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Abstract

An equation where solutions change on two vastly different scales will encounter a
stiff problem. Partial differential equations can lead to systems of first order ordinary
differential equations when discretized using finite difference such as methods of
lines. The method of lines, (MOL) is a powerful technique for solving partial
differential equation. This project aims to demonstrate the combination of two
methods in order to solve the stiff problems. The methods are the method of lines
with five-points central finite difference and the explicit third order Runge-Kutta
method.

Abstrak

Suatu persamaan dimana penyelesaian berubah besar pada dua skala berbeza akan
menemui masalah kekakuan. Persamaan pembeza separa boleh menjadi sistem
persamaan pembeza biasa peringkat pertama apabila di diskritkan dengan kaedah beza
terhingga seperti kaedah garisan. Kaedah garisan merupakan satu kaedah yang sangat
berkesan untuk menyelesaikan persamaan pembeza separa. Projek ini bertujuan
memperlihatkan kombinasi dua kaedah ini untuk menyelesaikan masalah kekakuan.
Kaedah-kaedah tersebut adalah kaedah garisan dengan lima-titik beza terhingga dan
kaedah tak tersirat runge-Kutta peringkat ketiga.



1. Introduction

A stiff system is one having one or more fast decay processes along with relatively
slow processes, such that the shortest decay “time constant” is much smaller than the
total span of interest in the independent variable, which is usually “time” [1].
Systems of ordinary differential equations arise frequently, in almost every discipline
of science and engineering, as a result of modelling and simulation activities. Large
stiff ordinary differential equations initial value problems occur in a fairly direct
manner in the modelling of electrical networks, mechanical system, chemical reactors,
biological system and nuclear reactors, to name just a few of many. A less direct but
extremely common source of large stiff systems is that time-dependent partial
differential equations, after a discretization process in the spatial variable(s). Three
categories of partial differential equations discretizations which are normally used:
finite difference method, finite element methods and spectral methods, which involve
the Fourier series.

In this project the method of lines is applied to the parabolic partial differential
equation problem, which we use as our example, to reduce it to a simpler ordinary
differential equation problem by discretizing all except one of the independent
variables. The parabolic partial differential equation, which is a diffusion type
equation, also known as the heat equation, produced a system of ordinary differential
equation which, in this particular example, consists of four first order ordinary
differential equations. This first order ordinary differential equations system is then
represented in the matrix form and we calculated the eigenvalues of the matrix to
identify the character of the system. Referring to the definition of stiffness by

Lambert, a differential equation is stiff if some or all of these eigenvalues have a real



part which is negative and of large magnitude. We found that we have a stiff system
since the calculation attained large magnitude and negative eigenvalues.

The purpose of this project is to present efficient general purpose methods for the
numerical solution of stiff partial differential equations. In particular, we hope that
this method will not be any more time-consuming compared to the standard technique

such as fourth order Runge-Kutta method.

2. Literature Review

Many fields of application, notably the engineering mathematical models that
concerned with the partial differential equations, yield initial value problems
involving systems of ordinary differential equations. These problems exhibit a
phenomenon, which is known as ‘stiffness’. A stiff differential equations is one with
general solution contains an exponential term such as e** for some constant 4. If A is
a large negative quantity, such equations are particularly troublesome since it causes
the solution to decay rapidly to zero. Curtiss and Hirschfelder did the research of this
area since 1952. Anyway, Dahquilst was the person who brings the problem to the
attention of the numerical computing company. A first survey on method for stiff
problems by Bjurel et al (1970) reports over forty methods, which most of them are
implicit ones. In 1996, T. Van Hecke ef al had developed a variable step order
algorithm for stiff ODE’s.

Again in 1996, Butcher, Cash and Diamantakis introduced the diagonally extended
singly implicit (DESI) Runge-Kutta methods for stiff initial value problems to
overcome some of the limitations of the singly implicit methods. These methods

experimentally have shown its competitiveness with the backward differential



formulae methods [2]. In short, the research in this area is still on going and has
attracted many scholars.

Most of the research focuses on the accuracy and stability of the method.

This research will make use of the method of lines, which is so far the most flexible
method in spatial discretization in order to transform the PDEs into systems of ODEs.
The systems of ODEs obtained are usually stiff and highly expensive to solve. The
new formula of third-order Runge-Kutta method, which we developed, will be used to
solve the systems of ODEs. The advantage of this new formula is that it is an explicit

method, which we hope will lower the cost of computations.

3. Methodology

We used method of lines in our project. This methods (MOL) has been used
traditionally to solve partial differential equations (PDE). The basic idea of this
particular method is to transform the PDE to simpler ordinary differential equations
by discretizing all except one of the independent variables. When there are two
independent variables, one is discretized while the other is left continuous. Once the
PDE problems have been approximated by simpler ODE, then any suitable numerical
methods which deal with stiff problems can be used to obtained an approximate
solution.

In this project, we use the five-point central differences in order to semidiscretize the
PDEs. The formula is given by [3]

— U, () +16u,, (0)—30u, (1) + 16w, (1) —u, (1)
124

u,(t)=



The new third order Runge-Kutta method is developed in this project is combined

with the MOL in the attempt to solve the stiff problem arises in heat problem.

ko= f(x,y,)
k, = f(x+ch,y, +ahk)
ky = f(x+c,h,y, +a,hk, +a;hk,)

Ynsi =Xy +§(b|k| +b,k, +‘53k3)

DB 1 -~
3

where ¢, = ,C ==, a, = 3 g —é b, =4+34/2, b, ==3(4+3v2)

and b, =6(2++/2)

This formula will be enhanced for the system of first order differential equations.

4. Numerical Results

We solve the following heat equation

U=a’U,; 0<x<Im

Xr?

with initial condition
Ux,00=70C, 0<x<1m
and boundary condition
U(0,0)=50"C, 0<t<0.3hr
U(l,r)=70°C.
where a® =0.1 and Ax = 0.2m

The problem can be written as a system of first order ODEs



d
<! —i(—uﬁ,+l6u0 ~30u, +16u, —u,)

24

% :2—54(—”n+]6“| —30u2, +16u, _“4)
% = %(—uﬁlfiu, = 30u, +16u, —zu)
dl

_di;'.:%(uz + 161, —30u, +16u, —”o)

with u, =50°Cand u, =20°C

In dealing with the five-point central difference approximations to the second
derivative Fisher [ ], proposed an assumption which leads to
U =—U_,,, and u =—u

—(n+l1) —(n+l)

Combining the assumption and the average of steady state boundary and initial value.

we obtained u_, =—60°C and u, =-45°C.

In matrix form, the above system becomes

[

dt

du, =30 16 -1 0 u,
ar _ l6 -30 16 -1 ||u,
duy -1 16 =30 16 ||u,
dt 0 -1 16 -30
duy B
dt

The eigenvalues for the matrix above are

Ay ==39, 4, =-5, 1, =-38-+/353, and 1, = -38+ /353



The negative eigenvalues above show that we have a stiff system of ODEs. Using the
new third order Runge-Kutta method (namely SAM) to solve the above system we

obtained the following results in Table |



Table 1.

The relative errors for the S-pont MOLs +SAM method on the parabolic
partial differential equations compared to the forward difference method.

X=0:2

Exact value

Relative errors

Forward Difference

5-point MOLs + SAM

t=0.06

68.6422168761

2.3924298352E-02

8.9805577352E-03

t=0.12

66.0658758630

1.7647171823E-02

8.9377506713E-03

t=0.18

64.1619477795

1.2459842744E-02

2.3324865269E-02

t=20.24

62.7607571081

9.4696054587E-03

3.3742188556E-02

t=0.30

61.6611828442

7.9046139194E-03

4.1507012244E-02

X =04

t=0.06

69.9947833016

7.4529817137E-05

9.9740365315E-04

t=0.12

69.7981589510

3.5553796079E-03

5.8912909727E-05

t=0.18

69.2214302667

6.7924090110E-03

2.5464532589E-04

t=10.24

68.3337219450

9.0525867375E-03

2.0899111914E-03

t=0.30

67.2352979293

1.0437799428E-02

5.0889971620E-03

X =0.6

t=10.06

69.9869625901

1.8628340790E-04

1.1563680729E-03

t=10.12

69.5066860511

9.0881336313E-03

9.7162224015E-03

t=0.18

68.2179429039

1.4445508937E-02

1.3218897889E-02

t=20.24

66.4821442738

1.6482158018E-02

1.2660850260E-02

t= 0.30

64.5903609103

1.6910296597E-02

9.9623064334E-03

X =08

t=0.06

66.6055422721

6.1639649375E-02

5.6624039992E-02

t=0.12

60.1647150419

4.8445588745E-02

3.9084994391E-02

t=0.18

55.4074762158

3.6118342731E-02

2.2660337205E-02

t=10.24

51.9252648451

2.8115453771E-02

1.0620207231E-02

t=0.30

49.2673936515

2.2955596342E-02

1.3639569719E-03
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Figure 1: The graphs relative errors obtained using the 5-point MOLs + SAM
and the forward difference methods at each point of x.



We illustrate the results of the temperature achieved at each point using the two methods

mentioned above together with the exact solution derived analytically.
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Figure 2: The graphs of the exact temperature and temperatures obtained using the
S-point MOLs + SAM and the forward difference methods at each point of x

5. Discussion & Conclusion

This research deals with two methods which are combined to combat stiffness
occurred in the partial differential equation. The first method is the method of lines,
which we use to transform the partial differential equation into system of ordinary
differential equation. The second method is the explicit third-order stage-artthnretic mean
Runge-Kutta method, which is applied in the final step in completing the task to crack the
stiff problem. We also solve the same problem using the forward difference method,
which as a result, we achieved a better accuracy in the new combined-method compared

to the other method. The graphs and values of the relative errors are exhibited to highlight



the comparison of both methods. We also plot the graphs of the exact temperatures and

the temperatures achieved using both methods at each point, x,

o o feco Tl rd Ao
We find that the combination of the 5-point MOLs and stace-ar )

Runge-Kutta method “loses™ a few points at the x = 0. 2 but “gains™ back the accuracy at
the other points. We had a feeling that the combination of assumptions for the endpoints
of the 5-point MOLs could still be improved in order to gain better accuracy.

We conclude that as a whole, this new creation of combination of 5-point MOL and the
new Alutc o arde

&&g@-am;hmcﬂ&—meﬁn Runge-Kutta method works better compared to the forward

difference method.
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The derivation of a composite method for solving stiff ordinary differential equations is discussed.
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the introduction of a new formula for the numerical solution of stiff ordinary differential equations.
The numerical results and the A-stability of this new formula are examined.
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1. Introduction

The problem of stiffness has been known for some time and has attracted the attention of many
numerical analysts, leading to surveys of methods for stiff problems. A considerable amount
of research in recent years has been directed to the problem of solving stiff systems by using
implicit methods [ 1]. It is also believed that implicit Runge-Kutta methods are appropriate for
the solution of stiff problems [2]. It has been suggested that stiff equations cannot be solved
using explicit methods, but recently a sixth-order A-stable explicit one-step method has been
developed using a composite of a polynomial and an exponential function [3]. In this paper,
we show that an Runge—Kutta-like explicit method can also be used to solve stiff problems.

It was shown in [4] that the harmonic mean (HM) Runge-Kutta formula can be written in
the form

(1)

h ( 2kyk, 2koky )

Vn =¥+ = =+
HTRT Ik Kt ks
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ki = flo, ) =f
ky = f(x, +ah, v, +ahk)
ky = f(x, + (a2 + adh, y, + hask, + hasks).
Third-order accuracy was obtained by adjusting the parameters through the solution of
equations of condition:
2a) +ay + a3 =2
12a,a3 + 9a,a; + 3({,2 =8 (2)
3ar + az)* + 6({13 =4

o obtain, ay = 2/3,a, = —2/3, a3 = 4/3.
2. Formulation of the third-order composite of the arithmetic and harmonic means
Itis possible to form a composite of the arithmetic and harmonic means, using one in the main

formula and the other in the stages. Using the concept of the arithmetic mean in the stages,
we have

ki = flxn, w)=f
kl = f()!‘n +f12h| Y+ [lzhkl)
ky + k
ky=f (.x-,, + ash, y, +azh ( : ;.- 2)) (3)
+ h ( 2k|k2 + 21&21.]
Yutl = Yo+ = .
gt 2 2 \k +k ky + ks
Since the algebra involved is the division of two series
2k;k;
i 3 =1.923 (4)
ki + k!‘H

we cannot make a direct substitution. These problems are alleviated by cross-multiplying the
terms by the common denominator (k| + k3)(ka + k3), which can be written as
TOP

e ()
BOTTOM

Y+l = Yu +

where
TOP = hlkakz(k) + ka) + kyka (ks + k3)]
BOTTOM = (k; + ky) (ks + k3).

Since the error of the method can be determined using the expression

ToP
" . X -
error = y(Xy41) = Y41 = Y 5m e ; ™
we obtain = e
TOP borgto

error = Taylor - ———
BOTTOM

which can be written as

error x BOTTOM = Taylor x BOTTOM — TOP. (6)
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We compared the coefficients of the same terms in (6) up to the term A°* and, using
Mathematica [5], we obtained two sets of parameters:

ar =0, a3 =2

and
3

4
==, 1 = —.
W=y g

The composite arithmetic—harmonic mean Runge-Kutta formula can be represented as
follows.

Set |:
kl - f(—xu-)’”)
kl = f(-rm yu) = kl

k
s = f (,r,, +2h, y, + 2h ( ‘ ;kz))

= f(xy + 2h, yo + 2hk;) (7

g - +h 2."(].’(2 % 2&2-‘\1
Yol = Vu 2\ + 4, ko + k3

=%n ) 1 k[+k3

since k; = k.

Set 2:
kl = f(-rn- _“‘”)

. 3 3
kj = f (X” + gh- }'u = ghkl)

4 4 k (8)
k] = f (Jl’” + gf’l, Ya + gh (k] ; 2))
h 2-{'1/(3 2!(2/(1
1 = Y o + : .
el =3 2(k1+k3 k2+k:)

In order to obtain the ‘best’ result, we used both sets of coefficients given above to solve
stiff ordinary differential equations. The ‘best’ accuracy was achieved using the coefficients
in set 2.

3. Stability

To check the stability, we substitute formula (8) of set 2 in the simple test equation

y = Ay.
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7

18]

—

-4 =3 -2 =3 7 0

Figure 1. The 2D stability region plotted for the composite method.

and we have

h ( 20y, (1 4+ 3A1h/5)
Vorl = W+ = = 5

2 \ Ay, + Ay, (1 4+ 34h/5)

20y, (1 4 300 /5) Ay, {1 + [4Xh(2 + 34h/5)]/10) )

T hyn (14 331 /5) + Ay, (1 + [4MA(2 + 3%k /5)]/10)

Setting z = Ah, we obtain the simplified equation
14+ z2(5 + 3z) [ 50 + 30z + 622
¥ = Mg
heh 10+3z | 55+ 22

and

z(5 4 3z) [50 + 30z + 672
RG) — (54 )[ - +6

(104 32) 5(5+ 22)

The stability regions for the above [ormula are illustrated in figures 1 and 2.

" o
1 f‘“‘
0.75 S _j,/ =
O(z) 0.5 Ttz
0.25 N 1
0
-4 : 0 rIm(z)
~19 -1
Re(z) =3
0 -2

Figure 2. The 3D stability region plotted for the composite method.

} z# —2.5,—10/3.

9



4. Numerical example

We consider the initial value problem

Stiff ODEs

F(r,y) = —100y(t) + e,

with the exact solution

|
y(t) = %e

over the range 0 <t < 1.0

We solve a stiff initial value problem eq
stepsize h = 0.01, we printed the numerical results o

1000y 4

y(0) =0

2981 )

uation using set 2 to obtain the ‘best’ results. Using a
btained every 10 steps using equation (8).

For comparison, the numerical solution and the relative errors obtained using the modified
third-order mean Runge—Kutta method [6] are shown.

Table | shows the exact values and th

the errors diagrammatically.

e relative errors for each method, and figure 3 shows

-

P77 0 .

6.92517714430E-05 _, (.2 21% ¥

Table 1. Errors in the composite Arithmetic-Harmonic Runge-Kutta method compared to the modified third
order method (Wazwaz)

GM2/AM
t Exact value (Wazwaz) Relative error | Arith-harmonic Relative error 2
0.1 0.0083539322 0.0080357102 3.8092481512E-02 0.0083687919 1.77876430833E-03 v
0.2 0.0068400004 0.0065740809 3.8877129698E-02 0.0068404782 6.98463053522E-05 v
0.3 0.0056001187 0.0053819215 3.8962962029E-02 0.0056005066 6925198011 10E-05
0.4 0.0045849894 0.0044063005 3.8972599992E-02 0.0045853069 6.92517715086E-05
0.5 0.0037538718 0.0036075697 3.8973674574E-02 0.0037541318 6.92517714399E-05
0.6 0.0030734103 0.0029536279 3.8973794285E-02 0.0030736232 6.92517714360E-05
0.7 0.0025162956 0.0024182259 3.8973807620E-02 0.0025164698 6.92517714306E-05
0.8 0.0020601686 - 0.0019798759 3.8973809105E-02 0.0020603112 »  6.92517714307E-05
09 0.0016867233 0.0016209853 3.8973809271E-02 0.0016868402 6.92517714393E-05 —» 6.2
1 0.0013809723 0.0013271505 3.8973809289E-02 0.0013810679

Relative errors for both methods

o

1072

1073

Errors

1074 |

o 107 L
01 02 03

04 0.5 0.8

t

0.7 0.8

|—e— Relative error 18— Relative error 2

Figure 3.
order mean Runge-Kulta (GM?/AM) methods.

Relative errors for the third order compasite Arithmetic-Harmonic Runge-Kutta and the modified third
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5. Conclusion

We have shown that it is possible to construct a composite method for solving stiff problems
from the various forms of third-order means of the Runge-Kutta formulation. The combination
of arithmetic and harmonic means provides a new explicit method for the solution of stiff
ordinary differential equations which could reduce the cost of computation compared with
implicit methods.
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ABSTRACT

This paper discusses the derivation of an explicit Sin-Cos-Taylor-Like method for solving stiff ordinary differential
equations, which is a formulation of the combination of a polynomial and the exponential function. This new method
requires extra work to evaluate a number of differentiations of the function involved. However, the result shows smaller
errors when compared to the results from the explicit classical fourth-order Runge-Kutta (RK4) and the Adam-
Bashforth-Moulton (ABM) methods. Implicit methods could work well for stiff problems but have certain drawbacks
especially when discussing about the cost. Although extra work is required, this explicit method has its own
advantages. Besides providing excellent results, the cost of computation using this explicit method is much cheaper
than the implicit methods. We also considered the stability property for this method since the stability property of the
classical explicit fourth order Runge-Kutta method is not adequate for the solution of stiff problems. As a result, we find
that this explicit method is of order«p', which has been developed, and proved to be both A-stable and L-stable.

s

| Stiff ordinary differential equations | Explicit methods | A-stable | L-stable |

1. Introduction

Stiff problem entails rapidly decaying transient solution, which arises naturally in wide variety of
applications including the study of spring and damping system, the analysis of control system and problems in the
chemical kinetics [1]. Stff differential equations also occur in other kind of studies, such as biochemistry,

biomedical system, weather prediction, mathematical biology and electronics. In chemical kinetics, stiffness is
caused in the vast majority of cases merely by a great difference among the reaction rate constants. This problem
is more likely to occur whenever we have a larger system or the more detail and complicated the models are. The '
atmospheric phenomena as an example, involves transport with chemical reaction, thus stiffness can occur
because of the time scales of the reactions are much smaller than times for movement over distances. Stiffness in

heat transfer originates physically in one of two ways; sharp changes in the thermal environment of large
differences in the rates which components of the system can transfer heat [2].

Stiffness is generally understood in terms of what goes wrong when numerical methods not design for such |
problems are used to try to solve them [3). Lambert in [4] points out that one should consider stiffness as a |
phenomenon exhibited by a system, rather than a property of it, because the word property is associated to the

>
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existence of a definition, which is both comprehensive and precise, whereas it is difficult to come out with a

|| satisfactory definition for the concept of “stiffness™.

o e

This paper focuses on the explicit one-step methods for solving stiff differential equations. Although most

of the numerical analysts were confident that the implicit methods work better in producing results for stiff

problems but this research meant to explore the explicit methods, which recently was proven, could also satisfy
the stiff problems [5].

2. Formulation

Rokiah & Nazeeruddin [6] have shown that the explicit one-step method for stiff problems could be
represented by the composition of a polynomial and exponential function of the form

PE (1) = a,+1(a, +t(a,+t(a, +t(a, +as 1)) + Abe™ (1.1)

: Taking A = 1, we calculated the values ofa;,i=0,1,2345and b;, i = 1,2. In [7], we substituted the constant A

=1 with a trigonometric function, sin z,4. Based on the same theory for the solution of a differential equation
with complex. eigenvalues, we replaced the constant 4 by sin z,h + cos z,i which produced a Sin-Cos-Taylor-
Like method. For simplicity we name this method as SCTL6 method.

Provided that /. /¥ # 0, we obtained the equation

_ _ P [ PP (¥ PP I SAPTIPLS
PE()=y,+(t-t)| f,+{-1t) 5 + (1 tn){ & + (1 tn)(24+(t t")l20

O (sin(z,h) +cos(z,m)) [ . - 1 i ]

f ( 1 (Z z)ﬁ ) (e (=0, '"1_zn(f—[,,)_‘i(z,,(f_r,,)) _g(:n(t_’n))l_ (12)

n

| N T
-t r,,))]

where

(6)
z, = A
n (5)
1,

Letting ¢ = #,.;, we arrive at the formula below:

=y +h| f,+h|=+h|—=+h +
Yo =Ya+h) [o+h) 5 6 24 120 2

n

A fo —j;-+h£ } f8(sin(z,h) +cos(z,h))
(1.3)
zh

1 1 1
~1-hz,|1 —thz, | —+hz, | —+
exp(z,h)—1-hz, +hzn(2+ z"(6+ zn(24 IZOJD
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3. Local Truncation Error

The local truncation error for this particular method given by the formula (1.3) can be represented by

T:HI = y(rﬁ+l)_yr-‘+|

h'.’ h3 h4 hS h6
vt Y+ )+ — Y (t)+—Y" (1) + — G Yo YO (1) +— ¥ () +
y(t,)+hy'(t,) 2)’(,,) 6)}(,,) 227 (t,) 120" (t,) youe,)

720
" " (4) (5)
O )=y —h| v +h| L2+ b Zeth I pp2e |-
N e (y" {2 [6 [24 120
(6) faq
n (sm(znh):cos(znh)) e —1-zh|1+2h —1—+znh l+zﬁh(—l—+ﬂ£)
2 2 6 24 120

_ 7%6 3O (1= (sin(z, h) + cos(z, 1) + O,

¥ e . ; } F_’f 14
with T, =—736y” (1-(sin(z,h)+ cos(z,h)))+O(h") . we conclude that the SCT-L6 method is a #xth-

order method.

4. Stability

4.1. Theorem 1.1
The explicit Sin-Cos-Taylor-Like method 1s A-stable.
Proof:

Applying equation (0.3) to the test equation, with Re (1) < 0, we obtain

/‘{,Zy lly /141? Aﬁy
—v +h| Ay +h| =22t h| =" +h it h—* +
yrH-l yfr [ yn [ 2 [ 6 ( 24 120
1 1 1 Ah
o )+ cos(Ah))| e =1 Ah| 1+ Ah| —+Ah| —+Ah| 2+ o0
yn(sm(z") cos( ))(e (+ (2+ [6 (24 lzoﬂ}ﬂ
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(Ah)? +(/1h)3 +(Ah) +(,uq) .

1+hA+
6 24 120

(4h) (k)  (2h) (4h)
6 24 120

y, (sin(z,h) +cos(Ah))| e*" =| 1+ Ah+

=, (" (sin(2h) +cos(Ah) + (1 - (sin(Ah) + cos(Ah))
(Ah) | (Ah)  (Ah)'  (Ah)’ D

1+ Ah+
2 3! 4! i

which leads us to
yn+I: G (M)ym

G(Ah) ~e*[sin(Ah) +cos(Ah)]+[1 - (sin(Ah) +cos(Ah))le""
=e,{h
Since y,+ = ¥ Pn
Ah Ah kAh

N z‘-"u"ya y h® ‘-’M_}"l el Yo ... Yk R E W mTe T Vo
For any fixed point t = t, = nh, we have
Ah
e yy
Since Ie"‘ml — 0 as n— o for all Ak with Re (1) <0, we have y,— 0 as n— o and consequently the method is 4-

stable.

4.2. Theorem 1.2
The explicit Sin-Cos-Taylor-Like methed is also L-stable.

Proof:

Applying equation (0.3) to the test equation, with Re (4) <0, we obtain
Yue1 = eﬂ)’n

From Theorem 1.1, the method is A-stable.

Since |e’”’] — 0 as Re(Ah)—» —oo, we have L-stability.

We plot the stability region for the SCLT6 method as given in Figure | and 2. Using MATHEMATICA [8].
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Fig. 2 The stability region in 2D given by the SCTL6 method.
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5. Numerical Results and Discussion

The formula [1.4] is tested on the stiff ordinary differential equation
(1) ==100y(t)+99¢™" (0) =0, (3.1)

and compared to the exact solution using the step size, h = 0.01 and 4 = 0.02 . We also solve equation (3.1)
using another two established methods, namely the classical fourth-order Runge-Kutta (RK4), the implicit
Adam-Bashforth-Moulton (ABM) methods. The relative errors for the methods applied, with the two different
step sizes are compared and presented in Table | and 2. Table 3 shows the number of function evaluation in each
iteration for the RK4, ABM and SCTLg methods.

Figure 3 and 4 exhibits the graphs of the relative errors for all the methods used while in Figure 5 and 6, we
illustrate the graphs of the exact solution together with the RK4, ABM and SCTL6 methods using different value
of step size, i.e. h = 0.0] and /= 0.02.

Table 1 Explicit Sin-Cos-Taylor-Like method, h =0.01 on the équations y' = -100y(t)+99exp(-1) compared to the classical
Runge-Kutta (RK4) and Adam Bashforth-Moulton (ABM) methods.

Relative Error (h = 0.01)

t

Exact solutions

RK4

ABM

CTL6

0.1 0.9047920181 3.2843157707E-03 3.3420582518E-05 1.41700453180E-05
0.2 0.81873075102 5.3589898295E-04 4.6435765374E-06 1.66146927457E-09
0.3 0.74081822068 6.8201816855E-06 4.6488512241E-06 2.13272074342E-12
0.4 0.67032004604 1.0804073360E-05 4.6488430870E-06 6.49236623601E-12
0.5 0.6065306597| 1.1613090101E-06 4.6488539332E-06 4.35427045393E-12
0.6 0.54881163609 6.2829963309E-08 4.6488569286E-06 7.34859812373E-12
07 0.49658530379 2.9160200451E-08 4.6488524296E-06 2.85154221430E-12
0.8 0.44932896412 2.2715739765E-09 4.6488434082E-06 6.17143400501E-12
0.9 0.40656965974 2.4400746564E-10 4.6488510658E-06 1.48564169037E-12

0.36787944117

9.6759880091E-| |

4.6488535118E-06

3.93337875730E-12
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Table 2 Explicit Sin-Cos-Taylor-Like methed, & =0.02 on the equations y' = -100y(t)+9%exp(-t) compared to the classical
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Runge-Kutta (RK4) and Adam Bashforth-Moulton (ABM) methods.

Exact value

Relative Error (h = 0.02)

RK4

ABM

SCTLé6

0.1

0.2

0.3

0.4

0.5

0.6

07

0.8

0.9

0.90479201811
0.81873075102
0.74081822068
0.67032004604
0.60653065971
0.54881163609
0.49658530379
0.44932896412
0.40656965974

0.36787944117

4.4471205718E-03
3.0506054044E-05
5.1095079591E-05
5.1188730382E-05
5.1189156315E-05
9.3271280234E-02
5.1189158233E-05
5.1189158258E-05
5.1189158252E-05

5.1189158261E-05

3.1145021711E-O1

9.9141115426E-01

2.5565149730E+00
3.2739007255E+00
1.0065478912E+02
8.5027262232E+02
5.1817251752E+03
2.5086071824E+04
9.2247557198E+04

1.7389140715E+05

5.0186660602E-05
2.5135869371E-09
2.3163046736E-12
6.5087631915E-12
4.3394438226E-12
7.3338305285E-12
2.8353332833E-12
6.1870003397E-12
1.4708958671E-12

3.9170821023E-12

Table 3 Number of functions evaluation in the methods used.

Methods

Function evaluation in one iteration

Classical Runge-Kutta

Adams-Bashforth-Moulton

Sin-Cos-Taylor-Like
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Fig. 3 Relative errors for the four methods used to solve the stiff problem using h = 0.01.
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Fig. 4 Relative errors for the four methods used to solve the stiff problem using 4 = 0.02.
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Fig. 5 Graphs of the exact value together with the four methods used to solve the stiff problem for h=0.01.

[Exact

Fig. 6 Graphs of the exact value together with the four methods used to solve the stiff problem for h = 0.02.
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6. Conclusion

This research generally discusses a one-step explicit method involves in solving stiff ordinary differential
equations, namely, the Sin-Cos-Taylor-Like (SCTL6) method. The results show excellent accuracy of the SCTL6
method using two step sizes, A = 0.01 and 4 = 0.02, compared to the classical RK4 and the ABM methods. The
difference of the step size in SCTL6 does not show any significant difference of the error obtained. Nevertheless,
RK4 method shows a better results when h = 0.01 compared to h = 0.02, which shows that this method requires
more iteration to obtain a better accuracy. The stability region for the fourth order RK4 and the ABM methods

are given by ]/'I',hl <2.78 and}ihl <1.25respectively [9]. In the stiff differential equation above, with A = -
100, the range for the RK4 step size is h < 0.0278 whereas the range for the ABM method is h < 0.0125. Since h
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