PERFORMANCE STUDY OF PROXIMITY COUPLED STACKED CONFIGURATION FOR WIDEBAND MICROSTRIP ANTENNA

ZULHANI BIN RASIN

UNIVERSITI TEKNOLOGI MALAYSIA

To my loves

Noor Azilah

Muhammad Azhan Hakimi Muhammad Azhan Wafi

ACKNOWLEDGEMENT

First of all, syukur to Allah s.w.t for his blessing, I was able to complete this project successfully.

I wish to express my sincere appreciation to my project supervisor, Dr. Nor Hisham Bin Hj Khamis for his advice, guidance and help during the course of this project. The comfort level that he created while supervising me, helped me a lot in completing the project.

I also would like to thank several individuals at Wireless Communication Centre, UTM for the help and guidance given while working for my project. Special thanks also to colleagues at the Faculty of Electrical Engineering, Universiti Teknikal Malaysia Melaka for their assistance and guidance.

My fellow postgraduate students should also be recognized for their support. Their views and tips are useful indeed.

Last but not the least, my beloved family for all the support and encouragement given. Without them, all this would not be achieved.

ABSTRACT

This project started by identifying two main disadvantages of the typical microstrip antenna that are the low gain and narrow bandwidth. These two major drawbacks have limited its application despite of other advantages as compared to the conventional antenna. With the purpose of designing a wideband microstrip antenna, the two already proven bandwidth enhancement techniques; the patch stack configuration and coplanar parasitic patch was studied. Several antenna configurations were proposed and from the simulation result, the antenna bandwidth was improved from the typical $8 \sim 9$ % up to 36 % by using these two techniques using a simple coaxial probe feeding without any matching network. Actual fabrication was also carried out and several measurements were conducts to verify its performance. The measurement results, even not fully conform to the simulation result, has proven the effectiveness of the above mentioned bandwidth enhancement techniques.

ABSTRAK

Projek ini bermula dengan mengenal pasti dua kekurangan utama yang terdapat pada antena mikrostrip, iaitu gandaan yang rendah dan jalur lebar operasi yang kecil. Kedua-dua kekurangan yang utama ini telah menghadkan aplikasi antena mikrostrip walaupun terdapat banyak kelebihan-kelebihan lainnya berbanding antena konvensional. Dengan objektif untuk menghasilkan antenna mikrostrip dengan jalur lebar operasi yang luas, kajian terhadap dua teknik yang telah pun teruji mampu untuk meningkatkan jalur lebar operasi, iaitu susunan secara bertingkat dan susunan parasitik di atas satah yang sama telah dijalankan. Beberapa contoh konfigurasi antena telah pun dihasilkan, dan berdasarkan keputusan daripada proses simulasi yang telah dijalankan, jalur lebar operasi mampu ditingkatkan daripada hanya sekitar $8 \sim 9$ % kepada lebih 36 % dengan menggunakan dua teknik tersebut. Antena yang dihasilkan menggunakan "coaxial probe feeding" untuk memasukkan signal tanpa menggunakan sebarang litar penyuai. Proses fabrikasi sebenar antena juga telah dijalankan, dan beberapa pengukuran telah dilakukan untuk memastikan keupayaan sebenarnya. Keputusan pengukuran yang telah dijalankan, walaupun tidak sepenuhnya selaras dengan keputusan simulasi, telah membuktikan keberkesanan dua teknik ini untuk meningkatkan jalur lebar operasi.

TABLE OF CONTENTS

CHAPTER	TITLE	PAGE	
	DECLARATION	ii	
	DEDICATION	iii	
	ACKNOWLEDGEMENTS	iv	
	ABSTRACT	V	
	ABSTRAK	vi	
	TABLE OF CONTENTS	vii	
	LIST OF TABLES	xi	
	LIST OF FIGURES	xii	
	LIST OF SYMBOLS	XV	
1	INTRODUCTION	1	
	1.1 Introduction	1	
	1.2 Problem Statements	2	
	1.3 Objective of Research Project	3	
	1.4 Scope of Work	3	
	1.5 Organization of the Thesis	4	
2	RAIN AND ATTENUATION: THE		
	IMPACT ON SATELLITE		

PERFORMANCE		
2.1	Introduction	5
2.2	Introduction to Rain	5

2.3	Why Rain Scatters Radio Waves	6	
2.4	Observation of Rain	7	
2.5	Melting Layer	8	
2.6	5 The Factors That Contribute To		
	Attenuation		
	2.6.1 Moisture	9	
	2.6.2 Frequency	9	
	2.6.3 Time	9	
	2.6.4 Weather Patterns & Elevation		
	Angles	10	

3	PRO	PAGATION PROPERTY	11
	3.1	Introduction	11
	3.2	Rain Effects	13
	3.3	Attenuation of Microwave	16
	3.4	Parameters of Long-term Rain	
		Attenuation Statistics	17

4	SATE	LLITE COMMUNICATIONS	18
	4.1	Introduction	18
	4.2	Radio Frequency	18
		4.2.1 C-band	21
		4.2.2 Ku-Band	21
		4.2.3 Polarization	22
	4.3	Earth Station	23
		4.3.1 Antenna	23
		4.3.2 The Uplink	23
		4.3.3 The Downlink	24
	4.4	Conclusion	24

METHODOLOGY		25
5.1	Introduction	25
5.2	Rain Attenuation	26
5.3	Procedure for Predicting Rain	
	Attenuation (ITU-R)	29
5.4	Transformation Method	33
5.5	Method of Data Transformation	34
5.5.1	Method A	34
5.5.2	Method B	36

5

6

RES	ULT AN	ND ANALYSIS	37
6.1	Introd	uction	37
6.2	Data I	Foundations and Requirements	38
	6.2.1	Longitude, Latitude of the	
		Terrestrial Link	38
	6.2.2	The Rain Intensity, $R_{0.01}$ and The	
		Altitude of the Station, H_S Data	
		of the Terrestrial Link	39
	6.2.3	Longitude, Latitude of the	
		Satellite Ground Station's Link	40
	6.2.4	Summary of Parameters Needed	
		for the Selected Location of	
		Terrestrial and Satellite Links in	
		Peninsular Malaysia	41
6.3	Result	t and Analysis	43
	6.3.1	Results of Signal Attenuation	43
	6.3.2	Analysis of Signal Attenuation on	
		Terrestrial Link	45
	6.3.3	Analysis of Signal Attenuation on	
		Satellite Terrestrial Link Using	
		Transformation Method A	48

6.4	Analysis of Signal Attenuation on	
	Satellite Terrestrial Link Using	
	Transformation Method B	52
6.5	Comparison of Transformation Method	53
	A and Method B	

7	CON	NCLUSION AND FUTURE WORK	56
	7.1	Introduction	56
	7.2	Conclusion	57
	7.3	Recommendation for Future Work	59

REFERENCES

Appendices A-B

64-110

61

LIST OF TABLES

TABLE NO.	TITLE	PAGE
3.1	Rain Intensity for Region P	15
6.1	Longitude, Latitude and the Elevation Angle	
	for the Chosen Locations of the Terrestrial	
	Link	39
6.2	Values of and for the Chosen Locations of the	
	Terrestrial Link	39
6.3	Longitude, Latitude and the Elevation Angle	
	for the Chosen Locations of the Satellite	
	Ground Station's Link	40
6.4	Summary of Parameters Needed for the	
	Selected Location of Terrestrial and Satellite	
	Links in Peninsula Malaysia	41
6.5	Parameters of satellite link (Ku-band)	
	MEASAT-1	42
6.6	Transceiver parameters for both terrestrial and	
	satellite ground station	42
6.7	Parameter of the Terrestrial and Satellite Link	
	for Ku-Band in Skudai	43
6.8	Transceiver parameter for both terrestrial &	
	satellite ground station in Skudai, Johor.	43
6.9	Results of Signal Attenuation due to Rain	
	Using the Measured Rain Attenuation Time	
	Series in Skudai, Johor.	44
6.10	Results of Signal Attenuation due to Rain	
	Using the Predicted Method ITU-R to Obtain	
	the Rain Attenuation Time Series	44

LIST OF FIGURES

FIGURES NO.	TITLE	PAGE
2.1	Rayleigh Scattering	7
2.2	Rain Observation	7
2.3	Schematic Melting Layer	8
3.1	Terrestrial path	12
3.2	Earth-space path	12
3.3	Schematic presentation of an Earth-space	
	path	13
3.4	World Climate System	15
3.5	Microwave Attenuation at Various Rain	
	Rate	17
4.1	Electromagnetic wave	19
4.2	Radio Frequency Spectrum	20
4.3	Polarizations	22
5.1	Rain Rate(mm/h) versus Rain Attenuation	
	(dB) for Uplink and Downlink	27
5.2	Schematic Presentation of an Earth-Space	
	Path	28
5.3	Rain attenuation time series of a particular	
	rain event on both terrestrial and satellite	
	link	35
6.1	Rain Attenuation Prediction for Terrestrial	
	Link Referring to ITU-R in Kuala Lumpur	45
6.2	Rain Attenuation Prediction for Terrestrial	
	Link Referring to ITU-R in Johor Bahru	46
6.3	Rain Attenuation Prediction for Terrestrial	
	Link Referring to ITU-R in Alor Setar	46

6.4	Rain Attenuation Prediction for Terrestrial	
	Link Referring to ITU-R in Kota Bahru	47
6.5	Rain Attenuation Prediction for Terrestrial	
	Link Referring to ITU-R in Kuantan	47
6.6	Rain Attenuation (dB) versus Frequency	
	for Terrestrial Link Referring to	
	Prediction Method ITU-R	48
6.7	The Transformed Rain Attenuation for	
	Satellite Link Using Method A in Kuala	
	Lumpur	49
6.8	The Transformed Rain Attenuation for	
	Satellite Link Using Method A in Alor	
	Setar	49
6.9	The Transformed Rain Attenuation for	
	Satellite Link Using Method A in Kota	
	Bahru	50
6.10	The Transformed Rain Attenuation for	
	Satellite Link Using Method A in Kuantan	50
6.11	The Transformed Rain Attenuation for	
	Satellite Link Using the Measured Rain	
	Attenuation for Method A in Johor Bahru	51
6.12	The Transformed Rain Attenuation for	
	Satellite Link Using the Measured Rain	
	Attenuation for Method B in Skudai,	
	Johor	52
6.13	The Transformed Rain Attenuation for	
	Satellite Link Using the Measured Rain	
	Attenuation for Method B in Skudai,	
	Johor	53
6.14	The Transformed Rain Attenuation for	
	Satellite Link Using the Measured Rain	
	Attenuation for Method A and Method B	
	in Skudai, Johor	54

The Transformed Rain Attenuation for	
Satellite Link Using the Measured Rain	
Attenuation for Method B in Skudai,	
Johor	55
Earth-space path assuming the melting	
layer	60
	The Transformed Rain Attenuation for Satellite Link Using the Measured Rain Attenuation for Method B in Skudai, Johor Earth-space path assuming the melting layer

LIST OF SYMBOLS

A_s	-	Specific Attenuation in <i>dB/km</i>
$A_{0.01}$	-	Predicted attenuation exceeded for 0.01% of an average year
A_P	-	Total path attenuation in <i>dB/km</i>
$A_{S}(t)$	-	Transformed rain attenuation time series for the satellite link
$A_T(t)$	-	Measured rain attenuation time series of the terrestrial link
В	-	Brightness temperative in the distance of dr in $Wm^{-2} sr^{-1}$
d_0	-	Reduction factor
dr	-	Incremental distance
f	-	Frequency in GHz
f_S	-	Frequency of the satellite link
f_T	-	Frequency of the terrestrial link
Н	-	Frequency and attenuation dependent factor
h_R	-	Effective rain height in km
h_s	-	Altitude of the station in km
Ke	-	Specific attenuation <i>dBkm</i> ¹
L_G	-	Horizontal projection
L_R	-	Effective path length
L_s	-	Slant-path length under the rain height
L_S	-	the slant path length of the satellite link
L_T	-	the length of the terrestrial link
r	-	Reduction factor
R	-	Rain rate in /h
<i>R</i> _{0.001}	-	Rainfall rate of 0.001 % means that the rainfall rate would be
		exceeded for 0.001
$R_{0.01}$	-	Point rainfall rate for the location for 0.01% of an average year
		in <i>mm/h</i>

R_e	-	Effective radius of the Earth=(8 500 km
<i>v</i> _{0.01}	-	Vertical adjustment factor
γ _R	-	Specific attenuation in <i>dB/km</i>
θ	-	Elevation angle in <i>degrees</i>
τ	-	Polarization tilt angle relative to the horizontal
Φ	-	Latitude of the earth station in <i>degrees</i>

LIST OF APPENDICES

APPENDIX	TITLE	PAGE
A1	MATLAB Program to Calculate Rain	
	Attenuation Time Series for Terrestrial Link	64
A2	MATLAB Program to Calculate Transformed	
	Rain Attenuation Time Series for Satellite	
	Link	71
A3	MATLAB Program to Plot Rain Attenuation	
	versus Frequency for Terrestrial Link	78
A4	MATLAB Program to Plot CCDF of Satellite	
	Rain Attenuation for Method A	85
A5	MATLAB Program to Calculate & Plot CCDF	
	of Satellite Rain Attenuation for Method A and	
	В	92
A6	MATLAB Program to Calculate & Plot CCDF	
	of Satellite Rain Attenuation for Method B	99
A7	MATLAB Program to Calculate the	
	Comparison of Transformation Method A and	
	В	104
В	MEASAT-1 Specifications	110

CHAPTER 1

INTRODUCTION

1.1 Thesis motivation

Despite of its advantages; light weight, low profile, easy fabrication and conformability to mounting post etc as compared to the conventional microwave antennas, narrow bandwidth and low gain are two major disadvantages that limit its application. The compact configuration of microstrip antenna is the main factor to these limitations. The smaller the antenna, either the operation bandwidth or the antenna efficiency (gain) will be decreased. For that, the size reduction together with gain and bandwidth enhancement has become a major consideration in the microstrip antenna design. Many studies have been carried out and several proposed techniques are proven to be able to improve the bandwidth performance and gain of the microstrip antenna.

Several techniques such as stack configuration and co-planar parasitic patch were proposed [1] and able to improve the bandwidth up to 20 %. Using a right parameter configuration, further improvement is expected.

This thesis describes the theory, implementation and discusses the performance of using the bandwidth enhancement techniques; the proximity coupled stack configuration and the coplanar parasitic multi-resonator in the microstrip antenna in order to improve the bandwidth performance.

1.2 Thesis outline

This thesis project starts with the literature study of the microstrip antenna in order to get its basic fundamental and they are all concluded in chapter 2. Here, all the main aspects of the microstrip antenna such as its structure configuration, radiation mechanism, polarization, feeding techniques, method of analysis etc are covered. Several techniques used in the enhancement of the bandwidth are also included in this chapter.

Chapter 3 covers the necessary fundamental aspects for the implementation of the antenna design. This chapter discusses about the configuration of the design including the specification and parameter setting necessary before validation process is carried out.

Validation process including the simulation and fabrication of the proposed antenna is detailed in chapter 4. Here, different variables effects on the performance of the antenna are described.

In chapter 5, based on the result obtained in previous chapter, the overall performance of the proposed designs is concluded. Last but not the least, possible improvement for future work is also outlined.