INSULATION COORDINATION OF QUADRUPLE CIRCUIT HIGH VOLTAGE TRANSMISSION LINES USING ATP-EMTP

SITI RUGAYAH BTE DUGEL

A thesis submitted in partial fulfillment of the requirements for the award of the degree of Master of Engineering (Electrical-Power)

> Faculty of Electrical Engineering Universiti Teknologi Malaysia

> > **MEI 2007**

To my beloved husband and dear children, who are always giving their support and understanding. They are always with me when I need support and advice and without their understanding, I will not be able to complete my master study

ACKNOWLEDGEMENT

I would like to express my sincere appreciation and special thanks to my project supervisor, Prof. Dr. Zulkurnain Abdul Malek, for his support, advices, encouragement, guidance and friendship. I wish to thank the grateful individuals from TNB research and TNB Generation. I am grateful for their cooperation and willingness to assist me in this matter.

I am also would like to thank all my friends especially Adzhar Bin Khalid for their assistance towards the successful completion of this project. I am also indebted to Universiti Teknologi Malaysia (UTM) for their assistance in supplying the relevant literatures.

Last but not least, I wish to thank my beloved husband, Surmazalan B. Ngarif who give me his undivided attention and support throughout this research.

ABSTRACT

A significant number of faults in overhead transmission lines are due to lightning strikes which cause back flashovers and hence single or double circuit outages. The continuity and quality of the power supply is therefore can be severely affected by the outages, especially in Malaysia where the isokeraunic level is rather high. The lightning performance of transmission lines is also influenced by the transmission line configuration itself. In Malaysia, the TNB's transmission lines consist of 500 kV or 275 kV double circuits, and 275/132 kV quadruple circuits. It is known that the lower portion of the 132 kV line apparently has the lowest lightning performance.

The application of transmission line arresters is also known to be the best method in improving the lightning performance of transmission lines in service. However, its usage requires proper coordination and placement strategy to ensure optimum improvement in lightning performance.

In this work, the ATP-EMTP simulation program was used to study the lightning performance of the quadruple circuit transmission line behaviour towards lightning activities. The models used include those for the surge arresters, overhead lines, towers and insulators. All models were based on the data supplied by the utility. Initial results show that the configuration 6 gives the best protection or lowest flashover rate.

ABSTRAK

Kebanyakkan gangguan bekalan pada talian atas penghantaraan adalah disebabkan oleh panahan petir yang mana telah mengakibatkan kerosakkan dan gangguan bekalan pada litar sediada dan litar berkembar. Gangguan bekalan ini telah mengakibatkan keterusan dan kualiti bekalan elektrik terganggu teruk. Tahap panahan petir di talian atas penghantaran adalah juga dipengaruhi oleh configurasi talian atas itu sendiri. Di Malaysia, talian penghantaran TNB adalah terdiri dari 500kV atau 275kV litar berkembar dan 275/132kV litar berkembar empat(quadruple circuits). Telah dikenalpasti bahawa pada bahagian bawah talian 132kV adalah merupakan tahap panahan petir yang terendah.

Penggunaan penangkap kilat untuk talian atas adalah merupakan cara terbaik dalam memperbaiki tahap panahan petir di talian atas yang sedang beroperasi. Walau bagaimanapun, penggunaanya memerlukan koordinasi yang tepat dan lokasi yang strategik bagi mendapatkan kesan yang optimum.

Untuk kajian ini, aturcara simulasi ATP-EMTP telah digunakan bagi mengkaji tahap dan aktiviti panahan petir terhadap litar berkembar empat. Model yang digunakan adalah termasuk penangkap kilat, talian atas penghantaraan, menara dan penebat. Semua data yang digunakan untuk dimodelkan adalah diperolehi dari pembekal elektrik Keputusan dari simulasi yang dibuat menunjukkan configurasi 6 telah menghasilkan perlindungan yang terbaik dan kadar gangguan bekalan yang terendah

TABLE OF CONTENTS

CHAPTER	TITLE	PAGE
	TITLE PAGE	i
	DECLARATION	ii
	DEDICATION	iii
	ACKNOWLEDGEMENT	iv
	ABSTRACT	V
	ABSTRAK	vi
	TABLE OF CONTENTS	vii
	LIST OF TABLES	xiii
	LIST OF FIGURES	XV
	LIST OF ABBREVIATIONS	xviii
	LIST OF SYMBOLS	xix
1	INTRODUCTION	1
	1.1 Background	1
	1.2 The Objectives of the Research	2
	1.3 Scope of Study	3
2	LITERATURE REVIEW	3
	2.1 Case Study by Kerk Lee Yen(TNBT Network SB)	3
	2.1.1 Objective	3
	2.1.2 Methodology	4
	2.1.2.1 Line Section	4
	2.1.2.2 Basic input data	4
CHAPTER	TITLE	PAGE

CHAPTER 1

INTRODUCTION

1.1 Background

Transmission system in services can be divided into two which are overhead transmission system and cable type transmission system. The main focus here is the overhead transmission systems, which are directly subjected to lightning over voltage. A significant number of the faults on overhead transmission lines are due to lightning. Lightning Faults may be single or multiple, and their elimination causes voltage dips and outages. Therefore, the outage rate of a line and the quality of the delivered voltage depend on the lightning performance of the line.

Many procedures have been presented over the years with the aim of predicting the lightning performance of transmission lines. Modern understanding about lightning phenomena and lightning attraction mechanisms allowed developing methods for estimating the lightning performance of overhead lines which avoid such empiricism. For this purpose, the performance of transmission lines is estimated using ATP-EMTP simulation programs

1.2 The Objectives of the Research

The main objective of the project is to improve the lightning performance of transmission lines by the application of line surge arresters on the quadruple circuit transmission line and to analyze different line surge arresters application configurations in order to optimize application of this technology to the existing and to the future quadruple transmission lines.

1.3 Scope of Study

The main scope of this project is to study the applications of surge arresters on transmission line to improve the lightning and transient performance of the transmission line which is includes:

- Arrangement of line arresters for optimum technical and economic
- Performance which include where or which tower along the line arresters to be installed
- The rating and withstand energy of the surge arresters
- The arresters configurations

CHAPTER		TITLE	PAGE
		2.3.4.5 Transmission Line Surge Arrester	17
		2.3.4.4 Tower Model	17
		2.3.4.3 Line insulation flashover model	16
		2.3.4.2 Tower footing resistance model	16
		2.3.4.1 Electromagnetic model	15
		2.3.4 Methodology	14
		2.3.3 Model Overview	14
		2.3.2 Introduction	14
		2.3.1 Objective	13
2	2.3	Case Study by Y.A.Wahab, Z.Z.Abidin and S.Sadovic	13
		2.2.6 Conclusion	13
		2.2.5 Results	12
		2.2.4.6 Lightning stroke	12
		2.2.4.5 Point of Contact	11
		2.2.4.4 Tower Ground Resistance	10
		2.2.4.3 Insulator String	10
		2.2.4.1 Tower Model	10
		2.2.4 Methodology	9
		2.2.5 Model Overview	0
		2.2.2 Model Overview	0 8
		2.2.1 Objective	/
2	2.2	Case Study by S.J Shelemy and D.R.Swatek	7
		2.1.6.2 Application of 2 TLA per tower	7
		2.1.6.1 Application of 3 TLA per tower	7
		2.1.6 Simulation Result	7
		2.1.5 Various installation of TLA	6
		2.1.4 Result	5
		2.1.3 Configuration of TLA installation	5

2.3.4.6 Corona model	18
2.3.5 Result of Lightning Performance	18
2.3.6 Conclusions	20

3	TR	ANSMISSION SYSTEM	21
	3.1	Transmission Line and Ground Wire	21
	3.2	Insulator	22
	3.3	Insulation Coordination	23
		3.1.1 Definitions of Insulation Coordination	23
		3.3.2 Insulation Coordination	24
		3.3.3 Insulation Coordination Involves	24
		3.3.4 Selection of Insulation Levels	24
		3.3.5 Basic Principles of Insulation Coordination	25
		3.3.6 Insulation Withstand Characteristics	26
		3.3.7 Standard Basic Insulation Levels	26
	3.4	Arching Horn	27
	3.5	Earthing	28
	3.6	Tower Types	28
		3.6.1 Tower with wooden cross arm	29
	3.7	Design Span	30
	3.8	System Over voltages	30
	3.9	Fast Front Over voltages	31
	3.10) Fast Front Over voltages	31
	3.11	Metal-Oxide Arresters	33
	3.12	2 Gapped TLA and Gapless TLA	33
	3.13	3 Surge Lightning Arrester placement (TLA)	34
	3.14	4 Comparison of Available Surge Arresters (Gapless Type)	35

CHAPTER			TITLE	PAGE	
4	TRANS	SMIS	SSION	SYSTEM	37
		4.1	System	n Modelling	37
		4.2	EMTP	Simulation	37
		4.3	Selecte	ed model and Validation	38
		4.4	Transn	nission Line	38
		4.5	Line ex	sposure to lightning	39
		4.6	Shieldi	ng Failure	40
		4.7	Overhe	ead Transmission Lines	41
		4.8	Line le	ngth and Termination	41
		4.9	Tower	Model	42
		4.10	Tower	footing resistance model	45
		4.11	Insulat	ors	46
		4.12	Backfl	ashover	46
		4.13	Corona	ı	47
		4.14	Line su	irge arrester	47
		4.15	Selecti	on of Lightning Configuration	51
	5	AVA	ILABI	LE METHOD FOR LIGHTNING	52
		PER	FORM	ANCE IMPOVEMENT	
		5.1	Additio	onal Shielding Wire	53
		5.2	Tower	Footing Resistance	53
		5.3	Increas	e the Tower Insulation	54
		5.4	Unbala	ince Insulation	54
		5.5	Transn	nission Line Arrester	55
		5.6	Installa	ation of TLA based on TFR	55
			5.6.1	Additional of TLA at low TFR Section	57
			5.6.2	Installation of TLA on one circuit	58
			5.6.3	Coordination of Gap Spacing fot Transmission	59

CHAPTER			TITLE	PAGE
	5.6	Extend	led Station Protection	61
6	SIM	ULAT	ION METHOD	61
	6.1	ATP-I	EMTP Simulation	61
	6.2	Select	ed Model and Validation	62
		6.2.1	Tower Model	62
	6.3	Model	And Parameters Used In The Simulation	66
		6.3.1	Tower Model	66
		6.3.2	Transmission Line model	67
	6.4	Select	ion of Lightning Parameter	70
	6.5	Lightn	ing Amplitude	70
	6.6	Time of	of Rising	71
	6.7	Time of	of Falling	71
	6.8	Limita	tion of Simulation	74
	6.9	Statist	ical Approach	74
7	SIM	ULAT	ION: 275 kV DOUBLE CIRCUIT	75
	ANI) 275/1	32kV QUADRUPLE CIRCUIT LINE	
	7.1	275/13	32kV Quadruple Circuit and	75
		Specif	ication used in this Simulation	
		7.1.1	Model Used In The Simulation	78
	7.2	Lightn	ing Surge Arrester Configuration	79
	7.3	Result	s Of Simulation For Lightning	80
		Currer	nt of 17kA And Strike at Tower 2	
		7.3.1	Response without transmission line arrester	80
		7.3.2	Response with transmission line arrester	81
			7.3.2.1 TLA with configuration 1	82
			7.3.2.2 TLA with configuration 2	83

RE]	FERE	ENCES	101
8	REO	COMMENDATION AND CONCLUSION	99
	7.4	Limitation of simulation	98
	7.5	Summary of the Simulation	95
		7.4.2.9 TLA with configuration 9	94
		7.4.2.8 TLA with configuration 8	94
		7.4.2.7 TLA with configuration 7	93
		7.4.2.6 TLA with configuration 6	92
		7.4.2.5 TLA with configuration 5	92
		7.4.2.4 TLA with configuration 4	91
		7.4.2.3 TLA with configuration 3	90
		7.4.2.2 TLA with configuration 2	90
		7.4.2.1 TLA with configuration 1	89
		7.4.2 Response with transmission line arrester	89
		7.4.1 Response without transmission line arrest	ter 88
		Current of 120kA And Strike at Tower 2	
	7.4	Results Of Simulation For Lightning	88
		7.3.2.8 TLA with configuration 8	87
		7.3.2.7 TLA with configuration 7	86
		7.3.2.6 TLA with configuration 6	85
		7.3.2.5 TLA with configuration 5	85
		7.3.2.4 TLA with configuration 4	84
		7.3.2.3 TLA with configuration 3	83

LIST OF TABLES

TABLE NO.	TITLE	PAGE
2.1	Section of BBTG-RSID 132 kV	4
2.2	Flashover rate for individual section of line	5
2.3	Various installation of TLA	6
2.4	Strike distances for the Nelson River HVDC	11
	transmission line	
2.5	Critical peak lightning current amplitudes for	11
	the Nelson River HVDC transmission line towers	
2.6	Back flashover rates and shielding failure rates	12
	per 10,000 lightning strikes	
2.7	Two-line stroke distribution to flat ground	15
2.8	Flashover rate for different circuits without line	18
	surge arresters(flashover rate/100km/year)	
2.9	Line total and multi circuit flashover rate without	19
	line surge arresters(flashover rate/100km/year)	
2.10	Line Total Flashover Rate Different Arrester	19
	Installation Configurations(flashover rate/100km/year)	
2.11	Line Double Total Flashover Rate Different Arrester	20
	Installation Configurations(flashover rate/100km/year)	
3.1	Conductors Type and Their Specification	22
3.2	Number of insulator set required based on voltage	23
	and type of insulator set	

TABLE NO.

TITLE

3.3	Standard Basic Insulation Levels(BIL)	27
3.4	Arching distance and BIL for various circuit	27
	and towers	
3.5	Tower types and deviation angle	29
3.6	The major differences between gapped SLA	32
	and gapless SLA	
3.7	SLA placement and energy consideration	34
3.8	TLA Placement and Energy Consideration	35
3.9	Data on Gapless Transmission line arrester	36
	manufactured by several company	
4.1	Balakong to Serdang 132kV line information	39
4.2	Value for A0 and A1 based on 8/20 us residual	48
	voltage supplied by manufacturer for the	
	application of Pinceti's arrester model.	
5.1	Arrester installation strategy to eliminate double	56
	circuit flashover	
7.1	Parameter of the 275kV double circuit tower model	77
7.2	Value for A0 and A1 based on 8/20 us residual voltage	75
	supplied for the application of Pinceti's arrester model	
	with 120kV rated Siemens 3EQ4-2/LD3	
7.3	Line Performance For Different TLA Configuration	95
	For Lightning Current of 17kA	
7.4	Line Performance For Different TLA Configuration	97
	For Lightning Current of 120kA	

LIST OF FIGURES

FIGURE NO.

TITLE

4.1	Model of Transimission Line	40
4.2	Overhead Transmission Line, Tower and Insulator	42
4.3	Tower Representation for Quadruple Circuit	43
	Transmission Line	
4.4	M. Ishii's tower model for a double circuit line tower	44
4.5	Pinceti's arrester model used for representing	49
	surge arrester	
4.6	Relative error of residual voltage for representing	49
	Siemens 120kV rated 3EQ4-2/LD3 SA with Picenti's	
	model compared to manufacturer performance data	
4.7	Example of Gapless-type Surge Arrester installed	50
	at 132kV BLKG-SRDG	
4.8	Different arrester Installation Configurations	51
5.1	Available Method for Lightning Improvement	52
5.2	Unbalance tower insulation for double circuit line	55
5.3	Circuit location and TLA placement for a double	56
	circuit line	
5.4	Additional TLA at Low TFR section along the high	57
	TFR section	
5.5	TLA added only at one circuit of a double circuit	58
	line tower	

FIGURE NO.

TITLE

5.6	Extended station protection	60
6.1	M.Ishii's tower model for a double circuit line tower	64
6.2	Tower equivalent radius	64
6.3	Modified M.Ishii's tower model for a quadruple	66
	circuit line tower modeling	
6.4	Voltage Amplitude for Time of Falling 20µs	72
6.5	Voltage Amplitude for Time of Falling 50µs	72
6.6	Voltage Amplitude for Time of Falling 100µs	73
6.7	Voltage Amplitude for Time of Falling 200µs	73
6.8	Voltage Amplitude for Time of Falling 500µs	73
7.1	Simulated 275/132kV quadruple circuit line	76
7.2	Conductor identification for 275/132kV double	76
	circuit line used in simulation	
7.3	Modified M.Ishii's tower model for a quadruple	78
	circuit line tower modeling	
7.4	Current injected at top tower 2	80
7.5	Lightning strike has caused voltage rise at top tower 2	80
7.6	Voltage measured at tower 2 which are connected to	81
	275kV Line	
7.7	Flashover Voltages when TLA are equipped at	82
	conductor RBT and RBT1	
7.8	Flashover Voltages when TLA are equipped at	83
	conductor RBT132, RBT131 and BBT131	
7.9	Flashover Voltages when TLA are equipped at	83
	conductor RBT131, YBT 131 and BBT131	
7.10	Flashover Voltages when TLA are equipped at	84
	conductor RBT, RBT1 and RBT131	
7.11	Flashover Voltages when TLA are equipped at	85
	conductor RBT132, RBT131, YBT132 and YBT131	

FIGURE NO.

TITLE

7.12	Flashover Voltages when TLA are equipped at	85
	conductor RBT, RBT1, RBT132 and RBT131	
7.13	Flashover Voltages when TLA are equipped at	86
	conductor RBT, RBT1, BBT, RBT132 and RBT131	
7.14	Flashover Voltage when TLA are equipped at	87
	conductor RBT, RBT1, YBT, RBT132 and RBT131	
7.15	Current injected at top tower 2	88
7.16	Lightning strike has caused voltage rise at top tower 2	88
7.17	Flashover Voltage across insulators when TLA are	89
	equipped at conductor RBT and RBT1	
7.18	Flashover Voltage across insulators when TLA are	90
	equipped at conductor RBT132, RBT131 and BBT1	
7.19	Flashover Voltage across insulators when TLA are	90
	equipped at conductor RBT132, RBT131 and BBT1	
7.20	Flashover Voltage across insulators when TLA are	91
	equipped at conductor RBT, RBT1 and RBT131	
7.21	Flashover Voltage across insulators when TLA are	92
	equipped at conductor RBT132, RBT131, YBT132	
	and YBT131	
7.22	Flashover Voltage across insulators when TLA are	92
	equipped at conductor RBT, RBT1, RBT132	
	and RBT131	
7.23	Flashover Voltage across insulators when TLA are	93
	equipped at conductor RBT, RBT1, BBT, RBT132	
	and RBT131	
7.24	Flashover Voltage across insulators when TLA are	94
	equipped at conductor RBT, RBT1, BBT, RBT132 and RI	BT131
7.25	Flashover Voltage across insulators when TLA are	94
	equipped at all conductors of 275kV and 132kV lines	

LIST OF ABBREVIATIONS

ac	-	Alternating Current
ACSR	-	Aluminium Conductor Steel Reinforced
AIS	-	Air Insulated Substation
ATP	-	Alternative Transient Program
BFR	-	Back Flashover Rate
BIL	-	Basic Lightning Insulation Level
СВ	-	Circuit Breaker
CBPS	-	Connaught Bridge Power Station
CFO	-	Critical Flashover
EMTP	-	Electro Magnetic Transient Program
FDQ	-	Frequency Dependent Q Matrix
GIS	-	Gas Insulated Substation
GPS	-	Global Positioning System
IEE	-	The Institution of Electrical Engineers
IEEE	-	Institute of Electrical and Electronic Engineers
IVAT	-	High Voltage and Current Institute
LOC	-	Leader Onset Conditions
ΜΟ	-	Metal Oxide
MOV	-	Metal Oxide Varistor
OPGW	-	Optical Fibre Composite Ground Wire
SA	-	Surge Arresters
SiC	-	Silicon Carbide
S/S	-	Substation

TFR	-	Tower Footing Resistance
TLA	-	Transmission Line Arresters
TNB	-	Tenaga Nasional Berhad

ZnO - Zinc Oxide

LIST OF PRINCIPLE SYMBOLS

μF	-	micro-Farad
μH	-	micro-Hendry
μs	-	nicro-second
Α	-	Ampere
С	-	Capacitive
N_{g}	-	Ground Flash Density per Kilometer ² per year
kA	-	kilo-Ampere
kJ	-	kilo-Joule
kV	-	kilo-Volt
L	-	Inductive
MV	-	Mega-Volt
R	-	Resistance
Uc	-	Maximum Continuous Operating Voltage
Ur	-	Rated Surge Arrester Voltage
Km	-	kilometer
V	-	Volt
Z	-	Impedance
Zt	-	Surge Impedance