OMNI DIRECTIONAL LOUDSPEAKER USING GIANT MAGNETO STRICTION TECHNOLOGY

JUSTIN LOH KEAN LOO

A thesis submitted in fulfilment of the requirements for the award of the degree of Master of Engineering (Electrical)

> Faculty of Electrical Engineering Universiti Teknologi Malaysia

> > DECEMBER 2011

To my beloved mother and father

ACKNOWLEDGEMENT

First, I would like to take this opportunity to express my deepest gratitude to my project supervisor, Dr. Mokhtar bin Harun for his guidance, advice, encouragement and endurance during the whole course of this project. It is indeed my pleasure for his relentless, tireless and enthusiastic support to make my project a successful one.

And, never to forget, my deepest affection and gratitude to my beloved parents and family members who have always been there supporting me throughout my years of study. Their understanding, patience and support have given me the strength for the completion of this project.

My sincere appreciation also extends to Ms Cheah Ai Lin for her numerous feedbacks and generous helps in improving the quality of the project.

Finally, my sincere appreciation to my friends, those who had directly or indirectly contribute towards the completion of this project. This dissertation will not be successful without the assistance and support given by above people.

ABSTRACT

Audio quality from a surround sound system is always dependent on the placement and configuration of the loudspeaker system. Audio formats such as the Digital Theatre Systems and Dolby Digital sound systems utilize various loudspeaker configurations to form various surround sound effects for listening rooms. Users who are inexperience in setting up a surround sound system will end up in incorrect speaker positions, thus unable to achieve optimal sound output from the system. The purpose of this research is to introduce an alternative loudspeaker system, which only a single speaker is needed for the user to experience a surround sound system regardless of the loudspeaker position. Using a conventional floor standing speaker system to benchmark the directionality of the design, the sound pressure level (SPL) responses of the alternative system at various angles were measured. The results obtained show that the SPL curves of this alternative speaker system are consistent at all angles, with a sensitivity of 77 dB (1W at 1 meter). Conventional loudspeaker system, on the other hand, maintains such values of sensitivity only on-axis listening. With consistent SPL and sensitivity, and omni-directionality, this alternative speaker system has wide listening coverage so that the same listening experience can be achieved regardless of listeners' position. The proposed loudspeaker system has been able to simplify the setup and to locate the correct loudspeaker placement.

ABSTRAK

Kualiti audio daripada sistem bunyi "surround" sememangnya bergantung kepada lokasi dan konfigurasi sistem pembesar suara. Format audio seperti sistem bunyi "Sistem Teater Digital" dan "Sistem Digital Dolby" menggunakan pelbagai konfigurasi pembesar suara untuk menghasilkan kesan bunyi "surround" dalam aplikasi sistem pawagam atau teater rumah. Lokasi pembesar suara akan menjadi kurang tepat bagi pengguna yang kurang berpengalaman dalam pemasangan sistem bunyi "surround" dan ini akan menyebabkan sistem bunyi yang optimum tidak dapat dicapai. Penyelidikan ini betujuan untuk memperkenalkan suatu sistem pembesar suara alternatif tunggal mudah yang boleh menghasilkan pengalaman sistem bunyi "surround" untuk pengguna tanpa mempertimbangkan lokasi pembesar suara. Dengan menggunakan suatu sistem pembesar suara konvensional sebagai tandaan dalam penentuan kearahan projek ini, graf SPL untuk pelbagai sudut telah diukur. Keputusan penyelidikan telah menunjukkan bahawa graf SPL sistem alternatif ini adalah konsisten untuk semua sudut ukuran, dengan sensitiviti sebanyak 77 dB (1W pada 1m) untuk semua arah. Sebaliknya, sistem pembesar suara konvensional hanya dapat mengekalkan nilai sensitiviti ini hanya pada arah paksi pendengaran sahaja. Sebagai kesimpulan, dengan tahap sensitiviti yang konsisten pada semua arah, dan ciri kepelbagaiarahannya, sistem pembesar suara alternatif ini mempunyai kawasan pendengaran yang luas supaya para pendengar dapat mengalami pengalaman pendengaran yang sama tanpa mengira kedudukan mereka. Cadangan sistem pembesar suara alternative tunggal ini dapat memudahkan pengguna dalam pemasangan dan lokasi perletakan pembesar suara.

TABLE OF CONTENTS

CHAPTER		TITLE	PAGE
	DEC	CLARATION	ii
	DED	DICATION	iii
	ACK	KNOWLEDGEMENT	iv
	ABS	TRACT	V
	ABS	TRAK	vi
	ТАВ	ELE OF CONTENTS	vii
	LIST	Γ OF TABLES	xi
	LIST	Γ OF FIGURES	xiii
	LIST	Γ OF ABBREVIATIONS	xix
	LIST	Γ OF SYMBOLS	XX
	LIST	Γ OF APPENDICES	xxii
1	INT	RODUCTION	1
	1.1	Introduction	1
	1.2	Background	1
	1.3	Problem Statement	3
	1.4	Objective of the Study	3
	1.5	Scopes of the Study	4
	1.6	Contribution of the Study	4
2	LIT	ERATURE REVIEW	5
	2.1	Sound propagation	5
	2.2	Sound Wave Phenomena	7
		2.2.1 Reflection of Sound	7
		2.2.2 Absorption of sound	12

		2.2.2.1 Mid/High frequency sound	12
		absorption by porosity	
		2.2.2.2 Thickness, density and airspace	13
		behind absorbent material	
	2.2.3	Refraction of Sound	15
		2.2.3.1 Refraction of sound in between two	15
		mediums	
		2.2.3.2 Refraction of sound outdoors	16
		2.2.3.3 Refraction of sound in enclosed	18
		rooms	
	2.2.4	Interference of Sound	19
	2.2.5	Diffraction of sound	22
		2.2.5.1 Diffraction of sound by large and	22
		small apertures	
		2.2.5.2 Diffraction of sound by obstacles	23
2.3	Louds	speaker Technology	24
	2.3.1	Diffraction of sound in loudspeaker	24
	2.3.2	Loudspeaker directivity	26
		2.3.2.1 Determining loudspeaker directivity	30
	2.3.3	Conventional loudspeaker concept	32
		2.3.3.1 Loudspeaker parameters	33
		2.3.3.2 Loudspeaker enclosure	36
		2.3.3.3 Port tuning	39
		2.3.3.4 The Crossover Frequency	40
2.4	Distri	buted Mode Loudspeakers (DML)	42
	2.4.1	The mechanics of DML systems	42
		2.4.1.1 The wave equation	42
		2.4.1.2 The wave motion	43
	2.4.2	Comparison of conventional speaker design	47
		and DML	
	2.4.3	DML Exciters	50
2.5	The G	iant Magnetostrictive Material (GMS)	51
	2.5.1	The Basics of GMS	51

		2.5.2	The Materials of GMS	53
		2.5.3	Definitions of stress and strains	55
		2.5.4	Energy and Work of magnetostrictive	57
			materials	
		2.5.5	Magnetomechanical Coupling	58
		2.5.6	Longitudinal Coupling	60
3	RESE	ARCH	METHODOLOGY	61
	3.1	Introd	uction	61
	3.2	Design	n and simulation	62
	3.3	Param	eters selection	64
		3.3.1	The subwoofer system	64
		3.3.2	The midrange	66
		3.3.3	High frequency region	68
		3.3.4	The crossover design	72
	3.4	Fabric	ation	73
		3.4.1	Construction the subwoofer system	73
		3.4.2	Attaching the midrange unit	75
		3.4.3	Constructing and attaching the DML panel	76
	3.5	Measu	irement setup	78
		3.5.1	Setup for measuring a loudspeaker unit	78
		3.5.2	Setup for measuring the loudspeaker	80
			system	
	3.6	Measu	rement procedure	82
		3.6.1	Measuring the TS parameters of a	82
			loudspeaker unit	
		3.6.2	Anechoic measurement of the loudspeaker	83
			system (on-axis measurement)	
		3.6.3	Measuring loudspeaker directivity: on-axis	86
			and off-axis measurement	
	3.7	Verifie	cation from user feedback	87
		3.7.1	Verifying the omnidirectionality of the	87
			alternative loudspeaker design	

	3.7.2	Verifying the insignificance of the speaker	88
		placements using the alternative loudspeaker	
		design	
	3.7.3	Verifying the ease of setup of the alternative	89
		loudspeaker design	
3.8	Softw	vare For Simulation Works and Measurements	90
	3.8.1	Klippel R&D System	91
	3.8.2	Loudspeaker Enclosure Analysis Program	93
		(LEAP)	
RES	ULTS A	ND DISCUSSIONS	98
4.1	Simul	ation results	98
4.2	Measu	arement results	100
	4.2.1	The subwoofer system	100
	4.2.2	The midrange	101
	4.2.3	High frequency region	103
	4.2.4	Full system response	104
4.3	Verifi	cation of Design output	105
	4.3.1	SPL output measurement	105
	4.3.2	User Listening Test	109
		4.3.2.1 Omnidirectionality of Loudspeaker	109
		4.3.2.2 Effect of speaker placement	111
		4.3.2.3 Ease of loudspeaker setup	113

5	CON	CLUSION	114
	5.1	Conclusion	114
	5.2	Recommendations for future research	115
	REFE	RENCES	116

Appendices A - E

4

120-122

LIST OF TABLES

TABLE NO.

TITLE

PAGE

2.1	Guidelines for matching port diameters to drivers in ported	39
	boxes. (Hall, 1995)	
3.1	The subwoofer system simulation parameters	63
3.2	The subwoofer enclosure parameters	66
3.3	Selected GMS device specifications	68
3.4	General mechanical properties of the acrylic panel	71
4.1	Comparing the average SPL level of both conventional	102
	loudspeaker system and the prototype, measured at various	
	angles.	
4.2	Average SPL level of the acrylic panel coupled with 4 GMS	103
	devices, measured at various frequency.	
4.3	Average SPL level of completed alternative loudspeaker	106
	system, measured at various angles.	
4.4	Average SPL level of conventional loudspeaker system,	108
	measured at various angles.	
4.5	Comparing the average SPL level of both conventional	109
	loudspeaker system and the prototype, measured at various	
	angles.	
4.6	Questionnaire of omnidirectionality.	109
4.7	Result for questionnaire of omnidirectionality of both the	110
	conventional loudspeaker system and the prototype design.	
4.8	Questionnaire of speaker placements for music source.	111
4.9	Questionnaire of speaker placements for movie source.	111
4.10	Result for questionnaire of speaker placements for music	113

	and movie source of both the conventional loudspeaker	
	system and the prototype.	
4.11	Questionnaire of the ease of setup.	113

LIST OF FIGURES

FIGURE NO.

TITLE

PAGE

1.1	The optimum layout for stereo speakers and typical speaker layout for a 5.1 channel surround sound system	2
	(Howard, 2009).	
2.1	Sound propagation (Raichel, 2006).	6
2.2	Reflection of sound from a point source from a flat surface	8
	(Incident sound, solid lines; reflected sound, broken lines).	
	The reflected sound appears to be from a virtual image	
	Source (Everest, 2001).	
2.3	Some portion of the incident sound is reflected,	8
	transmitted and absorbed, depending on the frequency of	
	the incident waves and the obstacle material (Watkinson	
	, 1998).	
2.4	At high frequencies, wedge is larger than wavelength,	9
	therefore, incident sound waves is absorbed (Watkinson,	
	1998).	
2.5	At low frequencies, wedge is smaller than wavelength,	9
	therefore, incident sound waves is reflected (Watkinson,	
	1998).	
2.6	Various modes of vibration (harmonics) in a string	10
	between two fixed points (Watkinson, 1998).	
2.7	In a room, standing waves can be set up in three	11
	dimensions (Watkinson, 1998).	
2.8	The thickness of glass fiber versus absorption coefficient	13
	(Everest, 2001).	

2.9	Airspace of material versus absorption coefficient	14
	(Everest, 2001).	
2.10	The effect of the density of glass-fiber absorbing material	14
	versus absorption coefficient (Everest, 2001).	
2.11	Refraction of sound wave at an air – water interface	15
	(Fahy, 2001).	
2.12	Refraction of sound paths resulting from temperature	16
	gradients in the atmosphere (Everest, 2001).	
2.13	Refraction of sound due to wind factor (Watkinson, 1998).	18
2.14	Constructive and destructive interference (Henricksen,	20
	1987).	
2.15	Beat resulting from interference of waves with different	21
	Frequency (Henricksen, 1987).	
2.16	(a) A Wave Pattern for an octave and (b) A Wave Pattern	21
	for a Fifth (Henricksen, 1987).	
2.17	Diffraction through a (a) large aperture and (b) small	23
	aperture (Everest, 2001).	
2.18	Diffraction by (a) small obstacles and (b) large obstacles.	24
	(Everest, 2001).	
2.19	The classic sound barrier case (Everest, 2001).	24
2.20	Diffraction caused by cabinet edges (Newell, 2003).	25
2.21	The loudspeaker system will seemingly have additional	25
	speaker sources at the cabinet edges due to cabinet edge	
	diffraction (Newell, 2003).	
2.22	Directivity of a piston radiator (Henricksen 1987).	27
2.23	Sound from an array spreads less than sound from a point	28
	source (Henricksen 1987).	
2.24	SPL polar plot of a conventional speaker system	30
2.25	The directivity of an arbitrary conventional loudspeaker	31
	system, measured on-axis and off-axis and presented in	
	SPL frequency response curve.	
2.26	Parts of a conventional loudspeaker (Weems, 1997).	33

2.27	Impedance curve of an arbitrary driver (Hall, 1995).	34
2.28	Impedance response curve of a ported box enclosure	37
	(Weems, 1997).	
2.29	Deformation patterns of various types of wave in straight	44
	bars and flat plates: (a) quasi-longitudinal wave; (b)	
	transverse (shear wave); (c) bending wave (Fahy, 2007).	
2.30	Displacements and deformation of a beam element in	45
	bending (Fahy, 2007).	
2.31	Power response of a typical DML loudspeaker, showing f_0	46
	and $2.5 f_0$ (Borwick, 2001).	
2.32	Calculated modes for the DML panel above (Borwick,	46
	2001).	
2.33	(a)Propagation of pressure wave in air from conventional	48
	speaker and (b)Propagation of pressure wave in air from	
	DML panel (Borwick, 2001).	
2.34	Cross section of a typical moving coil NXT exciter	50
2.35	Deformation of a magnetostrictive material	52
2.36	Operation of a magnetostrictive material (Engdahl, 2000).	53
2.37	A generic GMS inner construction (Engdahl, 2000).	53
2.38	Terfenol-D response around room temperature, from Clark	54
	(1980).	
2.39	The forces on the faces of a unit cube in a stressed body	55
	(Engdahl, 2000).	
2.40	Undeformed (dashed) and deformed (solid) body The	56
	general deformation shown in (a) can be represented by a	
	strain (b) plus a rotation (c) (Engdahl, 2000).	
3.1	Implementation and research methodology of the design	62
3.2	TS parameters of the selected 25cm driver. (Measured by	65
	Klippel system)	
3.3	Selected 25 cm subwoofer speaker unit	65
3.4	The selected midrange driver	67
3.5	Parameters of the selected midrange driver. (Measured by	67
	Klippel system)	

3.6	The GMS device	69
3.7	Selected GMS frequency response	69
3.8	Selected GMS impedance curve	70
3.9	Selected GMS outer construction	70
3.10	3D model the DML panel. (Drawn by Pro E software)	71
3.11	A 29 cm \times 35 cm board with 24 cm diameter opening.	73
3.12	A 29 cm \times 35 cm board with 1 port opening, and 3 input	73
	jack openings.	
3.13	The 6 pieces of wood is being nailed together	73
3.14	Glue is applied around the three speaker input jacks at the	74
	rear board.	
3.15	The completed subwoofer system.	74
3.16	A 9 cm \times 9.4 cm opening for a 6 cm midrange driver unit.	75
3.17	Mounting the 6 cm midrange driver into the top opening.	75
3.18	Attaching the support poles for the actuators.	76
3.19	Fixing the 4 metal hooks into the top of the enclosure.	76
3.20	Balancing and mounting the acrylic board onto the	77
	subwoofer enclosure using the suspension bridge design	
	concept.	
3.21	The completed alternative loudspeaker system design.	77
3.22	Klippel Analyzer and signal amplifier	78
3.23	Inputs and outputs connection of the equipment	78
3.24	Mounting a loudspeaker unit on the Klippel apparatus	79
3.25	Adjusting microphone and laser sensors and connecting	79
	the loudspeaker terminals to Klippel Analyzer.	
3.26	Setting up to measure the entire alternative loudspeaker	80
	system in an anechoic room.	
3.27	Connecting the loudspeaker system to Klippel Analyzer.	81
3.28	The software environment of dB-Lab	82
3.29	Driver properties	82
3.30	Stimulus properties	82
3.31	Input connection and sensors	83
3.32	Measurement method	83

3.33	Stimulus properties for SPL measurement.	83
3.34	Input connections	84
3.35	Processing options	84
3.36	Display options	84
3.37	Input properties for measuring impedance	85
3.38	Processing properties for measuring impedance	85
3.39	Measuring the directivity of a conventional speaker (0 $^{\circ}$	86
	and 360°)	
3.40	Measuring the directivity of a conventional speaker (90°)	86
3.41	The alternative and conventional loudspeaker system	87
	setup for verifying omnidirectionality	
3.42	The prototype setup for verifying the insignificance of the	88
	speaker placements	
3.43	Simplified illustration of how the alternative loudspeaker	89
	design can be connected to an amplifier	
3.44	The Klippel Distortion Analyzer	91
3.45	The dB-Lab software environment.	92
3.46	Block diagram for LPM software module	92
3.47	Enclosure modeling in Enclosure Shop	93
3.48	The various graphs generated by EnclosureShop	94
3.49	The EnclosureShop software environment	94
3.50	The transducer parameters window	95
3.51	Volume parameters and other parameters	95
3.52	Port and port area parameters	96
3.53	Layout parameters window	97
3.54	Analysis parameters properties	97
4.1	The simulated SPL response of the selected 25 cm	99
	subwoofer driver unit in the selected cabinet enclosure	
	(Simulated via EnclosureShop by LEAP).	
4.2	The simulated impedance curve of the selected 25 cm	99
	subwoofer driver unit in the selected cabinet enclosure	
	(Simulated via EnclosureShop by LEAP).	
4.3	SPL curve of the completed 25 cm subwoofer system	100

	(Measured by Klippel system).	
4.4	Impedance curve of the completed 25 cm subwoofer	101
	system (Measured by Klippel system).	
4.5	SPL response curve comparing the subwoofer system and	102
	the combined subwoofer-midrange system (Measured by	
	Klippel system).	
4.6	SPL response curve of the acrylic panel coupled with 4	103
	GMS devices (Measured by Klippel system).	
4.7	Completed alternative loudspeaker system SPL response	104
	curve (Measured by Klippel system).	
4.8	Completed alternative loudspeaker system SPL response	105
	curve at angles $0^{\circ}/360^{\circ}$, 90° , 180° , and 270° (Measured by	
	Klippel system).	
4.9	Completed alternative loudspeaker system SPL response	106
	curve at angles 45°, 135°, 225°, and 315° (Measured by	
	Klippel system).	
4.10	Conventional floorstand loudspeaker system SPL response	107
	curve at angles $0^{\circ}/360^{\circ}$, 90° , 180° , and 270° .	
4.11	Conventional floorstand loudspeaker system SPL response	108
	curve at angles $0^{\circ}/360^{\circ}$, 45° , 135° , 225° and 315°	

LIST OF ABBREVIATIONS

BEA	_	Boundary Element Analysis
DSP	_	Digital Signal Processing
DTS	_	Digital Theatre Systems
DML	_	Distributed Mode Loudspeaker
EBP	_	Efficiency Bandwidth Product
ESL	_	Electrostatic loudspeaker
emf	_	Electromotive force
FEA	_	Finite Element Analysis
GMSs	_	Giant Magnetostrictive Materials
HRTF	_	Head Related Transfer Functions
LPM	_	Linear parameter measurement
LEAP	_	Loudspeaker Enclosure Analysis Program
NXT	_	New Transducers Ltd
SNR	_	Signal-to-noise ratio
SW	_	Subwoofer
TS	_	Thiele-Small
TRF	_	Transfer Function Measurement

LIST OF SYMBOLS

A	_	the absorption of the material (m^2 Sabine)
α_n	_	absorption coefficient of the actual surface
С	_	speed of sound
dB	_	Decibel
Е	_	the Young's modulus (or modulus of elasticity)
f	_	frequency
γ	_	the gas constant equivalent to the thermodynamic ratio
		of specific heats
p	_	quiescent gas pressure
ρ	_	density of gas/material.
R	_	the absolute temperature of the gas
S_n	_	area of the actual surface (m^2)
<i>RT</i> ₆₀	_	Reverberation Time
λ	_	wavelength
k	_	Wave number
Hz	_	Hertz
μ	_	micro
G	_	Giga
Pa	_	Pascal
F	_	Force
т	_	mass
а	_	acceleration
ϕ	_	phase
g(t)	_	harmonic variation of a quantity with time
c_{ph}	_	phase velocity
ω	_	angular velocity
η	_	transverse displacement

β	_	transverse rotation
В	_	bending stiffness
ν(ω)	_	bending wave velocity
T_{ij}	_	tensor
S_{ij}	_	strain tensor
ω_{ij}	_	rotation tensor
$d\mathbf{B}$	_	magnetic flux density
dW	_	magnetic work
dU	_	change of the internal energy
d_{33}	_	magnetostrictive constant
<i>k</i> ₃₃	_	longitudinal coupling coefficient
SPL	_	Sound Pressure Level
fs	_	free air resonant frequency of a driver
f_C	_	resonant frequency of a driver in an enclosure
Q	_	measure of the amount of control of a driver
Q_{TS}	_	Q of a speaker in free air
Q_{TC}	_	Q of a speaker in an enclosure
Q_{MS}	_	mechanical Q of the driver
Q_{ES}	_	electrical Q of the driver
V_{AS}	_	volume of compliance
C_{MS}	_	mechanical compliance
S_D	_	cone area of driver
V_B	_	box volume
f_B	_	box resonance frequency
f_3	_	system cut-off frequency
L_{v}	_	length of port
R	_	port radius
F_c	_	Crossover frequency
R_T	_	tweeter's (or in this case, the midrange's) rated
		impedance in ohms
С	_	crossover series capacitance
R_W	_	woofer's rated impedance in ohms
L	_	crossover series inductance in henries
kOe	_	kilo-oersted

LIST OF APPENDICES

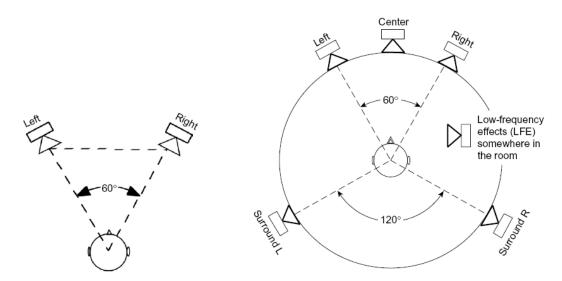
APPENDIX

TITLE

PAGE

A	Questionnaire form: Omnidirectionality	119
В	Questionnaire form: Speaker placements (music source)	119
С	Questionnaire form: Speaker placements (movie source)	120
D	Questionnaire form: Speaker setup	120
E	Average SPL calculation	121

CHAPTER 1


INTRODUCTION

1.1 Introduction

Proper loudspeaker placement is the most important part for the setting up of an audio system. This is to ensure that the system performs at its most optimum condition. Proper placement of loudspeaker is crucial to the quality of the sound, as improper loudspeaker placement can make a good audio system sound bad or distracting, and degrades the quality of the loudspeakers itself.

1.2 Background

Improper speaker placement, perhaps due to the listener's lack of experience or knowledge in speaker placement can significantly affect the sound quality as perceived by the listener. Howard (2009) states that it is pointless to have a wonderful listening room if the speakers are not in an optimum position. Figure 1.1 shows the optimum layout for stereo speakers and typical speaker layout for a 5.1 channel surround sound system. According to Howard (2009), they should form an equilateral triangle with the center of the listening position. If one has a greater angle than this, the center phantom image becomes unstable, creating the so-called "hole-in-themiddle" effect. However, having an angle of less than 60° results in a narrower stereo image. Narrow stereo image is where all the sound seems focused in the middle and the sound ambience and atmosphere is absent here causing the music to sound dead and flat.

Figure 1.1 The optimum layout for stereo speakers and typical speaker layout for a 5.1 channel surround sound system (Howard, 2009).

Also, conventional speakers are designed such that the optimum listening positions are limited, and therefore, only a limited number of listeners are able to enjoy a truly immersive listening session. The research by Strohmeier (2008) examines an optimum loudspeaker set-up for audiovisual environments using a 15" auto-stereoscopic display to present video. By varying the number of loudspeakers and their distance from the listening point, they performed subjective assessment tests on four different setups with 32 participants. Their results showed that four loudspeakers in a distance of one meter to listener was the most pleasant combination for providing an immersive user experience. This means that optimum position in a conventional loudspeaker setting must be carefully selected, and only a limited number of listeners are able to enjoy a truly immersive listening session.

To further complicate matters, setting up a conventional audio system is even more of a challenge when the user wants to set up the system to fully utilize the Digital Theatre Systems or Dolby Digital multi-channel sound system option that is available on most amplifiers nowadays. Multi-channel setup can be messy and tedious, and if set up wrongly, it may result in a bad sound image which the user may unfortunately blame the poor sound quality on the performance of the audio equipment, when what happened actually was just the wrong positioning of the speakers.

1.3 Problem Statement

This research will attempt to design a single loudspeaker system that is capable of reproducing 360° wide-angle soundstage with excellent sound quality, where the users' listening experience will be independent of the distance and position from the loudspeaker. Based on the distributed mode loudspeaker (DML) concept, an acoustically conductive surface is coupled with giant magnetostriction devices (GMS) to produce an omnidirectional sound from the single speaker system. This alternative loudspeaker system will also be a user-friendly system that is versatile and easy to setup since it involves only a single loudspeaker, and it can be placed in any position in a room.

1.4 Objective of the Study

The objectives of the study are as follows:

- a. To design a versatile and high-quality loudspeaker system that can be placed in any position, in a particular room.
- To fabricate a quality single speaker system that is capable of reproducing 360° wide-angle soundstage (in the horizontal plane) that is independent of distance and speaker position.
- c. To design a user-friendly loudspeaker system that is easy to setup.

1.5 Scopes of the Study

The scopes of the study are as follows:

- a. Adopt conventional loudspeaker design for construction of the subwoofer system
- b. Design suitable crossover network to cut-off at the high frequency and midrange frequency band
- c. Research suitable material to use for the DML panel and the GMS actuator for the high frequency area.
- d. Verify the completed system performance by measuring the directionality of the loudspeaker system.
- e. Use standard listening room with the dimensions of 7.3 meter long by 3.5 meter high and 5.9 meter wide for evaluation.

1.6 Contribution of the Study

The significance of this study are as follows:

- a. An alternative loudspeaker device using GMS material as an actuator is implemented to achieve a single-loudspeaker system. Users find it easier to setup a single-loudspeaker system, rather than the complicated setup of a conventional speaker system, as verified in Section 4.3.
- b. The alternative loudspeaker system is capable of delivering enough and consistent sound pressure level with a sensitivity of 77 dB/1W at 1m, to all the listeners, at all angles $(0^{\circ} 360^{\circ})$ in the horizontal plane, as verified in Section 4.2.4.
- c. New loudspeaker sound waves reproduction concept, the DML concept, is used to achieve an omni-directional sound field. The omni-directionality of the alternative loudspeaker system is verified in Section 4.3.