOIP (original oil in place). Experiment no 1 and no 2 

resulted in 67.86 % and 69.09 % of water flooding recovery, respectively. But 10.71 

% and 10.91 % of OOIP were obtained by tertiary surfactant polymer injection, 

respectively, which were not the highest oil recovery. On the other hand, the highest 

water flooding recovery was obtained in the experiment no 6, which was 75 %. It 

yielded additional recovery by surfactant polymer injection of 8.93 % OOIP, which 

was not the lowest tertiary recovery. Obviously, the performance of the surfactant 

polymer flooding depends on the surfactant type. There was no relation of the 

previous water flood history on the surfactant polymer recovery.  
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Figure 4.47 The performance of waterflooding succeeded by surfactant polymer 

flooding 

 

 For evaluation of the additional recovery due to surfactant polymer flooding, 

the percentage of original oil in place recovered was plotted in Figure 4.47. The 

recovery of OOIP was plotted because each experiment had different initial water 

saturation. The highest recovery (13.64 % of OOIP) was obtained from experiment 

no 3. Surfactant type SURF 3 gave highest oil recovery. The lowest recovery was 

from surfactant type SURF 4 which yielded 8.62 % of OOIP. The lower surface 

tension yielded higher recovery for the surfactant used. From Figure 4.47, for 

surfactant type SURF 3 which had lowest surface tension of 33.2 mN/m resulted 

highest tertiary recovery (13.64 % of OOIP). SURF 4 which had highest surface 

tension of 36.2 mN/m gave lowest tertiary recovery (10.71  % of OOIP).    

 

The surfactant performance was shown from the tertiary oil recovery. The 

descending order of the performance of surfactant would be SURF 3, SURF 2, 

SURF 1, SURF 5, SURF 6 and SURF 4.  It is interesting to note that the surfactant 

types SURF 3, SURF 2 and SURF1 result in higher oil recovery were produced from 

sulfonating and alkylating pyrolysis oil by C14 alpha olefin sulfonic acid.  
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 Because of the complexity of the chemical compound in the extracted 

phenols, the molecular weight of the extracted phenols in this study was not 

determined. If reactants are not mixed in the right mole ratio, yield is limited by one 

of the reactants. It is believed that complete reaction occurred in producing SURF 3 

(extracted phenol: C14 sulfonic acid, 100: 90 in weight ratio) and SURF 5 (extracted 

phenol: C16 sulfonic acid, 100: 60 in weight ratio). A complete reaction is one 

which proceeds completely to the right; it is a reaction which will use up all reactants 

completely if they are present in stoichiometrically equivalent amounts. There might 

be some moles of the reactant in excess left over after the reaction has gone to 

completion in producing SURF 6 (extracted phenol: C16 sulfonic acid, 100: 90 in 

weight ratio). Thus, it affected the purity and the quality of the surfactant produced. 

 

 To determine whether the flooding with surfactant polymer is more effective 

than without surfactant and polymer, two further experiments were conducted. One 

was surfactant flooding without using polymer and the other one was polymer 

flooding without surfactant. The results were compared in Table 4.22. 

 

Table 4.22: Displacement recovery performance of different surfactants 

 

Surfactant type and 

concentration 

Tertiary recovery 

( % OOIP) Experiment type 

SURF1 - 0.5 % 10.71 Brine + Surf.+ Polymer 

SURF2 - 0.5 % 10.91 Brine + Surf.+ Polymer 

SURF3 - 0.5 % 13.64 Brine + Surf.+ Polymer 

SURF4 - 0.5 % 8.62 Brine + Surf.+ Polymer 

SURF5 - 0.5 % 10.34 Brine + Surf.+ Polymer 

SURF6 - 0.5 % 8.93 Brine + Surf.+ Polymer 

- 8.33 Brine + Polymer 

SURF1 - 0.5 % 3.57 Brine + Surfactant  
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 It was found that the polymer flooding obtained 8.33 % of OOIP only. The 

oil recovery for surfactant flooding without using polymer was found to be 3.57 % 

OOIP. Field practice has shown that polymer flooding can increase recovery by 

more than 12% OOIP (Tabary and Bazin , 2007). Obviously, it yielded lower oil 

recovery if single chemical was used. Surfactant was required to reduce the 

interfacial tension between the residual oil while mobility control by polymer was 

also strongly required for better displacement and sweep efficiency. It is technically 

possible to perform a low tension water flood at 5 wt % of surfactant produced from 

oil palm shell by using 500 ppm polymer to control the mobility. From the 

experiments, the surfactant polymer flooding recovered the original oil saturation in 

the range of 8 – 14 %. In field application, surfactant polymer flooding has been 

used extensively worldwide and has been successful in recovering an additional 10 

to 20 % of OOIP (Yassin, 1988).  The results in this study are matched with the 

theoretical results. 

 

4.3.2.2 Surfactant and polymer produced from local starches as additives  

 

Displacement experiments were carried out by using four different polymer 

and surfactant. All the experiments were carried out at ambient temperature. Table 

4.23 illustrated that the summary of sandpack flood tests.  

 

Table 4.23 Summary of sandpack flood tests 

 

Test number Waterflood 

recovery 

(% IOIP) 

Final recovery 

(% OOIP) 

Experiment type 

P1 (sago)-500 ppm 52.69 15.43 Brine + Polymer 

P2 (tapioca)-500 ppm 50.00 16.56 Brine + Polymer 

P3 (sweet potato)-500 ppm 54.96 18.67 Brine + Polymer 

P4 (rice)-500 ppm 51.34 15.76 Brine + Polymer 

SURF7- 0.5 %  64.29 10.76 Brine + Surfactant 

SURF7 – 0.5 % P3 – 500 ppm 70.50 20.21 Brine + Surf.+ Polymer
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 The oil recovery by water flooding and the additional recovery due to tertiary 

surfactant polymer flooding are shown in the Fig.4.48 and 4.49. The graph was 

plotted in terms of the recovery of OOIP (original oil in place). Experiment P1, P2, 

P3 and P4 was resulted in 52.69 %, 50.00 % 54.96 % and 51.34 % of water flooding 

respectively. Conversely 15.43 %, 16.56 %, 18.67 % and 15.76 % were obtained by 

tertiary polymer injection respectively, which were not the highest oil recovery. It 

was also found that the oil recoveries of polymer produced for polymer flooding 

more highest compared than polymer commercial which is only 8.33 % of OOIP. It 

yielded lower oil recovery if single chemical was used.  

 

Surfactant was required to reduce the interfacial tension between the residual 

oil while mobility control by polymer was also strongly required for better 

displacement and sweep efficiency. Furthermore the oil recovery for surfactant 

flooding without using polymer was 3.76 % OOIP and 64.29 % of water flooding. In 

order that the highest water flooding recovery was obtained in the experiment 

SURF7P3 which is 70.50 %. It yielded oil recovery by surfactant-polymer injection 

of 20.21 % of OOIP. Obviously the performance of the polymer surfactant flooding 

depends on the polymer type. There was no relation of the previous water flood 

history on the surfactant-polymer recovery. 
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Figure 4.48 The performance of waterflooding succeeded by surfactant polymer 

flooding 
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Figure 4.49 The oil recoveries due to waterflooding and subsequent surfactant 

polymer flooding 
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4.3.2.3 Surfactant and polymer produced from local fruits as additives  

 

Displacement experiments were carried out by using ten different polymer 

and surfactant. All the experiments were carried out at ambient temperature. Table 

4.24 illustrated that the summary of sandpack flood tests.  

 

Table 4.24 Summary of sandpack flood tests 

 

Test number Waterflood 

recovery 

(% IOIP) 

Final 

recovery 

(% OOIP) 

Experiment type 

PO1(watermelon)-500 ppm 57.69 19.23 Brine + Polymer 

PO2 (pineapple)-500 ppm 50.00 17.24 Brine + Polymer 

PO3 (dragon fruit)- 500 ppm 62.96 14.81 Brine + Polymer 

PO4 (coconutsap)- 500 ppm 60.00 20.00 Brine + Polymer 

PO5 (honeydew)- 500 ppm 69.30 15.38 Brine + Polymer 

PO6 (papaya)- 500 ppm 62.50 16.67 Brine + Polymer 

PO7 (starfruit)- 500 ppm 60.00 16.00 Brine + Polymer 

PO8 (guava)- 500 ppm 53.85 15.38 Brine + Polymer 

PO9 (mango)- 500 ppm 59.26 14.51 Brine + Polymer 

PO10 (sugarcane)- 500 ppm 53.70 18.52 Brine + Polymer 

SURF7 – 0.5 % 64.29 3.76 Brine + Surfactant  

SURF7- 0.5 % PO4- 500 ppm 72.50 21.10 Brine + Surf.+ Polymer 

 

The oil recovery by water flooding and the additional recovery due to tertiary 

surfactant polymer flooding are shown in the Fig.4.50 and 4.51. The graph was 

plotted in terms of the recovery of OOIP (original oil in place). Experiment P5 was 

resulted higher compared than others which is 69.32 % of water flooding 

respectively. Conversely 50 % were obtained by tertiary polymer injection 

respectively, which were not the highest oil recovery. It was also found that the oil 

recoveries of polymer produced for polymer flooding more highest compared than 

polymer commercial which is only 8.33 % of OOIP. It yielded lower oil recovery if 

single chemical was used. Surfactant was required to reduce the interfacial tension 
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between the residual oil while mobility control by polymer was also strongly 

required for better displacement and sweep efficiency. Furthermore the oil recovery 

for surfactant flooding without using polymer was 14.29 % OOIP. In order that the 

highest water flooding recovery was obtained in the experiment SURF7PO4 which is 

72.50 %. It yielded oil recovery by surfactant-polymer injection of 21.10 % of OOIP. 

Obviously the performance of the polymer surfactant flooding depends on the 

polymer type. There was no relation of the previous water flood history on the 

surfactant-polymer recovery. 
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Figure 4.50 The performance of waterflooding succeeded by surfactant polymer 

flooding 
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Figure 4.51 The oil recoveries due to waterflooding and subsequent surfactant 

polymer flooding 

 

 Figure 4.52 and Figure 4.53 show the photos of the sand pack before and 

after water flooding followed by surfactant polymer flooding. The oil dyed red was 

injected into the sand pack as shown in Figure 4.13. As shown in the Figure 4.14, the 

surfactant polymer flooding gave good displacement performance in this study. The 

oil dyed red in the sand pack was displaced by the injected surfactant and polymer. 

The surfactant produced pyrolysis oil yielded the good performance in oil 

displacement test, and therefore it is a good candidate for enhanced oil recovery. 
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Figure 4.52 The sand pack saturated with oil dyed red (before flooding) 

 

 

 

 
 

Figure 4.53 The sand pack after waterflooding succeeded by surfactant polymer 

injection  



 

 

 

 

CHAPTER 5 

 

 

 

 

CONCLUSIONS AND RECOMMENDATIONS 

 

 

 

 

5.1 Conclusions 

 

 

The main objective of this study was to produce additives surfactant and 

polymer from local sources for enhanced oil recovery. The following conclusions are 

drawn from this study:  

 

1. The pyrolysis oil from oil palm shell contained high percentage of phenol 

and its derivatives more than 50 %. 

2. The extraction technique using alkaline solution was able to extract the 

phenol fraction and yielded an average of 25.20 wt %. 

3. Surfactant type SURF3 which was produced by sulfonation of extracted 

phenols of pyrolysis oil with C14 alpha olefin sulfonic acid (weight ratio 

of 100:30) had the lowest surface tension of 33.2 mN/m, anionic active 

matter, 39.09 % active and CMC of 0.22 wt %.  

4. Surfactant type SURF4 which was produced by sulfonation of extracted 

of phenols of pyrolysis oil with C16 alpha olefin sulfonic acid (weight 

ratio of 100:30) had highest surface tension of 36.2 mN/m， lowest 

anionic active matter, 20.55 % active and CMC of 0.28 wt %. 
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5. Surfactant type SURF7 which was produced by direct sulfonation of 

pyrolysis oil with C14 alpha olefin sulfonic acid (weight ratio of 100:60) 

had surface tension of 33.0 mN/m, anionic active matter 29.90 % active 

and CMC of 0.22 wt %. 

6. Polymer type PO5 which was produced from honeydew juice had highest 

dried weight of 8.3550 g/L while polymer type PO7 which was produced 

from starfruit juice had the lowest of dried weight of 3.5120 g/L.  

7. Polymer type P1 which was produced from sago starch had highest dried 

weight of 9.9690 g/L while polymer type P4 had the lowest of dried 

weight of 5.5190 g/L.  

8. FTIR and NMR characterization were given similarity characteristic of 

xanthan gum produced which was compared than commercial of xanthan 

gum. 

9. The result of the viscosities measurement indicates that xanthan gum 

which was produced from local starches and fruits likely more viscous 

than commercial of xanthan gum. 

10. Additives type SURF7PO4 yielded the highest recovery of 21.10 % of 

OOIP due to the lowering of the surface tension of the residual oil in the 

pore space followed by additives type SURF7P3 yielded the recovery of 

20.21 % OOIP due to the surface tension reductions was not sufficient 

enough overcome the oil layer surrounding the sand particles. 

11. Surfactant produced from pyrolysis oil resulted in additional oil recovery 

from 8 to 14 % of OOIP. Additional oil recovery in the displacement test 

using surfactant produced from pyrolysis oil of oil palm shell showed that 

it is a good candidate for EOR.  
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5.2 Recommendations 

 

 

Several recommendations are made for future works: 

 

1. More testing on the properties of additives should be done, such as 

adsorption and interfacial tension. Experiments should be designed and 

performed in the laboratory to determine the amount of additives adsorbed in 

reservoir rock and the interfacial tension between the oil and surfactant.   

 

2. Phase behavior of the additives and the optimal salinity should be 

investigated. 

 

3. Slug size and concentration of additives should be considered as important 

factors in the surfactant polymer flooding process. Experiments should be 

designed and performed to study the effect of different injection strategies on 

the oil recovery performance.   
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