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DEVELOPMENT OF NONDESTRUCTIVE INSPECTION SYSTEMS USING 

INFRARED IMAGES BASED ON IMAGE PROCESSING TECHNIQUE 

 
(Keywords: Infrared thermography, thermal image, thresholding, defect detection) 

 
 The last few years, infrared thermography technique has been applied 

successfully in petrochemical industry. The main information from this technology 

acquired by using infrared thermal camera is in the form of thermal image. Any 

abnormal condition of an inspected object will be reflected as an abnormal spot 

(often hotspot) at certain location in a thermal image with highest pixel intensity 

values. In image processing terminology, this spot is called as the defect. Current 

practice, this hotspot is interpreted manually by human inspector. This way of 

interpretation is not effective and efficient. This report proposes an automatic and 

efficient way for interpreting a thermal image, in term of defect detection. Local 

intensities operation (LIO) to highlight the defective area is applied before detecting 

defect by using a new thresholding scheme based on its minimum gray-level value in 

image histogram. From the experiments carried out, this technique can detect 

correctly any defect as depicted in a thermal image. After testing with twelve thermal 

images and comparing it with other defect detection algorithms, the proposed 

technique has the best performance with absolute error less than one percent 

(0.91%), while other algorithms produced an error as high as 66.80%. The proposed 

pre-processing local intensities operation also has made the standard defect detection 

algorithm, such as the Otsu technique, able to correctly detect the defect which may 

otherwise not be possible if it is done using non pre-processed (original) thermal 

image. 

Key Researchers: 

 
Assoc. Prof. Dr. Syed Abd. Rahman Syed Abu Bakar (Head) 

Rudi Heriansyah 

 
E-mail: syed@fke.utm.my 

Tel. No.: 07-5535238 
Vote No.: 74271 

 



iv 

 
 

PEMBANGUNAN SISTEM PEMERIKSAAN TANPAMUSNAH 

MENGGUNAKAN IMEJ INFRAMERAH BERDASARKAN TEKNIK 

PEMPROSESAN IMEJ 

(Katakunci: Haba inframerah, imej haba, ambang, pengesanan kerosakan) 
 

 Pada beberapa tahun terakhir, teknik haba inframerah telah berjaya 

diaplikasikan dalam industri petrokimia. Informasi utama dari teknologi ini yang 

diperoleh menerusi kamera haba inframerah adalah dalam bentuk imej haba. 

Sebarang keadaan tidak normal pada objek yang dikaji akan terserlah sebagai 

kawasan tak normal (seringkali kawasan panas) pada lokasi tertentu di imej haba 

dengan nilai piksel yang tinggi. Dalam terminologi pemprosesan imej, kawasan ini 

disebut sebagai kerosakan. Pada masa sekarang ini, kawasan panas ini diterjemahkan 

oleh manusia. Cara penterjemahan sebegini tidak efisien dan efektif. Lapuran ini 

mencadangkan satu cara automatik dan efisien untuk mengterjemahkan kerosakan 

yang ada pada imej haba berkenaan. Operasi intensiti tempatan yang diterapkan 

sebelum pengesanan kerosakan menggunakan satu proses ambang baru berdasarkan 

nilai minima tingkat keabuan pada histogram imej. Ujikaji yang telah dilakukan 

menunjukkan bahawa teknik ini dapat mengesan secara automatik dan efisien 

sebarang kerosakan yang ada. Setelah percubaan dilaksanakan menggunakan dua 

belas imej haba dan dibandingkan dengan teknik pengesan kerosakan yang lain, 

teknik yang dicadangkan menunjukkan prestasi yang terbaik dengan perbandingan 

mutlak ralat kurang dari satu peratus (0.91%), berbanding dengan algoritma lain 

yang memberikan ralat sebesar 66.80%. Operasi intensiti tempatan yang dicadangkan 

juga dapat menjadikan algoritma piawai seperti teknik Otsu, mampu mengesan 

kerosakan dengan betul yang sebelumnya tidak mungkin dilakukan jika 

menggunakan tanpa pra-pemprosesan atau imej haba asal. 
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CHAPTER 1 

 

 
INTRODUCTION 

 

 
1.1 Background 

 
 Infrared thermography (IRT) (Kaplan, 1993), (Maldague, 1993), 

(Gaussorgues, 1994), (Maldague, 2001) is one of many existing nondestructive 

testing techniques for preventive (PM) or predictive maintenance (PdM) (Mobley, 

1990), (Gardner, 1992), (Levitt, 2003).  

 
In the last few decades, IRT has gained much attention and has been 

successfully applied to the areas of electrical, mechanical, petrochemical, building 

and structures, material testing, industry, medical, and many others various 

applications (Kaplan, 1993) ranging from breast cancer detection (Qi et al., 2002) to 

SARS (severe acute respiratory syndrome) diagnosis (Wang et al., 2004), from 

aircraft inspection (D’Orazio et al., 2005) to buildings application (Lo and Choi, 

2004). Among others, the popularity of IRT lies in its contactless, easy to interpret 

the thermal data, large area of inspection, free from dangerous radiation. 

 
One area where IRT has played an important role is in the petrochemical 

industry. This type of industry is categorized as a heavyweight industry with high 

investment cost, operational cost, and maintenance cost, along with high requirement 

for safety. Any problem found in running facilities should be known earlier since 

breakdown of equipment will affect other equipments or even the entire operation of 

the plant. Maintenance should be scheduled properly and regularly because shutdown 

or startup equipment cannot be done suddenly as it is related to operational cost. 

Petrochemical site is a hazardous area, therefore entering this site should adhere to 

the safety standard. Because of these conditions the PdM and nondestructive 

evaluation (NDE) technique using IRT with its remote access capability have more 

advantageous over other PdM schemes.  
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Several big petrochemical industry players such as BP Amoco (Nyholt, 

2000), Texaco (Ohliger and Alvarado, 2001) and Chevron Texaco (Ohliger, 2002) 

have taken the benefit of IRT technology. One example of local petrochemical 

company that uses this technology in its predictive maintenance program is MTBE 

Malaysia Sdn. Bhd., located at Gebeng, Kuantan, Pahang, Malaysia. All thermal 

images used in this report have been provided by this company.  

 
Other applications of IRT in petrochemical industries, refineries, or facilities, 

are in the inspection of tanks (Sims, 2001), boilers (May, 2003), process vessels 

(Bonin, 2003), horsehead (beam) pump (Ohliger, 2003), lagged pipe (Willis, 2004), 

furnace tube (LeClercq, 2003), refractory lined petroleum refinery equipment 

(Whitcher, 2004), and process heaters (Weigle, 2005). These various applications 

show that IRT is a suitable tool for petrochemical industry applications.  

 

 
1.2 Motivation 

 
 Thermal data is the main source when employing IRT technology. This data 

can be in the form of a single numerical value when using point sensing infrared 

equipment or many numerical values (or pixel values) when using area sensing 

equipment (Kaplan, 1993). This numerical value represents the temperature quantity. 

For visualization purpose, these temperature values are converted into pixel values in 

the form of thermal image. Any abnormal condition on the inspected object will be 

reflected by unusual temperature distribution. This abnormal temperature pattern will 

be depicted as either a cluster of bright pixels or dark pixels. This brightest spot in 

visual inspection terminology is referred to as defect. In this report, the brightest 

defect spot is referred to as a hot defect, and the darkest defect spot is referred to as a 

cold defect. Chapter 2 will discuss further details on these defects. 

 
 In current practice, the interpretation of the thermal image in many 

applications are done manually using human interpretation. Some efforts have been 

made to automate the interpretation for this thermal data (Maldague, 2001). 

However, up to the point of writing this report, there has been no automated 

interpretation in the petrochemical application. Most of the data are analyzed 
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qualitatively using human vision system. This report thus proposes an automatic way 

for interpreting thermal image in term of defect detection.   

 

 
1.3 Objective 

 
 The objective of this work is to develop an algorithm that can automatically 

detect defects as depicted in thermal images and implement this algorithm in a 

programming language. Image processing paradigm is the main tool for algorithm 

development. For verification purpose, the developed algorithm and its 

implementation are tested with thermal image dataset both for the case of hot and 

cold defects. A benchmarking procedure is also designed for performance evaluation 

of the developed algorithm along with comparison with existing techniques. 

 

 
1.4 Scope of Work 

 
 This work is limited to the following scopes: 

o Thermal data used is in the form of pixel values of thermal image. 

o Thermal image is obtained from passive thermography scheme meaning that no 

time dependency from one thermal image to another, hence no thermal contrast 

computation is needed. 

o Thermal image is in 8-bits format (256 gray-level value). 

 

 
1.5 Contributions 

 
 The first contribution of this report is in the development of pre-processing 

algorithm for defect visibility enhancement and gray-level value localization in 

image histogram. Local intensities operation (LIO) using 3×3 window neighborhood 

pixel value is proposed. LIO operation comes in two schemes: local intensities 

weighting (LIW) operation for use in detection hot defect and local intensities 

lighting (LIL) operation for use in detection of cool defect. 

 
 The second contribution is the development of the thresholding algorithm 

based on 1-D image histogram. Rather than using the 2-D histogram, 1-D histogram 
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is selected due to its simplicity and fast processing computation. Three simple 

thresholding algorithms based on midway absolute thresholding (MAT), midway 

relative thresholding (MRT), and minimum frequency thresholding (MFT) are 

proposed to detect defect in thermal image after LIO pre-processing operation. LIO 

operation combined with these proposed algorithms are found to outperform other 

techniques (this result is given in Chapter 4). 

 
 The third contribution is in tailoring LIO pre-processing operation with any 

non-dedicated thermal image defect detection algorithm. This combination has 

enables the defects to detected which were otherwise not possible without the 

combination with LIO.  

 
1.6 Report Organization 

 
 The report is organized as follows. Chapter 2 provides a short description on 

terminology which is commonly used in infrared thermography and thermal image 

data. This chapter also provides review on existing non-dedicated and dedicated 

algorithms based on thresholding technique which are commonly used for 

background and foreground separation or object detection. Chapter 3 discusses the 

proposed algorithms for thermal image pre-processing and thresholding algorithm for 

defect detection. Experimental results to verify the proposed algorithms are given in 

Chapter 4. This chapter also gives the benchmarking result of the proposed defect 

detection algorithms against other existing algorithms. The last Chapter 5 

summarizes and concludes the report and gives recommendation for future work. 



 

 

 
CHAPTER 2 

 

 
LITERATURE REVIEW 

 

 
2.1 Overview 

 
This chapter reviews some of the existing techniques devoted to detect 

defects as depicted in a thermal image. The advantages and disadvantages of each 

technique are highlighted. A brief discussion on materials related with thermal image 

is also given in the text. 

 

 
2.2 Thermal Image 

 
The infrared thermal image or in shortl thermal image is an image which is 

captured using an infrared thermal camera or simply thermal camera (not to confuse 

with an infrared camera which is commonly applied for a night vision application). 

Essentially this device captures electromagnetic spectrum within infrared bands (0.78 

– 1000 µm) (Figure 2.1). Therefore, unlike the intensity image which is lies within 

the visible light, a thermal image is a function of radiated energy of an inspected 

object (Kaplan, 1993). This is illustrated in Figure 2.2. 

 

 
 

Figure 2.1 Electromagnetic spectrum 
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Figure 2.2 Thermal image as a function of energy radiation 

 

 
According to its working wavelength, thermal camera can be divided into two 

groups: short wave and long wave thermal cameras. A short wave (SW) camera 

operates in bands between 3 and 5 µm and a long wave (LW) camera operates in 

bands between 8 and 12 µm. The LW camera is of particular interest for measuring 

radiation from objects at room temperature (an example is for the detection of 

intruders by law enforcement agencies). The SW camera is best suited for warmer 

objects (an example is any process releasing CO2, such as combustion engines) 

(Maldague, 2001). 

 
Raw data captured by a thermal camera is in the form of temperature values. 

Thermal camera manufacturer usually has their own software to read this data and 

display them as a thermal image. When converting temperature values into thermal 

image, a pseudo-coloring or false-coloring technique (Chanda and Majumder, 2000) 

is used.  

 
Certain color level represents certain temperature values. In this software 

terminology, this color map is called palette. IRBIS and IRBIS Plus V2.2 (from 

InfraTec GmbH Dresden) has seven palettes: varioscan, varioscan printer, black  

white, white  black, iron, blue  red, and stufen. While ThermaCAM Explorer 99 

(from FLIR Systems) offers more various palettes: glowbow, grey, grey10, greyred, 

iron, iron10, medical, midgreen, midgrey, rain, rain100, rain900, and yellow.   

Figure 2.3 shows a visible image along with its thermal image in several palettes 

from ThermaCAM Explorer 99. 
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(a) (b) 

  
(c) (d) 

 

Figure 2.3 (a) Visible image with its thermal image (b) glowbow, (c) midgreen and 

(d) rain palette 

 

 
2.3 Defect in Thermal Image  

 
In a thermal image, a defective area or an area with the hottest temperature is 

usually represented by the brightest color. Sometimes, the defective area is 

represented by the darkest color. In this report, the hot defective area is called as hot 

defect, and the cold defective area is called as cold defect.  

 

To save the computational cost, rather than working in a colored thermal 

image, this report takes the advantage of using a grayscale thermal image, since the 

defective area is still obvious in this mode.   Figure 2.4 shows a color thermal image 

and grayscale thermal image, the defective area (as depicted with bright color in this 
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image) is still clearly differentiable with the background for both images as shown by 

the intensities profile over the defective area. 
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Figure 2.4 (a) Color thermal image, (b) grayscale thermal image with their intensity 

profile over the defect area 

 

 
2.4 Thresholding Algorithms 

 
Image thresholding is mostly used for image segmentation due to its intuitive 

properties and easy to implement (Gonzalez and Woods, 2002). Thresholding also is 

a common tool for defect detection (Ng, 2006). 

 
Thresholding is a process to separate object from its background in a digital 

image. Histogram is the main tool in this separation process. Suppose that the gray-

level histogram shown in Figure 2.5 corresponds to an image, f(x,y), composed of 

light objects on a dark background, in such a way that object and background pixels 
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have gray levels grouped into two dominant modes. One obvious way to extract the 

objects from the background is to select a threshold T that separates these modes. A 

thresholded image g(x,y) from an image f(x,y) is defined as: 

 

  (2.1) 
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Figure 2.5 Gray-level histogram to separate object from its background 

 

 
If the gray-level histogram is calculated from the entire image, then value T is 

called a global threshold. Otherwise, if the histogram derived from a local window 

pixel values then it is called a local threshold. If only one T value is needed then it is 

called bi-level thresholding, if more than one T values are needed than it is called 

multi-level thresholding (Chanda and Majumder, 2000), (Ritter and Wilson, 2001), 

(Gonzalez and Woods, 2002).  

 
 Numerous thresholding techniques for image segmentation have been 

proposed and the surveys of these techniques have been published elsewhere 

(Weszka and Rosenfeld, 1978), (Sahoo et al., 1988), (Lee et al., 1990), (Glasbey, 

1993), (Sezgin and Sankur, 2004). Some criteria for performance evaluation of these 

thresholding techniques were also described in these papers. 

 
Sezgin and Sankur (2004) have classified these thresholding techniques into 

six categories: (1) histogram shape-based methods, (2) clustering-based methods, (3) 

entropy-based methods, (4) object attributed-based methods, (5) the spatial methods, 

and (6) local methods. 
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Otsu (1979) proposed a thresholding technique which is commonly also 

recognized as maximum between-class variance (BCV) method (clustering-based 

category). It is one of the popular global thresholding method due to its simplicity 

(Lin, 2002), (Du et al., 2004). Otsu method was successfully applied to text 

document (Wu and Amin, 2003) in which the background and foreground for this 

image is bi-modal in nature, but this method could fail for an extremely unbalanced 

sizes of background-foreground classes as shown by Kittler and Illingworth (1985). 

Otsu method also is a global thresholding method. This method will face a problem if 

the image has uneven illumination. 

 
In Otsu method, an image with gray level histogram { }L

iip 0=  is thresholded at 

T gray level value. The probabilities of background and foreground of the T-

thresholded image can be calculated: 
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From Equation (2.3), the means and variances associated with the background 

and the foreground can be further calculated by: 
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Between-class and within-class variance, can then be defined as: 

 
 ( ) ( ) ( ) ( ) ( )( )2TTTPTPT FBFBclassbetween µµν −××=−  (2.5) 

 

 ( ) ( ) ( ) ( ) ( )TTPTTPT FFBBclasswithin ννν ×+×=−  (2.6) 

 
 
Optimum thresholding value in Otsu’s method is determined by maximizing 

T
classbetween−ν  or minimizing T

classwithin−ν  as in the following equation: 
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 ( )( ){ } ( )( ){ }TTTT classwithinLTclassbetweenLT −≤≤−≤≤ == νν 11 minargormaxarg  (2.7) 

 

Ridler and Calvard (1979) proposed a cluster-based thresholding algorithm 

without using image histogram. An initial guess at a threshold is refined consecutive 

passes through the image.  

 
The initial guess at the threshold is simply the mean gray level. This 

threshold is then used to collect statistics on the black and white regions obtained; 

the mean gray-level for all pixels below the threshold is found an called Tb, and the 

mean level of the pixels greater than or equal to the initial threshold is called To. Now 

a new estimate of the threshold is computed as (Tb + To)/2, or the average of the 

mean levels in each pixel class, and the process is repeated using this threshold. 

When no change in threshold is found in two consecutive passes through the image, 

the process stops. 

 
 Kapur et al. (1985) proposed a gray-level thresholding using the entropy of 

the histogram. Entropy is the measure of information content. In this technique, the 

image foreground and background are considered as two different signal sources, so 

that when the sum of the two class entropies reaches its maximum, the image is said 

to be optimally thresholded. 

 

 ( ) ( )( ){ }THTHT FBLT += ≤≤1maxarg  (2.8) 
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Tsai (1985) used moment-preserving principle for determining optimal 

threshold value. In this technique, the gray-level image is considered as the blurred 

version of an ideal binary image. The thresholding is established so that the first 
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three gray-level moments match the first three moments of the binary image. The 

gray-level moments mk and binary image moments bk are defined as: 
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Kittler and Illingworth (1986) created a criterion function in which the 

minimum of this function is the best threshold: 

 
 TB JJT −=  (2.11) 

where 

 
 ( ) ( ) ( ) ( )( )TTPTTPJ FFBBB σσ loglog21 ++=  (2.12) 

 
 ( ) ( ) ( ) ( )( )TPTPTPTPJ FFBBF loglog21 ++=  (2.13) 
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 This technique in the literature is usually referred to as a minimum error 

thresholding (MET) technique. According to the study conducted by Sezgin and 

Sankur (2004), MET is the best performing algorithm competed to other 40 

thresholding techniques, both for nondestructive testing (NDT) images and document 

images. 

 
 Abutaleb (1989) with its 2-D histogram based takes account the spatial 

correlation between pixels in the image for thresholding determination. This work 

was an extension from the 1-D entropy method to its 2-D version. If g is the gray-

level value of a pixel and g  is the average gray level value of a neighborhood 

centered at that pixel, by using the 2-D histogram p(g, g ), for any threshold pair 

(T,T ), the cumulative distribution P(T,T ) can be calculated and defined the 

foreground entropy as: 

 

 ( )
( )

( )
( )TTP
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= =
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By the same way, the second order entropy of background region can be derived. 

Under the assumption that the off-diagonal terms, that is the two quadrants      

[(0,T),(T ,G)] and [(T,G),(0,T )] are negligible and contain elements only due to 

image edges and noise, the optimal pair (T,T ) can be found as the minimizing value 

of the 2-D entropy function. 

 
 Recently, Ng (2006) proposed a modified version of Otsu method. This 

algorithm was designed to detect small defective pattern on an image. The alternative 

formulation of Otsu method as defined by Liao et al. (2001) is: 

 
 ( ) ( ) ( ) ( )( ){ }TTPTTPT FFBBLT

22
1maxarg µµ ×+×= ≤≤  (2.18) 

 
The modified criterion function is then: 
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 ( ) ( ) ( ) ( ) ( )( ){ }TTPTTPpT FFBBtLT

22
1 1maxarg µµ ×+×−= ≤≤  (2.19) 

 
where pt is the probability of occurrence at the threshold value and it should be the 

small value to detect small defect. 

 
The methods described here are global thresholding techniques. They are 

generally designed for segmentation of visible images. The method proposed by Ng 

(2006) was designed to work on detecting small defect on an image for the 

application of visual inspection.  

 
Figure 2.6 clearly shows that the traditional thresholding techniques may not 

feasible for thermal images, since the nature of a thermal image is quite different 

from that of a conventional intensity image (Chang et al., 1997), especially for 

specific application likes defect detection. 

 
This figure also shows that Otsu and Ridler methods have quite similar result. 

Kapur method (in this example) give a false-positive thresholding. Tsai and Ng 

method seems to give quite similar results. 
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Figure 2.6 (a) Thermal image, (b) histogram, (c) ground-truth, (d) Otsu method      

(T = 173), (e) Ridler method (T = 172), (f) Kapur method (T = 25), (g) Tsai method 

(T = 133), (h) Ng method (T = 145) 
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2.5 Dedicated Algorithms for Defect Detection in Thermal Image 

 
Previous section has discussed the algorithms for image segmentation in the 

sense of image thresholding. As already shown by examples, these algorithms do not 

work well when applied to thermal images for segmentation purpose. Due to this 

reason, dedicated algorithms for thermal image segmentation have been proposed. 

Similar to visible image application, the purpose of thermal image segmentation is 

commonly to separate object of interest from its surroundings. Often, the object in 

this thermal image the warm or bright object. 

 
Few efforts have been devoted to detect defect as depicted in a thermal 

image. Some methods use the thresholding technique for the detection, and others 

employ other criterion. 

 
Minor and Sklansky (1981) proposed a method for extracting blobs in 

infrared images. The intensity of the original image was normalized into certain 

range, then the mean of this image was obtained. Other procedures such as edge 

detection, spoke filtering and segmentation of blobs were applied for segmentation 

process. 

 
Hamadani (1981) employed a first order statistics properties, mean µ  and 

standard deviation σ , to extract a warm object in a thermal image. The threshold 

level is given by: 

 
 σµ ×+×= 21 kkT  (2.20) 
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2,1 µσ , and k1 = k2 = 1 

for typical low-resolution thermal images. For higher resolution k1 = 1 or k1 = 1.5 

and k2 = 2 may yield better results (Ritter and Wilson, 2001).  

 
 This algorithm is not automatic, since the constants k1 and k2, which are 

image type dependent, should be determined manually (supervised approach or need 

a human intervention). Figure 2.7 shows the detection result using this algorithm for 

various k1 and k2. After doing some testing (and as also confirmed by Figure 2.7), the 
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constant k1 has great impact on the thresholding result. Therefore, to successfully 

detect defects by this algorithm, one should adjust this value properly. But it is 

worthy to note that this adjustment should be done carefully, since if the first term of 

the right-hand side in Equation (2.18) is over adjusted, the T value will be greater 

than 255 and thus fail for an 8-bit image. 
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Figure 2.7 (a) Thermal image and (b) its histogram, thresholded with (c) k1 = 1,       

k2 = 1, T = 90, (d) k1 = 1, k2 = 2, T = 100, (e) k1 = 1.5, k2 = 1, T = 132, (f) k1 = 2,       

k2 = 1, T = 172 

 
 

Maldague et al., (1990) developed two step algorithms for defect extraction 

in thermal images. Firstly, the locations of the defects (seeds) are found. Secondly, a 

specific threshold is obtained for each of the defects detected by region-growing 

around those seeds.  

 
For one defect located at (x,y) in the image f, the threshold is first set to         

T = f(i,j) and the number of neighboring pixels n around T agglomerated together and 

having the same brightness T. The process is repeated until an image boundary is hit. 

It was noticed that often a sudden increase in the number of pixels was present in n 

when the background was reached. Since this number of pixels is generally greater 
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than what is obtained by manual segmentation, the threshold level is then corrected 

to: 

 
 TT ×= 21  (2.21) 

 

In its implementation (Maldague, 1993), (Maldague, 2001), the user should 

determine number of desired seeds (defects) to be detected and also the distance (in 

pixels) among these seeds. Hence, as Hamadani’s method this technique is not fully 

automatic. Figure 2.8 shows the defect detection (crosshair) by this algorithm. This 

figure is obtained by determining five seed points with distance 50 pixels for each 

seed in Figure 2.8(a) and distance 100 pixels for Figure 2.8(b). 

 

  

    
(a) (b) 

 

Figure 2.8 Defect detection by Maldague’s technique  

 

 
Araki et al., (1993) used fuzzy c-means clustering algorithm (Bezdek, 1981) 

to segment occupants in a room from a thermal image. Fuzzy c-means was applied 

first to remove the background, and then peak-climbing algorithm (Khotanzad and 

Bouarfa, 1990) was used to identify the number of occupants, followed by a region 

growing algorithm for accurate segmentation. It used three main algorithms in the 

segmentation process; hence its cost was expensive from the time processing 

perspective. 
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Chang et al., (1997) generalized Olivo’s method (Olivo, 1994) by means of 

dilated wavelet for automatic multi-level thresholding. In this technique, image is 

first convolved with dilated wavelet set. Beginning of a peak of this histogram is 

indicated by positive crossover of a zero-crossing. Ending of a peak is represented by 

negative crossover of a zero-crossing. The threshold value is considerably located 

either to the right of a negative crossover or to the left of a positive crossover. To get 

a best segmentation result for a single scale, a cost function has been derived in 

which the minimum cost function is the best scale for multi-level thresholding. 

 
Darabi (2000) and Darabi and Maldague (2002) developed an algorithm for 

defect detection based on neural network. The neural network was trained with 

defective patterns of simulated data. The architecture with 30 neurons in input layer, 

15 neurons in hidden layer, and 1 neuron in output layer was designed for this 

purpose. They showed a 96.8% correct classification of the network. 

 
Parsi and Parsi (2001) proposed an algorithm for thermal image object 

extraction using the seed paradigm similar to that as proposed by Maldague et al. 

(1990). The seed was determined by the maximum gray level in the image. Then, 

they drew a cross of N pixels long from the seed in the four direction top, bottom, 

left, and right. Along each of the 4N directions, they looked at the gray level profile 

and marked three places where the gray level value dropped most significantly. The 

determination of the threshold is done by finding consensus among thermal gaps. 

The optimum threshold is where the gray level value contains the largest number of 

gaps. 

 
Šapina (2001) computed six textural features (Haralick et al., 1973), 

(Haralick, 1979), (Baraldi and Parmiggiani, 1995) based on gray level co-occurrence 

(GLCM) matrix (Haddon and Boyce, 1990), (Haddon and Boyce, 1993) to extract 

the warmest object from its background.  

 
Figure 2.9 shows the result by employing Sapina’s technique for six textural 

features (maximum probability, energy, contrast, inverse difference moment, 

correlation, and variance) of GLCM based thermal image. From the figure, it seems 

that the variance feature has the good candidate as a defect detector. However, it still 

needs other algorithm to really separate defects from its background. 
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From the time processing perspective, after some experiments and even by 

reducing the gray level into 64 levels, it was found that this technique is still time 

consuming. To calculate the variance feature, it took 66.18 seconds on Pentium® 4, 

1.90 GHz and RAM 512 MB. Compared to Hamadani’s algorithm (0.45 seconds) 

and Maldague’s algorithm for 10 seeds (0.46 seconds) for detection with the same 

image and on the same machine, variance feature technique is considerably too slow. 

 

 

   
(a) (b) (c) 

   
(d) (e) (f) 

 
Figure 2.9 Sapina’s technique for six textural features: (a) maximum probability,   

(b) energy, (c) contrast, (d) inverse difference moment, (e) correlation, (f) variance 

 

 
Jin (2004) presented a segmentation technique for thermal image based on 

fuzzy filtering, the criteria of maximum entropy (Kapur et al., 1985) and intelligent 

genetic algorithm. This algorithm is quite complex and not easy to implement. 

 
Wu et al. (2004) combined a 2-D histogram of the image with standard fuzzy 

c-means (FCM) algorithm. The method for reducing computation time was proposed 

by calculating matrix membership function. They claimed that their method was 82 

times faster than the traditional FCM algorithm. 
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Silverman et al. (2004) proposed a histogram based segmentation by 

compressing first the multi-dimensional information (typically spectral profiles) into 

single image data cube such as principal component images. A multi-dimensional 

histogram is then constructed; an analysis of the statistical distribution of the points 

makes it possible to segment the image based on the histogram extrema. 

 
Omar (2005) and Omar et al. (2005) proposed a self-referencing method to 

detect seeds in a thermal image for active thermography. A seed defined as very 

small pixels in a thermal contrast image. It was not mentioned in their original 

document whether this technique will work for a non-seed (larger) defect. 

 
Feng et al. (2005) employed particle swarm optimization (PSO) paradigm to 

accelerate 2-D entropy method for thresholding infrared image. The 2-D maximum 

entropy method is based on the 2-D histogram of the image. The 2-D histogram 

denotes the probability of gray-level value and its local average value respect to the 

size of the image. The 2-D histogram can be described with four quadrant areas 

where the first and second quadrant represent object and background, and the third 

and fourth quadrant represent edge and noise. The 2-D maximum entropy principle 

said that the determined threshold vector should make the first and the second 

quadrant have the maximum information. The exhaustive search by the 2-D entropy 

method takes too much time. The PSO method was then incorporated to speed up the 

searching process. The result showed some saving in the processing time. 

 
Dufour (2005) detected defect by using edge detection technique. The 

longitudinal and transversal of defect profiles are detected with 

 and ( ) ( ) ( )xTxTxg −+= 1 ( ) ( ) ( )yTyTyg −+= 1  respectively. This technique 

actually does not really isolate defect, a further process is needed to confirm area 

inside or outside the edges as defects. 

 
Tao et al. (2007) segmented infrared objects using fuzzy entropy based on ant 

colony optimization (ACO) algorithm. Similar to PSO, ACO is an algorithm which is 

developed based on swarm intelligence (Bonabeau et al., 1999). The best ant was 

selected from K initial ants to compute optimal threshold. 
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2.6 Defect Detection based on Local Intensities Operation 

 
Local intensities operation (LIO) is a convolution operation using local 

window in which the pixel will be grouped into one class, either a group of bright 

pixels or dark pixels. LIO has two modes: local intensities weighting (LIW) and local 

intensities lighting (LIL).  

 
Based on LIO paradigm, this report proposes two schemes for detecting 

defects in a thermal image. The specific application for these algorithms is for 

passive thermography, meaning that the detection is directly applied to the thermal 

image not to the derived thermal images (absolute contrast) which is the common 

case for active thermography.  

 
In the first scheme, specific thresholding technique is proposed for defect 

detection. Three simple algorithms are developed: midway absolute thresholding, 

midway relative thresholding, and minimum frequency thresholding techniques. The 

discussion of these techniques is given in Chapter 3 and the experimental results are 

given in Chapter 4. 

 
In the second scheme, the standard thresholding technique is employed to 

isolate the defect. Hence, in this scheme, it is not about developing a new 

thresholding algorithm; rather it deals with how to implement any thresholding 

techniques to a thermal image, something they are not designed for. Several global 

thresholding algorithms for visible image as described in the previous section will be 

tested for verification. Figure 2.10 shows the flowchart for defect detection based on 

LIO operation. 
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Figure 2.10 Defect detection based on LIO paradigm 



 

 

 
CHAPTER 3 

 

 
LOCAL INTENSITIES OPERATION 

AND MINIMUM FREQUENCY THRESHOLDING 

 

 
3.1 Overview 

 
Local intensities operation (LIO) is based on the idea of local neighborhood 

operation. LIO has two modes in its implementation. In the first mode, LIO will 

brighten the bright area and darken the dark area. In this mode, the operation is called 

as local intensities weighting (LIW). In the second mode, the opposite action is 

performed, LIO will brighten the dark area and darken the bright area. This is called 

as local intensities lighting (LIL) operation.  

 
In LIW, it is assumed that the defect is the brightest area, and the background 

or sound area is the darkest area. On the contrary, LIL assumes that the darkest area 

is the defective area while the brightest area is the sound area. 

 
After pre-processing with the LIO operation, LIO image then need to be 

thresholded so that the background and the defect areas are separated. Simple 

midway absolute thresholding (MAT), midway relative thresholding (MRT), and 

minimum frequency (MFT) thresholding techniques are proposed for this purpose.  

 

 
3.2 Theoretical Foundation 

 
Consider a pixel f(i,j) in a thermal image with its 8-connectivity configuration 

as shown in Figure 3.1, where z1 = f(i-1,j-1), z2 = f(i-1,j), z3 = f(i-1,j+1),                

z4 = f(i,j-1), z5 = f(i,j), z6 = f(i,j+1), z7 = f(i+1,j-1), z8 = f(i+1,j), and                     

z9 = f(i+1,j+1).  
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LIO operator is defined as in Equation (3.1). For LIW operation,                        

α = z1*z2*z3*z4*z5*z6*z7*z8*z9, and β = 1. For LIL operation, α = 1, and              

β = z1*z2*z3*z4*z5*z6*z7*z8*z9. By substituting these variables, both operators can 

be written in the form as in Equations (3.2a) and (3.2b).  

 
 

 
 

Figure 3.1 LIO window 

 

 

 
β
α

=LIO  (3.1) 

 
  (3.2a) 9*8*7*6*5*4*3*2*1LIW zzzzzzzzz=
 

 
9*8*7*6*5*4*3*2*1

1LIL
zzzzzzzzz

=  (3.2b) 

 

 
Figure 3.2 illustrates the LIO operation. This is done through out the entire 

image as a convolution process. The pixel values are then normalized by dividing 

with the maximum pixel value. 

 

 
 

Figure 3.2 Local intensities operation 
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This process is repeated until most pixel values concentrate only in the 

darkest and brightest area. In practice, LIW has some levels of operation. The first 

LIW operation to the original thermal image is called as the 1st level LIW, the next 

LIW operation onto this 1st level LIW will be called as the 2nd level LIW, and so 

forth.  

 
But not as LIW, LIL has only one level. This level will highlight the dark 

pixels and change the intensities into bright pixels. The bright pixels will be changed 

to the dark pixels. The defect is now represented by bright pixels. If it is still desired 

to emphasize this defect, the successive LIW operation can be applied then. 

 
 Figure 3.3 shows a thermal image after 4th–level LIW operation. As shown 

in the figure, image histogram of the original thermal image is multimodal. At this 

stage, it is quite difficult to separate between the object (defective area) and the 

background (sound area). After applying the 1st level LIW, most pixels are then 

shifted to the dark region and image histogram tends to have a unimodal 

representation. After the subsequent levels, most dark and most bright pixels have 

the highest pixel counts (refer to Figure 3.3). 

 
Other property of LIW which is crucial to note is that at every level, LIW 

operation tends to shrink the shape of the defect. This is due to the nature of how the 

LIW image is being computed (see Equation 3.2a). Figure 3.4 illustrates this 

situation. If it is desired to keep the shape of the defect, a successive morphological 

operation (dilation) (Giardina and Dougherty, 1988) can be applied after applying 

every LIW operation. 

 
Figure 3.5 shows both the LIL operation as well as the LIW operation for 

comparison. This figure shows clearly the difference between LIW and LIL 

operations. It is also obvious (as stated before) that LIL operation will brighten the 

dark area and darken the bright area. 
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Figure 3.3 (from top to bottom): original thermal image and its 1st to 4th level LIW 

image along with its histogram 
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(a) (b) (c) 

 

Figure 3.4 Shrinking effect of the LIW operation (from left to right): (a) 3rd level 

LIW, (b) 4th level LIW, (c) subtract (a) from (b) shows the shrunk edge 
  

 

  

(a) (b) (c) 
 

Figure 3.5 (a) Grayscale thermal image, (b) 1st level LIW, (c) LIL image 

 

 
3.3 Practical Implementation 

 
In both LIW and LIL operations, pixel intensities are forced to concentrate on 

the high and low levels only. LIW operation is designed to detect hot defect only 

while LIL operation is to detect cold defect only.  

 
In order for LIW and LIL operations to have the capability for detecting both 

defect types (hot and cold defects), the following procedures can be applied: 

 
1.  Apply LIW operator onto the original thermal image f(i,j) to obtain g(i,j). 

2.  Apply LIL operator onto the original thermal image f(i,j) to obtain h(i,j). 

3.  Add together both images g(i,j) and h(i,j). 
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 Figure 3.6 shows the implementation of these procedures. The effect of both 

LIW and LIL operations in shrinking edges is clearly shown in the resulting image. 

Thus, before the addition operation, morphological dilation may be applied to reduce 

this effect. 

 

 

Figure 3.6 Procedures to detect both hot and cold defects 

 

 
3.4 MAT, MRT, and Minimum Frequency Thresholding 

 
 After applying LIO operation in a thermal image, most pixels are now 

concentrated only in a dark and bright regions. The pixels distribution in between has 

a uniform-like distribution after applying 2nd–level LIW operation (Figure 3.7). This 

report proposes three strategies to segment the defect from the background: 

 
Midway absolute thresholding (MAT) – threshold value using this technique is 

calculated by obtaining the halfway value between minimum and maximum gray-

level used in the image histogram. If gray-level is i = 0 … L, then MAT is defined as:   

 

 ⎥⎦
⎤

⎢⎣
⎡ −

=
2

0round LT  (3.3) 
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It is clear from Equation (3.3) that if full range gray-level is used in LIO image, then 

for an 8-bit color system, T will always be 128. 

 

 
Figure 3.7 Gray-level distribution after LIO operation 

 

 

 
 

Figure 3.8 Midway absolute thresholding concept 

 

 
Midway relative thresholding (MRT) – the threshold value as in Equation (3.4) is 

obtained from the average value of pre-determined minimum gray-level Tmin with 

maximum gray-level Tmax:  

 

 ⎥⎦
⎤

⎢⎣
⎡ −

=
2

round minmax TT
T  (3.4) 

 
Tmin and Tmax values can be determined manually by user selection or automatically 

by using histogram gradient of gray-level value. Histogram gradient is derived from 

the following equations: 
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 ( ) ( ) ( )ihihir −+= 1  (3.5) 

 
where h(i) is image histogram at gray-level i. Performing this histogram gradient will 

invert the corner of the dark region as shown in Figure 3.9. Then from this histogram 

gradient graph, Tmin and Tmax is determined by: 

 
 ( ) ( ) ( ) ( ) ( ) ( ) 0AND1AND1ifmin ≥+>−>= iriririririrT  (3.6a) 

 
 ( ) ( ) ( ) ( ) ( )1AND1ifmax +<−<= iririririrT  (3.6b) 
 
 
for time efficiency, Tmin search starts from gray-level i = 0 to i = L while Tmax search 

starts from i = L to i = 0. The searching process is stopped once the above criteria are 

satisfied. 

 
 It is clear from Equations (3.6a) and (3.6b) that if Tmin and Tmax are the 

minimum and the maximum gray-level values in the image histogram respectively, 

then this is the special case for MAT thresholding. 
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Figure 3.9 Midway relative thresholding concept: (a) histogram, (b) histogram 

gradient 

 

 
Minimum frequency thresholding (MFT) – the third thresholding scheme proposed 

for detecting defect in LIO image is based on the minimum gray-level frequency. 
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Based on experiments, it is found that the most-left of minimum gray level frequency 

will give a good thresholding result. This theory is laid on the assumption that, for 

the case of hot defect, the centroid of the defect usually always has the brightest 

intensity, and this intensity gradually becomes lower towards the defect boundary. 

Abrupt changes from gray-level i to i–n, n = 1, 2, 3, …, i, or discontinuities that 

occur indicate this boundary.  

 
 The most-left minimum gray-level value in image histogram is selected as the 

threshold value (Equation 3.7) by assuming that if there is gray-level continuity in 

image histogram in the left of the most-left, meaning that these gray-level values 

indicates image background. Figure 3.10 illustrates the concept of MFT. 

 

 

 { } 1then...1ifmin === iNiTT i  (3.7) 

 

 
 

Figure 3.10 Minimum frequency thresholding principle 



 

 

 
CHAPTER 4 

 

 
EXPERIMENTAL RESULTS AND DISUCUSSION 

 

 
4.1 Overview 

 
This chapter shows the experimental results and their discussion. The 

developed algorithms are evaluated and compared with existing algorithms for defect 

detection. The standard evaluation measure is used for this comparison validity. 

 

 
4.2 Thermal Image Dataset 

 
All thermal images were taken from real world petrochemical plant 

equipments or facilities. In collaboration with MTBE Malaysia Sdn. Bhd. (subsidiary 

of Petronas Sdn. Bhd.), Gebeng, Kuantan, Pahang, thermal images were obtained 

from their site.  

 
Twelve thermal images are used for testing the developed algorithms and 

their comparison with other existing techniques. All of these thermal images 

represent hot defect, as shown in Figure 4.1(a) – (l). These images were taken when 

the objects were being in-operation. Thermal infrared camera Inframetrics PM 390 

(see Appendix 1 for details specification) was used for capturing these images. These 

thermal images represent various gray-level distribution types. Figure 4.1(j) 

represents unimodal distribution. This type is difficult to segment, even the standard 

Otsu thresholding algorithm will fail for such type of images (Kittler and Illingworth, 

1986). Figure 4.1(b), -(g), and -(h) represents image with bimodal distribution. Most 

of existing algorithms for segmentation or defect detection were designed to work 

well on this type of distribution. Other thermal images represent multimodal gray-

level distribution which is the most difficult to segment. Further algorithms are 

needed to successfully segment this type of image. 
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4.3 Experiments with MAT, MRT, and MFT Techniques 

 
 In this section, MAT, MRT, and MFT techniques that already presented in 

the previous section are tested. Thermal image dataset for hot defect (Figure 4.1) is 

used. 

 
 Before applying these algorithms, LIO operation needs to be applied onto the 

original thermal image as pre-processing step. Since hot defect is to be detected, LIW 

operator is used. As already discussed and shown in Chapter 3, although LIW 

operation can be applied successively to generate n-level LIW image, but in this 

experiment, only the first two levels LIW operation is applied since upto this level 

the detection result gave a good result. Figure 4.2 and Figure 4.3 show the 1st and 2nd 

level LIW operation onto these original grayscale images. 

 
 Figure 4.4, -4.5, -4.6, -4.7, -4.8, and -4.9 show the segmentation results when 

applying MAT, MRT, and MFT thresholding on the 1st and 2nd level LIW images 

respectively. From these figures, it can be seen that at the 1st level LIW, MAT and 

MRT give quite similar results but mainly with false-positive. Note that at this level, 

MFT technique gives a better result. At 2nd level LIW, MAT, MRT, and MFT 

techniques give the same result, but again as before MFT technique is superior to the 

other two. The performance of these techniques is discussed in the next section.  

 

 
4.4 Comparative Study and Performance Evaluation 

 
 To compare the proposed algorithms and evaluate their performance, 

comparative study has been done. Nine existing algorithms (five non-dedicated 

algorithms and other four dedicated algorithms designed for defect detection in 

thermal image) were selected for comparison purpose.  

 
For non-dedicated algorithms, this report compares each algorithm from five 

categories as proposed by Sezgin & Sankur (2004), i.e. Rosenfeld algorithm 

(Rosenfeld & De la Torre, 1983) for shape category, Otsu algorithm (Otsu, 1979) for 

cluster category, Kapur algorithm (Kapur et al., 1985) for entropy category, Tsai 

algorithm (Tsai, 1985) for attribute category, and Abutaleb algorithm (Abutaleb, 

1989) for spatial category. It is worthy to note that although Kittler cluster algorithm 



34 

(Kittler & Illingworth, 1986) was confirmed as the best algorithm by previous 

research (Sezgin and Sankur, 2004), after some experiments it was found that this 

algorithm for most thermal image dataset failed to give meaningful result. Therefore, 

Otsu algorithm was selected as representation of cluster category by considering its 

popularity and easy to implement. 

 
For dedicated algorithms, four methods were selected: Hamadani algorithm 

(Hamadani, 1981), Olivo algorithm (1994), Sapina algorithm (Sapina, 2001), and 

Sezgin algorithm (Sezgin and Sankur, 2003). The selection was based on its 

automatic property and its ability to segment defects. Note that for Sapina algorithm, 

since it does not really isolate the defect, the highest pixel value in the processed 

image is considered as the defective pixels. 

 
It is not easy to compare one segmentation method to others (Yasnoff et al., 

1977). In this report, a simple absolute error ratio measure was used (Tao et al., 

2007). This measure is defined as the ratio between the absolute error, ndiff, and the 

total number of pixels N of an image: 

 

 

 %100×=
N

n
r diff

err  (4.1) 

 

 
The absolute error ndiff is defined as the absolute difference in the number of object 

pixels between the ground-truth image with the tested image. 

 
 Figure 4.10 shows detection results using Otsu method (non-dedicated 

algorithm) and Figure 4.11 shows detection result using Hamadani method 

(dedicated algorithm) from dataset in Figure 4.1(a) to -4.1(l). It is clear from these 

figures that both methods (non-dedicated or dedicated algorithm) failed in detecting 

defects. Both methods tend to separate object (defect) and background uniformly. 

 
 As mentioned, LIW operation is actually designed as a pre-processing stage 

before the real detection algorithm is applied. To test the effectiveness of this 

operation, both the non-dedicated and dedicated algorithms were once again 

employed onto the LIW images for defect detection. Figure 4.12, -4.13, -4.14 and      
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-4.15 show detection result by Otsu and Hamadani techniques on the 1st and 2nd 

levels LIW image respectively. It is obvious that at 2nd level LIW, both non-

dedicated and dedicated algorithm give outstanding results in segmenting defects. 

 
The evaluation results (based on absolute error ratio) for all algorithms are 

given in Table 4.1. Table 4.2 shows the rank of these algorithms based on the 

average score of the measures. From Table 4.2, it is clear that by applying LIW 

operation, defect can be detected correctly whether it is detected using the simple 

proposed algorithm, dedicated, or non-dedicated algorithms. Although from this 

experiment, the 1st level LIW operation when combined with MFT algorithm gives 

the best result, actually this result indicates that the 2nd level LIW operation also give 

much better results for most cases. 

 
This study also shows that for most cases, 2-D histogram based algorithm or 

gray-level co-occurrence matrix (GLCM) (as studied by Sapina) is better than 1-D 

histogram based algorithms even after applying LIW operation. But the main 

drawback of this method is its highly expensive computational cost (see discussion in 

Chapter 2). 

 
Finally, Figure 4.16 shows the absolute error ratio for each tested thermal 

image for the 1st (MFT on 1st level LIW), the 11th (Otsu on the 1st level LIW), and the 

last rank (Tsai method on the original image thresholding). This plot indicates that 

Otsu and Tsai method cannot successfully detect a relative small defect. 
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Table 4.1 Performance of Defect Detection Algorithms 

 
Approach 

Technique Image 

Average Absolute Error 

(%) 

MAT 

MAT 

MRT 

MRT 

MFT 

MFT 

1st level LIW 

2nd level LIW

1st level LIW 

2nd level LIW

1st level LIW 

2nd level LIW

4.20 

1.50 

5.02 

1.47 

0.91 

1.53 

Otsu 

Otsu 

Hamadani 

Hamadani 

1st level LIW 

2nd level LIW

1st level LIW 

2nd level LIW

15.90 

1.27 

15.43 

1.36 

Rosenfeld  

Otsu 

Kapur 

Tsai 

Abutaleb 

Original  

Original 

Original 

Original 

Original 

45.00 

48.27 

37.73 

66.80 

36.56 

Hamadani 

Olivo 

Sapina 

Sezgin 

Original 

Original 

Original 

Original 

28.79 

53.14 

1.78 

23.67 
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Table 4.2 Rank of Defect Detection Algorithms 

 
Approach 

Rank 
Technique Image 

Average Absolute Error 
(%) 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

MFT 

Otsu 

Hamadani 

MRT 

MAT 

MFT 

Sapina 

MAT 

MRT 

Hamadani 

Otsu 

Sezgin 

Hamadani 

Abutaleb 

Kapur 

Rosenfeld 

Otsu 

Olivo 

Tsai 

1st level LIW 

2nd level LIW 

2nd level LIW 

2nd level LIW 

2nd level LIW 

2nd level LIW 

Original 

1st level LIW 

1st level LIW 

1st level LIW 

1st level LIW 

Original 

Original 

Original 

Original 

Original 

Original 

Original 

Original 

0.91 

1.27 

1.36 

1.47 

1.50 

1.53 

1.78 

4.20 

5.02 

15.43 

15.90 

23.67 

28.79 

36.56 

37.73 

45.00 

48.27 

53.14 

66.80 

 

 

 
4.5 Detection of Cold Defects 

 
The previous section shows the experimental result and its evaluation for 

detection of hot defect using the developed algorithms as well as comparison to other 

algorithms. LIW operation was employed for this hot defect type. This section is 

dedicated for detecting cold defect using LIL operation. 

 
 Figure 4.17 shows three thermal images along with its ground-truth and 

defect detection by using MFT on LIL image and Otsu method on original and on 
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LIL image respectively. It is obvious from these results that only after applying LIL 

operation defects can be detected correctly.  

 

 
4.6 Summary 

 
 This chapter shows the experimental results and their discussions. It has been 

proven by experiments that by applying LIW operation a significance improvement 

for detecting defect has been achieved. For most cases, it has been found that the    

1st level LIW operation before applying MFT algorithm for defect detection is 

sufficient. As for comparison, the 2nd level LIW has been experimented using MAT, 

MRT, and MFT. To further explore, one may extend to higher LIW levels and apply 

them using proposed thresholding algorithms or any thresholding algorithm whether 

it is designed for thermal images or not. 

 
 The previous section also shows that LIL operation works well for detecting 

cold defect which was fail if using other thresholding algorithms.  
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(d) (e) (f) 

 
Figure 4.1 Thermal image dataset for hot defect with its histogram and ground-truth: 

(a) T = 243, (b) T = 245, (c) T = 243, (d) T = 252, (e) T = 250, and (f) T = 252 
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Figure 4.1 (cont.) Thermal image dataset for hot defect with its histogram and 

ground-truth: (g) T = 252, (h) T = 248, (i) T = 245, (j) T = 206, (k) T = 237, and       

(l) T = 233 
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(a) (b) (c) 

   
(d) (e) (f) 

   
(g) (h) (i) 

   
(j) (k) (l) 

 
Figure 4.2 1st level LIW operation on thermal images consisting hot defect 
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(a) (b) (c) 

   
(d) (e) (f) 

   
(g) (h) (i) 

   
(j) (k) (l) 

 
Figure 4.3 2nd level LIW operation on thermal images consisting hot defect 
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(d) (e) (f) 

   
(g) (h) (i) 

   
(j) (k) (l) 

 
Figure 4.4 1st level LIW image thresholded with MAT algorithm: (a) to (l) T = 128 
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Figure 4.5 2nd level LIW image thresholded with MAT algorithm: (a) to (l) T = 128 

 

 

 

 

 

 

 

 

 



45 

   
(a) (b) (c) 

   
(d) (e) (f) 

   
(g) (h) (i) 

   
(j) (k) (l) 

 
Figure 4.6 1st level LIW image thresholded with MRT algorithm: (a) T = 124,        

(b) T = 125, (c) T = 124, (d) T = 124, (e) T = 121, (f) T = 123, (g) T = 122,              

(h) T = 125, (i) T = 122, (j) T = 124, (k) T = 122, (l) T = 124 
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(a) (b) (c) 

   
(d) (e) (f) 

   
(g) (h) (i) 

   
(j) (k) (l) 

 
Figure 4.7 2nd level LIW image thresholded with MRT algorithm: (a) T = 121,        

(b) T = 118, (c) T = 123, (d) T = 124, (e) T = 123, (f) T = 122, (g) T = 123,              

(h) T = 115, (i) T = 124, (j) T = 118, (k) T = 115, (l) T = 106 
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(a) (b) (c) 

   
(d) (e) (f) 
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Figure 4.8 1st level LIW image thresholded with MFT algorithm: (a) T = 209,        

(b) T = 193, (c) T = 254, (d) T = 169, (e) T = 226, (f) T = 210, (g) T = 209,              

(h) T = 208, (i) T = 187, (j) T = 243, (k) T = 252, (l) T = 194 
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(d) (e) (f) 
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(j) (k) (l) 

 
Figure 4.9 2nd level LIW image thresholded with MFT algorithm: (a) T = 172,        

(b) T = 106, (c) T = 176, (d) T = 193, (e) T = 83, (f) T = 111, (g) T = 28, (h) T = 36, 

(i) T = 63, (j) T = 52, (k) T = 111, (l) T = 76 
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(a) (b) (c) 

   
(d) (e) (f) 

   
(g) (h) (i) 

   
(j) (k) (l) 

 
Figure 4.10 Defect detection using Otsu method: (a) T = 195, (b) T = 185,              

(c) T = 173, (d) T = 191, (e) T = 112, (f) T = 148, (g) T = 70, (h) T = 193, (i) T = 168, 

(j) T = 89, (k) T = 128, and (l) T = 101 
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(d) (e) (f) 
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Figure 4.11 Defect detection using Hamadani method (with k1 = 1 and k2 = 2):       

(a) T = 204, (b) T = 196, (c) T = 200, (d) T = 202, (e) T = 158, (f) T = 160,              

(g) T = 103, (h) T = 206, (i) T = 191, (j) T = 169, (k) T = 228, and (l) T = 100 
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Figure 4.12 Defect detection using Otsu method on 1st level LIW image: (a) T = 119, 

(b) T = 114, (c) T = 118, (d) T = 124, (e) T = 93, (f) T = 77, (g) T = 77, (h) T = 48,   

(i) T = 46, (j) T = 81, (k) T = 76, and (l) T = 76 
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Figure 4.13 Defect detection using Otsu method on 2nd level LIW image:               

(a) T = 119, (b) T = 119, (c) T = 117, (d) T = 123, (e) T = 111, (f) T = 120,              

(g) T = 109, (h) T = 46, (i) T = 52, (j) T = 29, (k) T = 43, and (l) T = 33 
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Figure 4.14 Defect detection using Hamadani method (with k1 = 1 and k2 = 2) on 1st 

level LIW image: (a) T = 57, (b) T = 46, (c) T = 46, (d) T = 67, (e) T = 30, (f) T = 56, 

(g) T = 11, (h) T = 51, (i) T = 44, (j) T = 90, (k) T = 117, (l) T = 10 
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Figure 4.15 Defect detection using Hamadani method (with k1 = 1 and k2 = 2) on 2nd 

level LIW image: (a) T = 27, (b) T = 19, (c) T = 17, (d) T = 39, (e) T = 11, (f) T = 13,              

(g) T = 3, (h) T = 3, (i) T = 3, (j) T = 4, (k) T = 9, and (l) T = 3 
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Figure 4.16 Absolute error ratio for the 1st, 11th, and 19th rank algorithm 
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(a) (b) (c) 

 
Figure 4.17 (from top to bottom) Thermal image dataset for cold defect, ground-

truth, LIL image, thresholded by MFT algorithm on LIL image, thresholded by Otsu 

algorithm on original image, thresholded by Otsu algorithm on LIL image 

 
 
 
 
 



 

 

 
CHAPTER 5 

 

 
CONCLUSIONS AND SUGGESTIONS 

 

 
5.1 Summary and Conclusions 

 
 In Chapter 1, the introduction on infrared thermography and its applications 

in petrochemical industry is described. Contributions are also highlighted. The scope 

and objective of the project are properly stated. 

 
 In Chapter 2, review on existing algorithms whether it is non-dedicated or 

dedicated algorithm for thermal image is presented. The advantages and 

disadvantages of these algorithms are addressed. A brief introduction of the proposed 

technique is given in the end of the chapter. 

 
 In Chapter 3, the proposed algorithm, local intensities operation (LIO), for 

pre-processing thermal image is discussed. Three simple thresholding algorithms 

(MAT, MRT, and MFT) for defect detection are introduced. Properties of these 

algorithms are discussed in the text. 

 
 In Chapter 4, experimental results showed the effectiveness of the proposed 

algorithms. Twelve thermal images were used for performance evaluation. Through 

benchmarking process, these algorithms are better compared to other existing 

algorithms. MFT thresholding algorithm when applied to a pre-processed thermal 

image with 1st level LIW operation gives a satisfied result. Even, the pre-processed 

thermal image with LIW operation for any level when combined with non-dedicated 

defect detection algorithm will also give a very good result.  

 
The proposed algorithms are simple and easy to implement yet give 

promising results. Therefore, the objective of this project for detecting defect in 

thermal image has been achieved. 



58 

5.2 Limitations 

 
 Looking at the contributions made in this work, it is possible to automatically 

detect defects as depicted in thermal images. This automatic interpretation will 

eliminate the error prone to arise if it is done by human operator. It can then increase 

the efficiency and contribute to the productivity of the whole chains in a 

petrochemical site. 

 
 However, this method assumes that the thermal image is noise or thermal 

masses free, hence any existence of noise or thermal masses in an image will also be 

considered as a defective pattern, which can then affect the performance on defect 

detection result. 

 
 Local intensities operation (LIW and LIL) tends to shrink the shape of the 

defect. Since this project does not concern on the shape, so this issue is not a 

problem. But, if one thinks that the shape is important, for instance for defect sizing, 

further processing need to be incorporated before an accurate decision can be 

obtained. 

  

 
5.3 Suggestions for Future Research 

 
 Based on the related problems discussed in the previous section, some of the 

future work can be suggested as follows: 

 
o By existence of noise and thermal masses depicted in thermal image, the 

proposed algorithms need to be further enhanced. 

 
o If shape of the defects is important, a further algorithm needs to be developed to 

preserve this shape. This report proposes employing morphological dilation 

operation, but another technique that may suitable may also be investigated. 

 
o Performance of the proposed algorithms on color thermogram has not been 

investigated. This study could open a new research area in infrared 

thermography image processing application. 
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APPENDIX A 

 

 
INFRAMETRICS PM 390 SPECIFICATION 

 

 
Manufacturer Inframetrics, Inc. 

Model PM 390 

Measurement range −20o to +450o (extended to +1500oC with filter) 

Sensitivity < 0.1oC at 30oC 

Accuracy ±2% or ±2 oC 

Display type Viewfinder Color LCD eyepiece 

Video output RS 170, NTSC, S-VIDEO, CCIR, PAL 

Infrared detector PiSi/CMOS 256×256 FPA with variable integration 

Spectral band 3.4 to 5 micron 

IR dynamic range 16 bits 

Operating temperature −15oC to +50 oC, IEC 359 

Storage temperature −40oC to +70 oC, IEC 359 

Shock/vibration 70g, IEC 68-2-6 

Focus range 9″ to infinity 

 


