

77:9 (2015) 127–137 | www.jurnalteknologi.utm.my | eISSN 2180–3722 |

Jurnal

Teknologi

Full Paper

APPLICABILITY AND USABILITY OF PREDEFINED NATURAL

LANGUAGE BOILERPLATES IN DOCUMENTING

REQUIREMENTS

Noraini Ibrahim*, Wan M. N. Wan Kadir, Safaai Deris, Shahliza Abd

Halim

Department of Software Engineering, Faculty of Computing,

Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor,

Malaysia

Article history

Received

2 February 2015

Received in revised form

8 October 2015

Accepted

12 October 2015

*Corresponding author

noraini_ib@utm.my

Graphical abstract

Abstract

Natural language is frequently applied to document the stakeholders’ statements during

requirement elicitation activities. Nevertheless, the use of generic natural language has

potential for the issues of unclear and inconsistent requirements. These issues may result

from the diverse interpretations by the stakeholders or other various sources of documents

and artefacts. The main objective of this paper was to discuss the definition and

application of predefined boilerplates to specify the requirements in the form of natural

language statements. The proposed boilerplates were defined and classified based on two

main types of requirements, namely functional and non-functional (performance,

constraints, and specific quality). Two methods have been applied to evaluate the

research results; the applicability of the predefined boilerplates was demonstrated using

two different case studies, and the usability aspect is evaluated through synthetic

environment experimentation using human respondents. As a summary, the predefined

boilerplates were found helpful, especially among novice requirement engineers to express

and specify their requirements in a consistent manner and a standardized way, relatively

able to improve the quality of the natural language statements.

Keywords: Natural language, requirements boilerplates, applicability, usability

Abstrak

Bahasa tabii sering digunakan untuk mendokumenkan keperluan pihak berkepentingan

ketika aktiviti pengumpulan keperluan. Maka, penggunaan bahasa tabii umumnya

berpotensi mengakibatkan isu-isu seperti keperluan yang tidak jelas dan tidak konsisten. Isu

ini berpunca daripada kepelbagaian tafsiran oleh pihak berkepentingan dan menerusi

pelbagai sumber dokumen atau artifak perisian yang lain. Objektif utama kertas kerja ini

adalah bagi memperincikan definisi dan aplikasi terhadap boilerplates yang dicadangkan

untuk menspesifkasikan keperluan dalam penyataan formal bahasa tabii. Boilerplates

yang dicadangkan telah diklasifikasikan kepada dua jenis keperluan yang utama iaitu

kefungsian dan bukan kefungsian (prestasi, kekangan dan kualiti spesifik). Dua kaedah

digunakan untuk menilai hasil kajian iaitu: keberkesanan boilerplates telah dinilai menerusi

dua kajian kes yang berbeza, manakala aspek kebergunaan dinilai berdasarkan

eksperimen persekitaran sintetik menggunakan subjek responden. Kesimpulannya,

didapati boilerplates yang dicadangkan berupaya untuk membantu jurutera keperluan

dalam pengumpulan dan spesifikasi keperluan dengan kaedah yang lebih konsisten dan

seragam, yang akhirnya meningkatkan kualiti kenyataan keperluan dalam bahasa tabii.

Kata kunci: Bahasa tabii, keperluan boilerplates, keberkesanan, kebergunaan

© 2015 Penerbit UTM Press. All rights reserved

128 Ibrahim, N. et al. / Jurnal Teknologi (Sciences & Engineering) 77:9 (2015) 127–137

1.0 INTRODUCTION

Requirements engineering is an early and critical

phase in software development life cycles. Generally,

there are four main activities during the requirements

engineering phases, namely, elicitation,

documentation, testing, and validation management

[1]. The systematic process and activities during the

requirements engineering phase allow the developer

team to appropriately communicate with the related

stakeholders in order to capture the needs of

stakeholders in solving their business problems and

achieving the organisation aims [2].

Requirements are often derived from the

stakeholders’ statements mentioning the problems

that should be addressed by the system. All the

relevant requirements from three main sources

namely, i) stakeholders (i.e. survey, questionnaires,

workshops, etc.), ii) related information of the

predecessor systems (i.e. legacy and competitors), iii)

other documentation sources (i.e. policies, company

reports, documents, etc.) must be further transcribed

properly into formal documentation of requirements

specifications [1].

It has been reported that natural language is

frequently applied to document the stakeholders’

statements and their needs during requirements

elicitation activities [1, 3-7]. Using natural language in

documenting and authoring requirements is

applicable in the situation where the stakeholders do

not have prior knowledge on notations [1]. Similarly,

natural language is generic and comprehensive in

describing the various purposes and needs of

stakeholders. In addition to that, natural language is

generic enough to express the different types of

requirements [6].

Other highlight on the natural language usage can

be discovered from the survey by Neill and Laplante

[7] that was conducted to gather state-of-the-art

practices in requirements engineering activities. One

remarkable finding concluded from the survey is the

substantial use of natural language as an informal

representation during the requirements elicitation

activity. More than half of the respondents who were

professionals in industries and application domains

agreed that the use of non-formal representations,

such as natural language, did not severely influence

the quality aspect in terms of product suitability and

usability of the developed software.

Carrillo de Gea et al. [4] provide an intensive study

regarding the use of RE tools and its capabilities in the

RE processes. This review revealed that the use of

natural language statements has achieved the highest

percentage compared to other semi or formal

methods in facilitating specification languages and

modelling. However, there is still a lack of tools that

provide templates and checklists during the elicitation

requirements activities. This study also suggests that it is

an added advantage if the tools have a feature that

allows elicited requirements to be documented in a

persistent format.

Nevertheless, the use of generic natural language

might lead to the issues such as ambiguous,

incomplete, and inconsistent requirements [3, 5]. These

issues may result from diverse interpretations by

stakeholders or other various sources of documents

and artefacts [1]. Additionally, issues of ambiguity and

incompleteness lead to the volatility problems to the

elicited requirements [8], and cause more complex

situations if the software has been deployed in the

client’s site [2].

Meantime, Zowghi and Coulin [8] also mentioned

that requirements elicitation activities should be

supported by generic applications, such as template-

driven documentation generation and assistive

groupware. In turn, proper written requirements should

facilitate readable specification documents, more

understandable stakeholder statements [9-11], and at

the same time, they can be analysed, realized, and

verified in the next software development phases,

namely: design, development, and testing.

In this paper, the main aim was to describe our

works on the development of the predefined natural

language requirements boilerplates templates, which

facilitated a better way of documenting the

requirements statements from the stakeholders. The

proposed natural language boilerplates were defined

based on two fundamental types of requirements:

functional and non-functional. Our early findings

remarked that the predefined natural language

requirements boilerplates were found helpful,

especially for the novice requirement engineers to

express and specify the requirements in a consistent

manner and a standardized way. Besides, this finding

relatively proved that the application of the proposed

boilerplates in specifying the different types of

requirements was able to reduce the ambiguities and

the incompleteness of the natural language

statements.

The structure of this paper is as follows: Section 2

presents the related works to our study, ranging from

the requirements elicitation perspective, the existing

works that used natural language, and boilerplates in

documenting the requirements specifications. Next in

Section 3, the proposed natural language boilerplate

templates are discussed in detail. Subsequently, the

evaluation to the predefined natural language

boilerplates template is explained in Section 4. Finally,

the summary and the future works are presented in

Section 5 to conclude the overall remarks and

discussions on the proposed natural language

boilerplates and their validation results.

2.0 RELATED WORKS

This section elaborates several works that are relevant

and intertwined to the RE activities (elicitation), related

software artefacts (natural language requirement

statements), as well as the process (boilerplates),

which focus to improve the quality of the documented

129 Ibrahim, N. et al. / Jurnal Teknologi (Sciences & Engineering) 77:9 (2015) 127–137

requirements specifications based on the natural

language approach.

‘Boilerplates’ word was first coined by Hull et al. [6].

Boilerplates represent a collection of sentence

patterns or templates that have limited vocabulary

and keywords with specific placeholders to be

completed. Similarly, Ortel et al. [12] defines

boilerplate as “requirements specification

documentation that consists of a set of pre-defined

templates”, and the categories of the boilerplates are

based on three types of requirements: capability,

functional, and constraint.

Meanwhile, Figure 1 portrays the typical input-

process-output flows during the requirements

documentation activity, which transform the elicited

requirements into formalised requirements

specifications.

Normally, the elicited or gathered requirements from

stakeholders and other sources, such as standards,

reports, and related documents, are in the form of

natural language statements. All input from the natural

language requirements are further articulated and

processed based on the proposed requirements

boilerplates. During this process, the requirements can

be written within controlled vocabulary in the

templates with regard to the types of requirements,

namely functional and non-functional. As a result, the

formalised requirements specifications with standard

expressions are appropriately written in the

documents.

Figure 1 Requirement documentation process using natural

language requirements boilerplates

An earlier approach, the BROOD model developed

by Loucopoulos and Wan Kadir [13] utilizes formal

sentence patterns of business rules to build the

prescribed rule templates. The defined rule templates

are categorised into five types, namely: attribute

constraint, relationship constraint, action assertion,

computation, and derivation. The prescribed rule

templates provide lists of phrases with suitable

variables and keywords that guide novice users to

express the BR statements consistently. In addition to

that, BROOD rule templates allow the defined BR

statements to be associated to the related software

design elements. Thus, any changes made to the

business rules statements during the later software life

cycle phase should as well give impact to the related

artefacts, such as structural and behavioural design

models.

Similarly, Farfeleder et al. [5] use domain ontologies

for their boilerplates requirements to transform natural

language requirements to become formalised

requirements specifications for embedded system. The

transformation process is semi-automatic using the

developed DODT tool, which still requires the

requirements engineer to choose the sets of

requirements boilerplate and at certain level, validate

the output of the documented requirements manually.

Another relevant work by Pohl and Rupp [1] propose

requirements templates based on three main types of

system activities: autonomous, user interaction, and

interface. Autonomous or independent activities are

the system activity that executes the process

independently. User interaction activities are the

system activity that provides services to the users.

Interface activities are the system activity that

executes process depending on other parts of the

system, or waits for external events to occur. Yet, this

template has one limitation, it can only be used to

specify functional type of requirements. Some

examples of the requirements templates are depicted

in Table 1.

Table 1 Requirements templates based on system activity [1]

System

Activity
Requirements templates

Autonomous The <system name> shall/ should/ will <process>

The <system name> shall/ should/ will <process>

<object> <object information>

[<When? Under what conditions>] the <system

name> shall/ should/ will <process> <object>

<object information>

User

interaction

The <system name> shall/ should/ will provide the

<process> to <whom>

The <system name> shall/ should/ will provide the

<process> to <whom> <object> <object

information>

[<When? Under what conditions>] the <system

name> shall/ should/ will provide the <process> to

<whom> <object> <object information>

Interface The <system name> shall/ should/ will able to

<process>

The <system name> shall/ should/ will able to

<process> <object> <object information>

[<When? Under what conditions>] the <system

name> shall/ should/ will able to <process>

<object> <object information>

Apart from the works mentioned earlier, there is a

well-known boilerplates proposed by Hull et al. [6] that

considered requirements based on problem-domain

130 Ibrahim, N. et al. / Jurnal Teknologi (Sciences & Engineering) 77:9 (2015) 127–137

needs (stakeholders/users requirements) or solution-

domain needs (systems requirements). Likewise, both

stakeholders and systems requirements categories

have identical basis, which are capability (functional)

and constraints on capability (non-functional). Table 2

shows some typical boilerplates templates based on

requirements types and their subsequent related

categories.

Table 2 User and system requirements boilerplates [6]

Type Category Typical boilerplates

Stakeholder

(User)

Capability The <stakeholder type> shall be

able to <capability>

Constraint -

Performance

The <stakeholder type> shall be

able to <capability> within

<performance> of <event> while

<operational condition>

System Capability The <system> shall be able to

<function>

Constraint –

Capacity &

Performance

The <system> shall be able to

<function>

not less than <quantity> <object>

while <operational condition>

Constraint –

performance

(periodicity)

The <system> shall be able to

<function>

every <performance> <units>

3.0 PREDEFINED REQUIREMENTS BOILERPLATES

In this study, the proposed natural language

requirements boilerplates were developed and

classified into two basic types, namely, functional and

non-functional requirements (performance, specific

quality, and constraint) that are originally from a

concern-based taxonomy of requirement proposed by

Glinz [14].

Figure 2 portrays the further details on the

requirements’ taxonomy. All the functionalities and

their behaviours, such as data, stimuli, and reactions,

were categorized into the functional type.

Requirements that were related to specific time and

space bounds (timing, speed, volume, and

throughput) fell into performance type. The specific

quality type of requirements defined all the “-ilities”

requirements, such as reliability, usability, security,

availability, portability, and others. The constraint type

requirements were related to physical, legal, cultural,

environmental, design, and implementation, as well as

interfacing requirements for the developed software

systems.

The predefined natural language requirements

boilerplates were motivated from similar works by Pohl

and Rupp [1], as well as Hull et al. [6]. Firstly, the

foundation of the requirements templates proposed

by Pohl and Rupp [1] are based on the types of system

activities namely autonomous, user interaction, and

interface, as depicted in Table 1. The proposed

requirements templates are only suitable to specify

functional type of requirements.

Figure 2 Basic classification of requirements [15]

Secondly, the boilerplates by Hull et al. [6] helps to

express the requirements based on the needs of

problem-domain (stakeholders) or solution-domain

(system) and further categorised into the capability

(functional) and the constraints on capability (non-

functional) requirements, as shown in Table 2.

In this study, the proposed boilerplates by Hull et

al. [6] are slightly similar with the pre-defined

boilerplates. However, the number of boilerplates was

expanded, and the proposed boilerplates were

adapted and categorised based on the requirements

types; functional and non-functional (performance,

specific quality, and constraints). Additionally, the

categorization helps to represent the generic

specifications for both types of users and system

requirements.

Table 3 presents the types of requirements and

their corresponding boilerplates or templates in the

form of natural language requirements. The

boilerplates have limited vocabulary, whereby each

of it has templates clause that describes the language

used to express the requirement, and the “< >” cell is

the placeholder, where the gaps were filled in by

appropriate keywords or terms that expressed the

requirement.

4.0 RESEARCH METHODOLOGY

This section presents the research methodology

adopted, which describes on the two methods that

have been applied to practically evaluate the

research results, namely: case studies applications and

synthetic environment experimentation. The main

purpose of the case study evaluation is to

demonstrate the applicability of the predefined

requirements boilerplates in specifying the elicited

requirements from the stakeholders. On the other

hand, the usability aspect is evaluated through

synthetic environment experimentation using human

subjects.

Requirement

Project
Requirement

System
Requirement

Process
Requirement

AttributeFunctional
Requirement

Constraint

Perfomance
Requirement

Specific quality
Requirement

Functionality
and behavior:
Functions
Data
Stimuli
Reactions
Behavior

Time and
space bounds:
Timing
Speed
Volume
Throughput

“-ilities”:
Reliability
Usability
Security
Availability
Portability
Maintainability
...

Physical
Legal
Cultural
Environmental
Design &
Implementation
Interface
...

131 Ibrahim, N. et al. / Jurnal Teknologi (Sciences & Engineering) 77:9 (2015) 127–137

Table 3 The predefined natural language requirements boilerplates

Type of

Requirements
Natural Language Requirements Boilerplates

Functional The <entity1> shall be able to <action>

The <entity1> shall be able to be in <state>

The <entity1> shall be able to be in <effect>

The <entity1> shall be able to <action> <entity2>

The <entity1> shall be able to <action> in <entity2>

The <entity1> shall be able to <action> to <entity2>

The <entity1> shall allow <entity2> to be in <state>

The <entity1> shall allow <entity2> to be able to <action>

The <entity1> shall allow <entity2> to be in <effect>

Performance The <entity1> shall be able to <action> <entity2> not less than <quantity> times per <units>

The <entity1> shall be able to <action> <entity2> at least <quantity> times per <units>

The <entity1> shall be able to <action> <entity2> within <quantity> times per <units>

The <entity1> shall be able to <action> <entity2> at minimum rate of <quantity> times per <units>

The <entity1> shall be able to <action> not less than <quantity> <entity2>

The <entity1> shall be able to <action> at least <quantity> <entity2>

The <entity1> shall be able to <action> within <quantity> <entity2>

The <entity1> shall be able to <action> at minimum rate of <quantity> <entity2>

The <entity1> shall be able to <action> <entity2> not less than <quantity> <units> from <event>

The <entity1> shall be able to <action> <entity2> at least <quantity> <units> from <event>

The <entity1> shall be able to <action> <entity2> within <quantity> <units> from <event>

The <entity1> shall be able to <action> <entity2> at minimum rate of <quantity> <units> from <event>

Specific Quality The <entity1> shall be able to <action> <entity2> for a sustained period of <units1> every <quantity> <units2>

The <entity1> shall be able to <action> <entity2> composed of not less than <quantity> <units> with <external entity>

The <entity1> shall be able to <action> <entity2> composed of at least <quantity> <units> with <external entity>

The <entity1> shall be able to <action> <entity2> composed of within <quantity> <units> with <external entity>

The <entity1> shall be able to <action> <entity2> composed of at minimum rate of <quantity> <units> with <external entity>

WHILE <operational condition> ... The <entity1> shall be able to <action>

WHILE <operational condition> ... The <entity1> shall be able to <action> <entity2>

IF <operational condition> THEN ... The <entity> shall <action>

Constraints The <entity1> shall not allow <entity2> to <action>

The <entity1> must be <action> not less than <quantity> times per <units>

The <entity1> must be <action> at least <quantity> times per <units>

The <entity1> must be <action> within <quantity> times per <units>

The <entity1> must be <action> at minimum rate of <quantity> times per <units>

WHILE <operational condition> ... The <entity1> shall not <action>

WHILE <operational condition>... The <entity1> may be <state>

WHILE <operational condition>... The <entity1> shall not <action> except for other <action>

WHILE <operational condition>... The <entity1> may be <state> without <effect>

WHILE <operational condition>... The <entity1> may be <state> without <effect> other <action>

4.1 Case Study Applications

A study by Zelkowitz and Wallace [15] classified case

study as one of observational study types that

provides a data collection method to represent the

current situation or phenomenon of the organisation

or application domain that is currently under study. It

is a suitable research methodology in software

engineering area because it helps to detail the study

context by involving the controlling factors that are

related to the case study environment as mentioned

by Runeson and Höst [16].

The four basic processes in the case study

evaluation, namely: design and planning, data

collection, data analysis and reporting, are captured

in Figure 3. It is suggested by Robson [17] that case

study designs should consider the aim and purpose

to be achieved, the case to be studied, theory to be

applied, research questions to be answered, data

collection methods and strategies, and result analysis

to be reported.

Figure 3 Case study process [16-17]

Design and
Planning

Data
Collection

Data
Analysis

Reporting

132 Ibrahim, N. et al. / Jurnal Teknologi (Sciences & Engineering) 77:9 (2015) 127–137

During design and planning processes, the case

study elements i.e. the chosen cases and the its

related subjects were defined. Two different context

of real environment industrial applications systems,

namely System-A and System-B were chosen.

Generally, System-A is a medium-scale healthcare

application that provides services among the

healthcare industry players, while System-B is web-

based system that offers services in assets and

facilities management.

In conducting the case studies, it is essential to

gather all related requirements for the both systems

during the data collection phase. Due to that,

features and functionalities of the systems were

analysed, and all reports or manual documents

obtained from the systems’ stakeholders were also

observed closely.

All elicited requirements statements were then

classified based on three main business processes of

the System-A, namely: (i) registration, (ii) billing, (iii)

invoicing; and four business processes of the System-B

system, namely: (i) assets registration, (ii) assets

tracking, (iii) assets maintenance and (iv) assets

complaints.

In the data analysis stage, the classified

requirements statements were further categorised

into functional or non-functional requirements types

(performance, specific quality, and constraint). The

requirements types are described in previous Section

3.

Next, the most critical task, namely to rephrase and

specify the requirements statements appropriately

using the pre-defined natural language requirements

boilerplates based on their types was performed.

4.2 Synthetic Environment Experimentation

Synthetic environment experimentation is a classical

scientific method that can be used to evaluate

empirical studies in the software engineering

research and practices [16-17]. According to

Zelkowitz and Wallace [15], synthetic environment

experimentation is defined as: “A replicated

experiment is conducted in a smaller artificial

environment, but in a realistic settings compared to

the real projects.”

Basically, usefulness is a criterion for the usability

factor that helps user to solve the experimental task

in an acceptable way using the provided handy

features and functionalities provided by the process.

[18]. In this experiment, the usefulness of the

predefined requirements boilerplates is verified by

checking whether the subjects agreed that the pre-

defined templates helped to solve the required

experimental tasks in an acceptable way.

5.0 RESULTS AND DISCUSSION

This section presents the applicability evaluation

results of the predefined requirements boilerplates

based on two case studies, namely System-A and

System-B, as well as the results of the synthetic

environment experimentation using human subjects

to evaluate the usability of the predefined

requirements boilerplates.

5.1 Case Study Evaluation Results

Generally, the System-A community consists of

healthcare providers (HCPs), paymasters, and

suppliers. HCPs are the users in System-A that

manages patients’ records, billings, and paymaster

invoicing. HCPs are also the parties who distribute

medications and provide treatments, such as:

hospitals, general practitioners (GPs) and dentists.

The paymasters are the parties that hire and pay the

medications services. Insurers, employers, and any

managed care companies are some examples of

paymasters. Finally, supplier is the System-A owner

that fundamentally administers the System-A.

Basically, there are three main features or

functionalities provided by the System-A, namely: i)

registration, ii) billing, and iii) invoicing. Figure 4

portrays the basic business workflow of the System-A.

Figure 4 Workflow in System-A

All cash and panel patients must first be registered

into the system. The system will automatically assign a

unique registration ID for the new patient. For every

visit to the clinic of a System-A healthcare provider,

the patient will be registered by the HCP clinic staff

for consultation and will be inserted into patient

queue list. Once consultation completed, the HCP

clinic staff will issue a bill to the patient according to

the prescription by the on-duty doctor. Cash patients

then pay the bills and provided with their

prescriptions. As for panel patients, their bills are paid

by their paymaster and included into the invoice of

their employer (paymaster).

As for System-B, the offered main service is to

manage all assets and facilities in. In specific, the

System-B helps to allocate and record the

assets/facilities, track the recent location of the

assets, manage the maintenance of the

assets/facilities and its history, and record the

information of the disposed assets. Figure 5 illustrates

in brief the business workflow of assets life cycle in

System-B as aforementioned.

Patient registration

Patient consultation

Billing

Invoicing

133 Ibrahim, N. et al. / Jurnal Teknologi (Sciences & Engineering) 77:9 (2015) 127–137

Meantime, there are three main categories of

System-B users: i) OAD staff, ii) internal user and iii)

public user. The different categories have various

types of users and subsequently their accessibility to

the System-B, as shown in Table 4.

Figure 5 Workflow in System-B

Table 4 Categories of System-B user

Category User Access to System-B

OAD staff Supervisor Register asset, Update assets

information, View assets location

and movement information, View

complaint, Validate progress for

work assignment, View and

create maintenance schedule

Clerk View complaint, View and assign

work assignment, validate work

assignment

Worker View complaint, View work

assignment, Perform job for work

assignment

Internal All UTM staff

(other than

OAD staff)

Create complaint

Public Contractor,

asset

supplier,

agent

Create complaint

The following Table 5 and 6 shows the results of

requirements statements elicited of the System-A and

System-B based on its relevant business process

during data collection activities.

Table 7 and Table 8 present some examples of

requirements statements gathered from the System-A

and System-B case studies that have been rephrased

to more formalized requirements specifications using

the predefined requirements boilerplates. Based on

Table 7 and 8 results, this finding relatively proved

that the requirements for System-A and System-B

systems could be successfully specified based on the

proposed natural language boilerplates.

From the practical point of view, the suggested

requirements boilerplates provide a support

instrument for the requirements analyst to specify the

requirements specifications in the standard form of

language expressions. The boilerplates have limited

vocabulary, whereby each of it has templates clause

that describes the language used to express the

requirements, and the “< >” cell is the placeholder,

where the gaps were filled in by appropriate

keywords or terms that expressed the requirements.

Thus, it is a good method of standardising the

language used for expressing the specific types of

requirements [6]. It also offers a minimum set of

attributes in writing and expressing requirements in a

standard way. It assists software analyst to specify the

requirements using a consistent language by

choosing a suitable pre-defined templates and filling

in the gaps (placeholders).

Table 5 Elicited requirements for System-A

Business Process Requirements Statements

Registration A new patient must be registered with unique

ID

A registered patient may have more than one

paymaster

The status of the patient is set as ‘banned’ if

they have an outstanding balance invoice

The system will insert the patient into

consultation queue list once he/she completed

the consultation registration

A patient is treat as an emergency case if the

condition of the patient is critical

A patient can be terminated from the list of

payees by their paymaster

A panel patient is allowed to register for his

panel clinics based on the maximum number of

clinics set by the paymaster

Billing The bill amount for the panel patient must not

exceed the total amount limit set by their

paymaster

The bill is created once the patient complete

their consultation

The Chief Clinic Assistant is allow to modify the

created bill by the clinic assistant

The HCP shift leader is allows to make

correction to incorrect or mistakes in any bill

that are issued by the HCP clinic staff.

Patient can pay the bill by cash, cheque or

credit card

A bill contains patient information, total

amount, consultation descriptions –

prescriptions and medical services, issue date,

issue staff and paymaster code (for panel

patient only).

Once the patient pay the bill, the bill is set to

‘fully paid’ or ‘partly paid’ from ‘unpaid’ status,

according to the paid amount. This feature is

applied to cash or partially sponsored panel

patient.

As for panel patient, the bill is set to ‘invoiced’

status when the invoice is created after the

panel patient receives their prescriptions.

Invoicing The Account Clerk is allow to create reminders

for the past due invoices

The Account Clerk will issue the first reminder if a

payment is not received within 30 days from the

invoice date.

The HCP clinic staff will verify all the created bills

for the panel patients before it is listed as an

invoice. Once verified, the status for the

particular bill is changed to ‘invoiced’

The invoice date is set to the end of month for

the panel with monthly-basis interval invoice.

All the status of the invoice should be fixed to

be end by 12:00 am on the next day of the

invoice date

The amount of invoice for paymaster System-A

usage is calculated based on the total number

of the payees.

Assets Delivery

Register & Track Assets

Assets Operation

Assets Maintenance

Assets Dispose

134 Ibrahim, N. et al. / Jurnal Teknologi (Sciences & Engineering) 77:9 (2015) 127–137

Table 6 Elicited requirements for System-B

Business

Process
Elicited Requirements Statements

Assets

registration

The system has to assign a unique ID for all new

assets to be registered.

The system must prevent any unauthorized user or

public user to register for new assets.

Only supervisor can register the new assets into the

system.

The supervisor is allowed to enter and update

assets information based on the assets categories.

The supervisor is allowed to view the assets

information by selecting the assets categories

types of building, space, equipment or

infrastructure.

Assets

tracking &

allocation

The system must prevent any access by

unauthorized user, public user, students and staff to

view or track the assets location.

The supervisor is allowed to allocate the asset to

the building or space location.

The supervisor is allowed to track specific assets by

selecting the category types of building, space,

equipment or infrastructure.

The system is able to track the service respond by

duration time of week, month or year.

Assets

maintenance

The system must prevent any access from

unauthorized user, public user or staff to distribute

the job tasks to the assigned workers.

The supervisor is allowed to set-up the

maintenance schedule for the assets.

The supervisor is allowed to select the specific lists

of contractor for every set-up maintenance

schedule of the assets.

The supervisor is allowed to select the specific

duration time for every set-up maintenance

schedule of the assets.

The equipment must be disposed at maximum rate

of six years.

The equipment must be disposed if the warranty is

five years.

The equipment must be serviced at least two times

per year on every 15th January and June months.

The equipment must be serviced while it still under

warranty.

The equipment must be serviced after five years it

has been used.

The system must able to compute the interference

time by total up the response time + checking time

+ service time.

The system must able to compute the total of

distribution time for every job task by complaint

time minus (–) the time that the contractor

receives the assigned job task from the supervisor.

Assets

complaint

The supervisor is allowed to update the progress of

the assigned job tasks either new or in process

while the status of the job tasks is not finish.

The system is able to notify the supervisor if the

interference time is more than 30 hours

The contractor user is allowed to view the schedule

of the assigned job task for the specific selected

assets.

Any types of user are allowed to enter the new

complaints regarding the assets and facilities.

Any unauthorized and unregistered users are

allowed to enter new complaints through hotline

complaint section only.

The supervisor is allowed to view the details of the

complaints based on the location of the assets.

The system is able to distribute the job tasks to the

staff based on the type of the job for every new

complaint.

Table 7 Rephrased requirements specifications for System-B

Business Process: Asset Registration

 Requirement statement: The system has to assign a unique ID

for all new assets to be registered.

 Type: Functional requirement (behaviour)

Re-phrased Requirement

 Boilerplate: The <entity1> shall be able to <action> <entity2>

 Specification: The <system> shall be able to <assign> a unique

ID for every <new registered asset>

Business Process: Asset Complaint

 Requirement statement: The system is able to notify the

supervisor if the interference time is more than 30 hours

 Type: Performance requirement (timing)

Re-phrased Requirement

 Boilerplate: The <entity1> shall be able to <action> <entity2>

not less than <quantity> <units>

 Specification: The <system> shall be able to <notify> the

<supervisor> if the <interference time> is <more than 30 hours>

Business Process: Assets tracking & allocation

 Requirement statement: The system must prevent any access

by unauthorized user, public user, students and staff to view or

track the assets location..

 Type: Constraint requirement (legal)

Re-phrased Requirement

 Boilerplate: The <entity1> shall not allow <entity2> to <action>

 Specification: The <system> shall not allow any <unauthorized

access | public user | student | staff]> to <view> the assets

location

Business Process: Asset maintenance

 Requirement statement: The equipment must be serviced at

least two times per year on every 15th January and June

months.

 Type: Specific quality requirement (maintainability)

Re-phrased Requirement

 Boilerplate: The <entity1> shall be able to <action> for every

<quantity> <units2>

 Specification: The <equipment> shall be able to be

<serviced>… on every <15th January and June> <month>

135 Ibrahim, N. et al. / Jurnal Teknologi (Sciences & Engineering) 77:9 (2015) 127–137

Table 8 Rephrased requirements specifications for System-A

Business Process: Registration (Patient record maintenance)

 Requirement statement: Paymaster HR Officer may

terminate any patient from their list of payees

 Type: Functional requirement (user function)

Re-phrased Requirement

 Boilerplate: The <entity1> shall be able to <action> <entity2>

 Specification: The <Paymaster-HROffice> shall be able to

<terminate> <Patient> from their list of payees

Business Process: Billing (Bill preparation)

 Requirement statement: The amount of a panel patient’s bill

must not exceed the maximum bill amount set by the

paymaster.

 Type: Performance requirement (throughput)

Re-phrased Requirement

 Boilerplate: The <entity1> shall be able to <action> not less

than <quantity> <entity2>

Specification: The <paymaster> shall be able to

<setMaxAmount> not less than <totalAmount> of the <PatientBill>

Business Process: Registration (Patient consultation)

 Requirement statement: Any patient with an outstanding

balance should be banned from consultation registration.

 Type: Constraint requirement (legal regulation)

Re-phrased Requirement

 Boilerplate: WHILE <operational condition> ... The <entity1>

shall not <action>

Specification: WHILE <patient_status = outstanding > ... The

<Patient> shall not allow to <register_consultation>

Business Process: Registration (Patient consultation)

 Requirement statement: The Account Clerk will issue the first

reminder if a payment is not received within 30 days from

the invoice date.

 Type: Specific quality requirement (maintainability)

Re-phrased Requirement

 Boilerplate: The <entity1> shall be able to <action> <entity2>

for a sustained period of <units1> every <quantity> <units2>

Specification: The <account_clerk> shall be able to <issue>

<reminder> for a sustained period of <invoice-date> in every

<30> <days>

5.2 Synthetic Environment Experimentation Results

There were 23 subjects have participated in the

synthetic environment experiment conducted. The

samples of experimental subjects were selected

based on the expectation that they must have at

least minimal understanding on SE theories and

principles.

In addition to that, the library system case study

was chosen in this synthetic environment

experimentation because it represents the

application domain with realistic problems, yet

sufficient enough to advocate acceptable and

reasonable change request implementation cases.

Furthermore, the library system case study is easily

understandable for the experimental subjects. The

experimental subjects have been exposed to the

library system since the first day they registered as a

student at the university. Each of them is a user of the

library system and they are familiar with the features,

functionality and system environments provided by

the library system. The library system case study is

assumed to provide core services such login,

borrowing (loan) available materials items, returning

(check-in), renewal, reservation, searching, and

checking accounts.

The validity of the conducted experiment is assured

so the analysis results should be reliable enough to be

trusted. Sample questions sets are referred and

adopted from Software Usability Measurement

Inventory (SUMI) [19]. SUMI is an industry standard

evaluation questionnaire for assessing quality of use

of software by end users. In addition to that, the

quality ratings for each question are based on

ordinal Likert scale of 5 options to be chosen (1:

Strongly disagree, 2: Disagree, 3: Undecided, 4:

Agree, 5: Strongly agree). Basically, five related

questions were designed to evaluate the usefulness

criteria from subjects’ viewpoints, as follows:

i. It allows for easier selection to classify types of

requirements.

ii. It allows for easier way to define the

requirement specifications.

iii. It allows for easier way to choose input

statement for requirement specifications (i.e.

by fill-in the “< >” placeholders).

iv. It allows for easier way to express the

requirement in consistent manner.

v.

Figure 6 presents the summary of the descriptive

statistics for the conducted exploratory survey. In

summary, all respondents are agreed towards the

usefulness criteria of the proposed natural language

boilerplate templates. Table 4 shows the frequency

distribution for the 4 usefulness criteria in details.

Figure 6 Summary of respondents’ perspectives

Table 9 presents the results of 4 usefulness criteria in

evaluating the predefined requirements boilerplates.

The first usefulness criteria is evaluated to observe the

subjects’ viewpoint in terms of easier selection in

classifying the four types of requirements, namely;

functional, performance, constraint and specific

quality. In general, it is concluded that all 23 subjects

agreed with the first usefulness criteria. The highest

frequency of 16 subjects or 69.6% strongly agreed,

followed by 30.4% or 7 subject agreed with this

criteria. None of the 23 subjects was in opposition to

this first usefulness criteria.

Next criteria in evaluating usefulness is by looking

further on subjects’ agreement whether the

boilerplates have provided support and a more easy

136 Ibrahim, N. et al. / Jurnal Teknologi (Sciences & Engineering) 77:9 (2015) 127–137

way in defining the identified requirements

specifications for library system. No one from total 23

subjects was opposing this second criteria of

usefulness. In contrast, all subjects agreed with the

criteria, with majority of 15 subjects or 65.2%agreed

and followed by 34.8% or 8 subject strongly agreed

with the second usefulness criteria of the predefined

requirements boilerplates in providing more flexible

way in defining requirements specifications.

Subsequently, another criteria is to judge subjects’

opinion on the usefulness of the predefined

requirements boilerplates support in choosing the

suitable input statement for requirements

specification, by just filling in the value of specific

information in each selected “< >”

palettes/placeholders. Of 23 subjects, 19 subjects or

approximately 82.6% agreed and followed by 4

subjects or around 17.4% distributions that were

totally agreed with this criteria. No subjects were

found opposing this criteria.

The forth usefulness criteria is to determine subjects’

agreement whether they found that the predefined

requirements boilerplates have provided easier way

in consistently expressing the requirements

specification. The highest frequency distribution of

65.2% or 15 subjects agreed, followed by 34.8% or 8

subjects that totally agreed to this criteria.

Table 9 Results of 4 usefulness criteria

Usefulness Criteria Likert Scales Frequency

(N=23)

1. It allows for easier selection

to classify types of

requirements.

Strongly disagree 0

Disagree 0

Undecided 0

Agree 16

Strongly agree 7

2. It allows for easier way to

define the requirements

specifications.

Strongly disagree 0

Disagree 0

Undecided 0

Agree 15

Strongly agree 8

3. It allows for easier way to

choose input statement for

requirements specifications

(that is by filling-in the “< >”

placeholders).

Strongly disagree 0

Disagree 0

Undecided 0

Agree 19

Strongly agree 4

4. It allows for easier way to

express the requirements in

consistent manner.

Strongly disagree 0

Disagree 0

Undecided 0

Agree 15

Strongly agree 8

6.0 SUMMARY AND FUTURE WORK

In this paper, we have presented our study on the
definition and application of the predefined natural
language requirements boilerplates. The focal aim of

this study was to facilitate a better way of
documenting the elicited requirements from the
stakeholders; particularly in specifying the
requirements based on the predefined natural
language boilerplates, which relatively improved the
quality of the natural language statements.

The predefined natural language requirements

boilerplates were classified based on two main types

of requirements, namely functional and non-

functional (performance, constraints, and specific

quality). Meanwhile, the feasibility and the

applicability of the predefined natural language

requirements boilerplates were demonstrated using

two industrial strength case studies, namely the

System-A, a healthcare application and the System-

B, an asset maintenance and management system.

The findings concluded that the predefined

boilerplates were feasible enough to assist in

specifying the requirements statements in controlled

and limited language with consistent sets of

vocabularies.

Apart from the case study evaluation, the synthetic

environment experimentation is also performed to

explore and quantify the usefulness of the predefined

requirements boilerplates from the end-user

perspectives. 4 criteria of the usefulness are verified

by checking whether the subjects agreed that the

predefined requirements boilerplates helped to solve

the required experimental tasks in an acceptable

way. The element of predefined templates helps to

define new requirements specification. As a result, it

offers a simpler way, helping to reduce human efforts

and producing fewer errors. The suggested templates

are also reusable, which will result to higher flexibility

of software systems specifications, and at the same

time helps to express requirements specifications in a

more consistent and standardised way.

In the future, it is expected that the pre-defined

natural language requirements boilerplates to be

revised, considering the domain-specific ontologies

to facilitate the issue of limited constraints and

vocabulary of the requirements statements. In

addition, initial findings on System-A and System-B

systems should be further extended to other case

studies that are complex enough for more detailed

evaluations and results.

Acknowledgement

The authors would like to express their deepest

gratitude to Research Management Center (RMC),

Universiti Teknologi Malaysia (UTM) and Ministry of

Education Malaysia for their financial support under

Fundamental Research Grant Scheme (Vot number

R.J130000.7828.4F216).

References

[1] Pohl, K. and Rupp, C. 2011. Requirements Engineering

Fundamentals A Study Guide for the Certified Professional

137 Ibrahim, N. et al. / Jurnal Teknologi (Sciences & Engineering) 77:9 (2015) 127–137

for Requirements Engineering Exam. 1 edition. CA, USA:

Rocky Nook.

[2] Ibrahim, N., Wan Kadir, W. M. N., and Deris, S. 2009.

Propagating Requirement Change into Software Designs

to Resilient Software Evolution in The 16th IEEE Asia Pacific

Software Engineering Conference (APSEC’09).

[3] Arora, C., Sabetzadeh, M., Briand, L., Zimmer, F., Gnaga,

R. 2013. RUBRIC: A Flexible Tool for Automated Checking

of Conformance to Requirement Boilerplates. In: 2013 9th

Joint Meeting European Software Engineering

Conference ACM SIGSOFT Symposium Foundation

Software Engineering. ESEC/FSE 2013- Proc. 599-602.

[4] Carrillo de Gea, J. M., Nicolás, J., Fernández Alemán, J. L.,

Toval, A., Ebert, C., Vizcaíno, A. 2012. Requirements

Engineering Tools: Capabilities, Survey and Assessment.

Information Software Technology. 54(2012): 1142-1157.

[5] Farfeleder, S., Moser, T., Krall, A., Stalhane, T., Zojer, H.,

Panis, C. 2011. DODT: Increasing Requirements Formalism

Using Domain Ontologies for Improved Embedded

Systems Development. 14th IEEE International Symposium

on Design and Diagnostics of Electronic Circuits and

Systems. 271-274.

[6] Hull, E., Jackson, K., Dick, J. 2005. Requirements

Engineering. Springer, London,

[7] Neill, C. J., Laplante, P. A. 2003. Requirements Engineering:

The State of the Practice. IEEE Software. 20(2003): 40-45.

[8] Zowghi, D. and Coulin, C. 2005. Requirements Elicitation: A

Survey of Techniques, Approaches, and Tools. In

Engineering and Managing Software requirements.

Springer. 19-46.

[9] Mavin, A. 2012. Listen, Then Use EARS. IEEE Softw. 29(2): 17-

18, Mar.

[10] Mavin, A. and Wilkinson, P. 2010. Big Ears (The Return of

‘Easy Approach to Requirements Engineering’). 18th IEEE

International Requirements Engineering Conference. 6:

277-282.

[11] Mavin, A., Wilkinson, P., Harwood, A. and Novak, M. 2009.

Easy Approach to Requirements Syntax (EARS). 17th IEEE

International Requirements Engineering Conference. 317-

322.

[12] Ortel, M., Malot, M., Baumgart, A., Becker, J. S., Bogusch,

R., Farfeleder, S. et al. 2013. Requirements Engineering. In:

A. Rajan, T. Wahl (Eds.). CESAR-Cost-efficient Methods and

Processes for Safety-relevant Embedded Systems.

Springer, Vienna,

[13] Loucopoulos, P., Wan Kadir, W. M. N. 2008. BROOD:

Business Rules- Driven Object Oriented Design. Journal of

Database Management. 19(2008): 41-73.

[14] Glinz, M. 2007. On Non-Functional Requirements. 15th IEEE

International Requirement Engineering Conference.

[15] Zelkowitz, M.V. and Wallace, D. 1997. Experimental

Validation in Software Engineering. Information and

Software Technology. 39: 735-743.

[16] Runeson, P. and Höst, M. 2009. Guidelines for Conducting

and Reporting Case Study Research in Software

Engineering. Empirical Software Engineering. 14(2009):

131-164.

[17] Wohlin, P. R., Höst, M., Ohlsson, M. C., Regnell, B., and

Wesslén, A. 2012. Experimentation in Software Engineering.

Springer, Berlin Heidelberg,

[18] Robson, C. 2002. Real World Research. Second. Oxford,

UK: Blackwell Publishing,

[19] Kirakowski, J. 1994. SUMI Questionnaire Homepage,

[Online]. Available: http://sumi.ucc.ie/.

