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ABSTRACT 
 

 

 

Modelling the natural phenomena such as clouds is one of the most 

challenging problems in computer graphics. The complexity of cloud formation, 

dynamics and light interaction makes real time cloud modelling a difficult task. The 

visual portrayal of the sky and cloud is a common requirement when rendering the 

outdoor scenes in computer graphics. The traditional way to create the sense of 

cloudy is by using the captured sky images as background. This main output of this 

project is a cloud modelling editor for designing cloud shapes namely RekAwan. The 

editor provides integrated environment for modelling volumetric clouds with particle 

system and surfaced based cloud using texture. This invention uses the newly 

developed randomized algorithm to fill the cloud volume with particle systems. 

Randomized method provides an efficient mean in modelling cloud particles data 

very quickly and filling the cloud volume space with particles randomly. The 

invention gives on-the-fly control over size of particles and number of particles and 

radius of particles in the system. This shows its suitability for real time virtual reality 

applications such as flight simulator and 3D games. The user can pass through the 

cloud with realistic visual effect. The completed 3D cloud model output from 

RekAwan can be easily imported into any OpenGL based virtual environment such 

as simulator, animation and games. RekAwan can also become plug-ins to current 

commercial 3D modeller software such as AutoCAD, 3D Studio Max, Maya and 

Rhino3D. The potential industries that highly use RekAwan are weather 

visualization, film, advertisement, games and flight simulator. This invention will cut 

the development cost of the industry such as simulator and entertainment. This 

product can be used effectively by 3D artists, designers and game developer to model 

cloud shapes easily through interactive user interface. It is simple to use, efficient 

and gives extensive control over the cloud shapes. RekAwan can also be used to 

model any other gaseous object such as smoke, haze and fog. 
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ABSTRAK 
 

 

 

Permodelan fenomena semulajadi seperti awan merupakan salah satu cabaran 

dalam grafik komputer. Ini disebabkan oleh bentuknya yang kompleks, dinamik dan 

interaksi cahaya diantara setiap partikel yang terdapat di dalamnya. Awan dan langit 

merupakan perkara yang asas sebagai latar belakang dalam proses menghasilkan 

suasana persekitaran luaran. Kaedah tradisional dalam menghasilkan suasana 

berlatarbelakangkan awan dalam persekitaran maya ialah dengan menggunakan imej 

yang diambil dengan kamera. Output utama dalam projek penyelidikan ini ialah satu 

editor untuk permodelan awan bagi merekabentuk bentuk awan yang dinamakan 

RekAwan. Editor ini menggabungkan kaedah permodelan awan secara isipadu 

dengan penggunaan partikel dan juga kaedah permukaan menggunakan tekstur. 

Inovasi ini juga menghasilkan algoritma perawakan untuk memenuhi partikel bagi 

sesuatu bentuk awan. Algoritma ini membolehkan proses permodelan awan 

dilaksanakan dengan lebih laju dan pengisian isipadu awan dilakukan secara rawak. 

Pengguna dibenarkan untuk mengawal saiz dan bilangan partikel dalam sistem. Ini 

menunjukkan keserasiannya dengan aplikasi realiti maya masa nyata seperti 

simulator penerbangan dan permainan komputer 3D. Pengguna juga boleh 

menembusi awan dengan kesan yang realistik. Model 3D yang dihasikan oleh 

RekAwan boleh diimport ke mana-mana persekitaran maya yang berasaskan 

OpenGL seperti simulator, animasi dan permainan komputer. RekAwan juga boleh 

dijadikan sebagai plig-ins kepada perisian permodelan 3D komersil yang ada di 

pasaran kini seperti AutoCAD, 3D Studio Max, Maya dan Rhina3D. Industri yang 

berpotentsi untuk menggunakan RekAwan termasuklah visualisasi cuaca, filem, 

pengiklanan, permainan komputer dan simulator penerbangan. Hasil inovasi ini dapat 

mengurangkan kos pembangunan seperti simulator dan juga hiburan. Hasil produk 

ini juga boleh digunakan secara efektif oleh artis 3D, perekabentuk dan pembangun 

permainan komputer untuk memodelkan bentuk awan dengan lebih mudah menerusi 

antaramuka yang interaktif dan mudah. RekAwan juga boleh digunakan untuk 

memodel sebarang objek berasaskan gas seperti asap, jerebu dan kabus. 
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CHAPTER I 

 

 

 

 

INTRODUCTION 

 

 

 

1.1  Introduction 

 

If clouds were the mere result of the condensation of vapor in the masses of 

atmosphere which they occupy, if their variations were produced by the movements 

of the atmosphere alone, then indeed might the study of them be deemed an useless 

pursuit of shadows, an attempt to describe forms which, being the sport of winds, 

must be ever varying, and therefore not to be defined. But the case is not so with 

clouds. 

 

So began Luke Howard, the “Godfather of the Clouds”, in his ground 

breaking 1802 essay on the classification of the forms of clouds (Howard, 1804).  

Howard’s classification system—most noted for its three main classes cirrus, stratus, 

and cumulus—is still in use today, and is well-known even among lay people.  

Howard’s work and its influence on the world exemplify the importance of clouds to 

humankind. Long before his time, people had looked to the clouds as harbingers of 

changing weather, but Howard knew that understanding and predicting changes in 

the weather required a better understanding of clouds. This understanding could not 

be improved without a concrete yet flexible nomenclature with which clouds could 

be discussed among scientists. Howard’s contemporaries were immediately taken 

with his classification, and his fame quickly expanded outside of the circle of 

amateur scientists to which he presented his work. 
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Clouds are a frequently observed natural phenomenon. They are estimated to 

cover between 60 and 70 % of the globe at any given time. At most locations on 

earth some clouds will occur on every single day. Clouds exist in a great variety of 

forms and on a large range of both temporal and spatial scales. Individual small 

cumulus clouds for instance cover a few hundred meters in the horizontal and 

vertical and normally have a lifetime of less than an hour. In contrast the vast, 

virtually ubiquitous stratocumulus decks covering the eastern parts of the subtropical 

oceans have a horizontal extent of several hundred kilometers, while being no more 

than a few hundred meters thick. The processes involved in the formation and 

dissipation of clouds span an even larger range of scales from micrometers for the 

condensation of individual droplets to thousands of kilometers for cloud formation in 

frontal systems associated with mid-latitude baroclinic systems (Christian, 2000). 

 

An analysis of satellite observations shows that about half of the earth's 

clouds extend above the freezing level and, therefore, are capable of ice production.  

The clouds, however, do not glaciate instantly as they are exposed to negative 

temperatures. Mixed phase clouds are commonly observed at temperatures down to -

20°C and below. Nucleation of ice crystals in clouds may occur either by 

homogeneous freezing of drops or by heterogeneous nucleation on ice nuclei. The 

former process is believed to be important at temperatures below about -40°C. This 

process is essential for cirrus formation but its effects may be neglected for most low 

and middle tropospheric clouds in mid-latitudes (Mikhail, 1997). 

 

Clouds are directly linked to a large variety of weather phenomena. Rain and 

snow are obviously produced in clouds, as are thunder and lightning. The latent heat 

release due to condensation processes is known to be one of the most important 

processes in the spin up and maintenance of tropical storms, which appear in their 

most violent form as hurricanes and typhoons. It is an everyday experience that 

clouds influence the radiative fluxes emitted both by the sun and the earth. If clouds 

form on a sunny day, the maximum temperature near the surface will be lower than 

without them, a direct consequence of the reflection of sunlight by clouds.  Likewise, 

if low clouds cover the sky at night the near-surface temperature will not drop as low 

as under clear sky conditions due to the trapping of terrestrial radiation by the clouds. 

Because of all these reasons it is obvious that it is desirable for any form of weather 
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forecast to include a prediction of the occurrence and type of clouds and 

precipitation. Just as importantly, the desire to estimate the future evolution of our 

planet's climate requires knowledge about clouds. This is due to their strong 

interaction with the radiative fluxes whose modification through changes in the 

atmospheric composition is of considerable concern. 

 

Clouds are a ubiquitous feature of our world. They provide a fascinating 

dynamic backdrop to the outdoors, creating an endless array of formations and 

patterns. As with stars, observers often attribute fanciful creatures to the shapes they 

form, but this game is endless, because unlike constellations, cloud shapes change 

within minutes. Beyond their visual fascination, clouds are also an integral factor in 

Earth’s weather systems. Clouds are the vessels from which rain pours, and the shade 

they provide can cause temperature changes below. The vicissitudes of temperature 

and humidity that create clouds also result in tempestuous winds and storms. Their 

stunning beauty, physical and visual complexity, and pertinence to weather have 

made clouds an important area of study for meteorology, physics, art, and computer 

graphics (Harris, 2003). 

 

Cloud realism is especially important to flight simulation. Nearly all pilots 

these days spend time training in flight simulators. To John Wojnaroski, a former 

USAF fighter pilot and an active developer of the open-source FlightGear Flight 

Simulator project (FlightGear, 2003), realistic clouds are an important part of flight 

that is missing from current professional simulators. 

 

 One sensation that clouds provide is the sense of motion, both in the 

simulation and in real life. Not only are clouds important, they are absolutely 

essential to give the sky substance. Like snowflakes, no two clouds are alike and 

when you talk to folks involved in soaring you realize that clouds are the fingerprints 

that tell you what the air is doing. 

 

The complexity of cloud formation, dynamics, and light interaction makes 

cloud simulation and rendering difficult in real time. In an interactive flight 

simulation, users would like to fly in and around realistic, volumetric clouds, and to 

see other aircraft convincingly pass within and behind them. Ideally, simulated 
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clouds would grow and disperse as real clouds do, get blown by the wind, and move 

in response to forces induced by passing aircraft. Simulated clouds should be 

realistically illuminated by direct sunlight, internal scattering, and reflections from 

the sky and the earth below. Previous real-time techniques have not provided users 

with such experiences. 

 

Clouds have fascinated and vexed computer graphics researchers for many 

years. The visual appearance of clouds is very complex and extremely varied, yet it 

is very easy to recognize an "incorrect" cloud model, probably because we see clouds 

in one form or another every day (Gustav, 1999). 

 

 

 

1.2 Motivation  

 

Clouds remain one of the most significant challenges in the area of modeling 

natural phenomena for computer graphics and it has been a challenge for nearly 

twenty years. This has made the simulation of various natural phenomena one of the 

important research fields in computer graphics. Aspects such as sky, clouds, water, 

fire, trees, smoke, terrains, desert scenes, snow and fog play an important role for 

creating realistic images of natural scenes. In particular, clouds are indispensable for 

creating realistic images of natural scenes, outdoor scenes, flight simulators, space 

flight simulators, visualization of the weather information, creation of realistic clouds 

from satellite images, simulation of surveys of the earth, earth viewed from outer 

space, film, art and so on. Some of the motivations factors can be summarized as 

following: 

 

• Clouds are familiar objects in everyday life, it is desirable to simulate them 

effectively for the applications, such as entertainment, advertising, and art 

etc. 

 

• Clouds are a critical element in air-to-air combat and are important in the 

simulation of intelligent weapon systems, which seek and identify aerial 

targets in cluttered backgrounds.  
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• Realistic cloud simulation would also be an effective tool in the field of 

meteorology.  

 

• Indeed, it is reasonable to say that we want to simulate these beautiful natural 

features simply because they are there. 

 

 

 

1.3  Problem Background 

 

There are two important issues for synthesizing photo-realistic images of all 

natural phenomena including clouds. These are modeling and rendering. Generally, 

the modeling process includes the creation of shapes of objects, their dynamics 

(motion/movement) and their physical properties such as surface reflectance. This is 

however not an easy task for objects such as clouds, smoke and sand dunes (Nishita 

and Dobashi, 2001). Rendering is the process of generating images by calculating 

colors for every pixel. The ray-tracing algorithm is often employed for generating 

images including the sky, clouds, smoke, desert scenes, and the atmospheric effects.  

Although the ray-tracing algorithm can create extremely realistic images, the 

computation time is very long. 

 

There are two main approaches to cloud modeling and rendering. These two 

approaches classified as procedural techniques and physically based techniques. 

Procedural techniques try to capture the visual appearance of clouds without 

simulating the actual physical processes. Voss (1983) and Musgrave (1990) created 

realistic clouds with fractals. Gardner (1985) has produced realistic images of clouds 

by using Fourier synthesis. However, this does not create a true three-dimensional 

geometric model. Ebert and Parent (1990) have used solid texture to generate clouds 

in three-dimensional spaces. Ebert (1997) has also developed a method combining 

metaballs and a noise function to model clouds. Sakas (1993) has modeled clouds by 

using spectral synthesis and Nishita et. al (1996) created clouds by generating 

metaballs using the idea of fractals.  Using these methods to create clouds is, 

however, very difficult since many parameters have to be specified by trial and error. 
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Stam and Fiume (1991) have developed a simple method for modeling 

clouds. In their method, a user specifies density values at several points in three-

dimensional space. Then the density distribution of the clouds is obtained by 

interpolating the specified density values.  Although this method can create realistic 

clouds, it is impractical for creating large-scale clouds viewed from space. Methods 

for modeling a set of clusters of clouds have also been developed. Ebert et al. (1998) 

created realistic images of typhoons by the procedural approach. Nishita et al. (1996) 

have modeled clouds to generate realistic images of the earth viewed from space. In 

both these methods, however, clouds are simply modeled by applying two-

dimensional fractals. The color and shape of clouds change depending on both the 

viewpoint and the position of the sun.  These methods cannot simulate such effects.  

 

The physically based techniques attempt to simulate the meteorological 

processes that create clouds and the interaction between light and cloudy air (Kajiya 

and Herzen, 1984; Stam and Fiume, 1991, 1993; Harris et al., 2003).Kajiya and 

Herzen (1984) used a simple method based on Partial Differential Equations (PDE) 

to generate cloud data sets for their ray-tracing algorithm. Dobashi et al. (2000) used 

a simple cellular automata model of cloud formation to animate clouds offline. 

Miyazaki et al. (2001) extended this to use a coupled map lattice model based on 

atmospheric fluid dynamics. Overby et al. (2002) described another physical model 

that, like ours, is based on the stable fluid simulation of Stam (1999). Harris et al. 

(2003) presented a method most similar to the work by Kajiya and Herzen (1984) 

and Overby et al. (2002). He implements simulation, dynamics and radiometric 

entirely on programmable floating-point graphics hardware to get real time 

simulation. It seems, however, this method is not applicable for large-scale clouds as 

required by games and flight simulator applications running on desktop machines. 

 

Physical based simulation methods produce realistic images by 

approximating the physical processes within a cloud. Computational fluid 

simulations produce some of the most realistic images and movement of gaseous 

phenomena. However, despite the recent breakthroughs in real-time fluid simulation, 

large-scale high quality simulation still exhausts commodity computational resources 

(Schpok et al., 2003). Therefore, using simulation approaches makes cloud modeling 
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a slow offline process, where artists manipulate low-complexity avatars as 

placeholders for the high quality simulation results. With this method, fine tuning the 

results becomes a very slow, iterative process, where tweaking physical parameters 

may have no observable consequence or give rise to undesirable side-effects, 

including loss of precision and numeric instability. Unpredictable results may be 

introduced from approximations in low-resolution calculations during trial renders. 

These physics-based interfaces can also be very cumbersome and non-intuitive for 

artists to express their intention and can limit the animation by the laws of physics. 

 

Clouds consist of small particles and it is very difficult to define their definite 

shapes. The simulation of their dynamics (movement) is also a difficult task, since 

their shape changes continuously with time. Therefore, a lot of modeling methods 

have been developed to address this problem. Using these methods, however, 

obtaining realistic-looking shapes and motion is very time consuming. For example, 

the rendering of clouds and smoke requires the integration of the intensity of light 

scattered by small particles along the viewing ray. On the other hand, the processing 

speed of graphics hardware has become faster and faster recently. In addition, high 

performance graphics hardware is available even on low-end PCs. These facts have 

encouraged researchers to develop hardware-accelerated methods for rendering 

realistic images (Ofek and Rappoport, 1998; Heidrich and Seidel, 1999; Stam, 1999; 

Cabral et al., 1999). 

 

After efficiently computing the dynamics and illumination of clouds, there 

remains the task of generating a cloud image. The translucent nature of clouds means 

that they cannot be represented as simple geometric “shells”, like the polygonal 

models commonly used in computer graphics. Instead, a volumetric representation 

must be used to capture the variations in density within the cloud. Rendering such 

volumetric models requires much computation at each pixel of the image. This 

computation can result in excessive rendering times for each frame. 

 

In order to model realistic clouds, there are two possibilities - the first is 

physical-based simulation and the second is use of procedural techniques. Physical-

based simulation provides a straight-forward approach to create realistic clouds by 

simulating the physical phenomena. This type of simulation creates a three 
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dimensional density map, which describes the density of the water vapor the object 

consists of. The density-map is rendered by means of a volume renderer, which takes 

into account the specific scattering of light-rays, caused by tiny water droplets inside 

the object. Physical-based simulation, however, demands a high computational cost 

and is impractical for real time applications. Even on today’s fastest processors, 

rendering times of about a few minutes per image are common. 

 

Procedural modeling techniques provide simple and efficient methods to 

simulate natural phenomena and give visually convincing results. Such techniques 

provide an abstraction of model, encode classes of objects, and allow high-level 

control and specification of the model. The goal of these modeling techniques is to 

provide a concise, efficient, flexible, and controllable mechanism for specifying and 

animating models of complex objects and natural phenomena. Code segments or 

algorithms are used to abstract and encode the details of the model instead of 

explicitly storing vast numbers of low-level primitives. The use of algorithms 

provides great flexibility, and allows amplification of efforts through parametric 

control - a few parameters to the model yield large amounts of geometric details.  

 

Particle system is one of the procedural techniques. Particle systems are most 

commonly used to represent natural phenomena such as fire, water, clouds, snow, 

rain, grass, and trees. A particle-system object is represented by a large collection of 

very simple geometric particles that change stochastically over time. Particle systems 

do use a large database of geometric primitives to represent natural objects, but the 

animation, location, birth, and death of the particles representing the object are 

controlled algorithmically. The procedural aspect and main power of particle systems 

allow the specification and control of this extremely large cloud of geometric 

particles with very few parameters. Besides the geometric particles, a particle system 

has controllable stochastic particle animation procedures that govern the creation, 

movement, and death of the particles. These animation procedures often include 

physically based forces to simulate effects such as gravity, vorticity, conservation of 

momentum, and energy.  

 

Clouds behave like live objects i.e., clouds move from one place to another, 

clouds disappear while moving, and clouds appear while moving. So clouds are very 
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easily modeled with the particle systems. Particle systems are a simple and efficient 

method for representing clouds. Cloud model assumes that a particle represents a 

roughly spherical volume in which a Gaussian distribution governs the density falloff 

from the center of the particle. Each particle is made up of a center, radius, density, 

and color. Good approximations of real clouds can be achieved by filling space with 

particles of varying size and density. Clouds can very easily be built by filling a 

volume with particles, or by using an editing application that allows placing particles 

and building clouds interactively. The randomized method is a good way to get a 

quick field of clouds. Virtual reality applications such as flight simulators have pre-

designed levels and require fine control over all details of the scene. Providing an 

interactive editor allows producing beautiful clouds tailored to the needs. 

 

 

 

1.4  Problem Statement  

 

This research focuses on the development of a technique that can be used for 

synthesizing cloud images in an interactive way. Particles system is used to model 

these fuzzy objects.  

 

The following research questions are addressed to solve the problem: 

 

a) How efficient is particle system with randomized method for synthesizing 

cloud images? 

 

b) How can interactive-ness be employed for cloud modeling? 

 

 

 

1.5  Objectives of the Study  

 

 The main objective of this research is development of a shape modeling 

algorithm using particles system and an interactive editing application in the area of 



 10

cloud shape modeling problem. This research also aims to achieve the following 

objectives: 

 

a) To investigate, analyze and formulate an appropriate technique for modeling. 

 

b) To define an appropriate mathematical model for the deformation of the 

physically based cloud motion. 

 

c) To construct a software library for modeling the cloud with the motion 

analysis. 

 

 

 

1.6  Importance of the Study 

 

This study is conducted particularly to construct a randomized based model in 

solving cloud shape modeling problem. In general, this study introduces a technique 

consisting of a randomized based algorithm by making use of particles system for 

modeling cloud shapes and an interactive editor application – cloud macrostructure 

editor. 

 

 The whole research can be divided into two parts. The first part of the 

research consists on development of a randomized based algorithm using particles 

system that can fill cloud space by placing particles at random positions to model 

microstructure of the clouds. The second part deals with the development of an 

interactive editor application – cloud macrostructure editor, which can be used to 

model apparent shapes of clouds interactively. 

 

 Results of this study can be used for conducting comparative study in the 

future in order to discover whether the proposed system is suitable for different 

problems in the area of cloud shape modeling problem. 
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1.7  Scope of the Study 

 

 The scope of the research conducted in this study can be summarized as 

follows: 

 

a) In a real system, the number of particles keeps on changing with the passage 

of time. Some particles die from the system and at the same time some new 

particles are born in the system. For simplicity, the number of particles is 

considered as constant in this research i.e., no particle is born and no particle 

dies with the passage of time. 

 

b) In reality, each particle may not resemble the other particles and particles 

may have different shapes. This research has considered a roughly spherical 

volume for each particle for simplicity. 

 

c) Particles in a system are free to move and continuously change their position 

as they move along the atmosphere. In this research, each particle has a static 

position as this research does not focus on study of cloud dynamics. So 

particle do not move in any direction along the atmosphere. 

 

 

 

1.8  Thesis Contributions 

 

In this thesis, particles systems are used to model clouds and then synthesize 

cloud images by making use of proposed algorithm based on randomized method 

that fills the cloud volume with particles randomly. It provides an applicable 

platform for the efficient and interactive synthesis of cloud images. 

 

In general, the major contribution described in this thesis can be summarized 

as follows: 

 

a) Development of cloud shape modeling algorithm based on randomized 

method using particle systems. 
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b) Development of an interactive cloud editing application – cloud 

macrostructure editor, to model cloud shapes in an interactive way. This 

approach provides control over number of particles in a particular cloud area 

and control over size of the particles. 

 

c) Application of cloud macrostructure editor to test interactive-ness of the 

randomized algorithm for modeling cloud shapes. 

 

 

 

1.9  Thesis Organization 

 

This section presents how this thesis is organized. The main structure of the 

thesis consists of introduction, literature review, methodology, design, results, 

discussion and conclusions in chapters described as below. 

 

Chapter I: Introduction. This chapter introduces the research topic consisting of 

various sections i.e. Introduction, Motivation, Problem Background, Problem 

Statement, Objectives of the Research, Importance of the Study, Scope of the Study, 

Thesis Contributions and Thesis Organization. 

 

Chapter II: Cloud Modeling.  This chapter presents current studies in the area of 

cloud modeling problem and evaluates the advantages and disadvantages of the 

existing solutions. 

 

Chapter III: Particle Systems. This chapter discusses the basics of the particle 

system.  

 

Chapter IV: Randomized Particle Algorithm. Definition of the problem addressed 

in this research and model formulation are presented in this chapter.  Proposed 

Algorithm and its testing are also presented in this chapter. 
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Chapter V: Results and Testing. Results of the experiments are summarized and 

discussed in this chapter. 

 

Chapter VI: Discussion and Conclusions.  This final chapter discusses the strength 

and weaknesses of the thesis.  This chapter also suggests the future work that can be 

done for the extension of the proposed technique.  Finally, this chapter concludes the 

work of this research. 



 

 

 

CHAPTER II 

 

 

 

 

CLOUD MODELING 

 

 

 

2.1  Introduction 

 

Throughout the history of computer graphics, advances have been driven by 

the quest for visual realism. This quest for visual realism encompassed all aspects of 

image creation from object definition to object color, illumination and shadowing. 

For example, early models for representing objects used polygonal meshes. These 

early polygonal models for representing objects were not used to represent abstract 

artistic shapes; they were model, of actual objects. Spline patch models were later 

used for object modeling to more accurately represent cured surfaces in the real 

world. Early rendering systems rendered faceted shaded, flatly illuminated, alias-

prone images. Techniques were then developed by Gouraud and Phong to 

approximate curved surfaces from polygonal models (Rogers and David, 1985). The 

illumination models for these objects have also greatly improved from simple 

Larnbertian models to complex illumination models using radiosity, ray tracing and 

Cook-Torrance illumination models (Ebert, 1996). 

 

Much effort has been made in computer graphics on the synthesis of real-

world imagery. The sky is an essential part of realistic outdoor scenery. Because of 

this, cloud rendering has been an active area of research in computer graphics for the 

past twenty years. 
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A survey of previous work on clouds would be incomplete without a 

description of the variety of methods that have been used in computer graphics to 

synthesize the images of various natural phenomena including clouds. The rest of 

this introductory chapter will review advances in creating state-of-the-art images in 

computer graphics. The use of texture mapping techniques for modeling the surface 

attributes of objects will be discussed, followed by a discussion on various 

techniques used for cloud modeling and rendering. 

 

 

 

2.2 Texture Mapping Techniques 

 

Texture mapping is a technique for simulating the surface characteristics of 

an object. This, technique was originally proposed by Catmull in 1974 (Rogers and 

David, 1985) and is still an important technique for creating realistic images. Texture 

mapping varies the surface characteristics of an object through the use of 

mathematical functions, or two-dimensional or three-dimensional tables. This 

technique has been used to modulate many surface characteristics, including color, 

roughness, reflection, transparency and even the actual surface geometry 

(displacement mapping). 

 

Texturing is commonly used in applying a two-dimensional image onto an 

object to produce a color pattern on the object. Examples of this include creating a 

label on a wine bottle and the woven fabric color pattern on a sofa. 

 

This technique is also commonly used to simulate bumps, wrinkles, and 

imperfections on the surface of objects by modifying the normal to the surface of the 

object. This helps in creating realistic images by reducing the smooth “antiseptic” 

quality of computer-generated images. Scratches in a table, the winkles on the 

surface of an orange and the bumps in a stucco wall can all be simulated with two-

dimensional texturing of surface normals (bump mapping). 

 

To model the actual surface geometry created by bumps, dents, and scratches, 

displacement mapping can be used. Displacement mapping differs from bump 
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mapping in that the actual geometry of the surface is modulated (on displaced) 

instead of just the normal to the surface. Displacement mapping solves two problems 

that occur with bump mapping, smooth silhouettes and smooth intersections. In 

bump mapping, the silhouette of the object will not show the effects of' the bump 

mapping, since the normal vector is just perturbed. The actual geometry of the 

silhouette (and the entire object) remains unchanged. The intersection of two bump 

mapped objects will also not show the effects of the bump mapping for the same 

reason. However, with displacement mapping, the geometry of the object is actually 

changed, so these problems will not occur. 

 

Displacement mapping and other types of texture mapping are incorporated 

as follows into the rendering process. Texture mapping normally occurs just before 

the illumination calculations are performed to determine the final color of the surface 

element. Texture mapping of surface color, surface normal vector, surface reflection, 

and other surface illumination parameters is performed just prior to the illumination 

calculation to determine the final color of this surface element. Texture mapping of 

surface transparency normally occurs just prior to the combination of this surface 

element with the surface element behind it. In most rendering systems, displacement 

mapping needs to be performed before the hidden surface algorithm and actual 

changes the geometric representation of the object. In most rendering algorithm, 

texturing is only applied to the visible points on the surface of the object (after the 

hidden surface calculations). To avoid perspective distortions in the texture, the 

object space location of the visible point on the surface of the object is usually used 

in the texture mapping calculation. Different mapping algorithms will be discussed in 

the following subsections. 

 

 

 

2.2.1 Two-Dimensional Texturing 

 

Texture mapping was originally a two-dimensional technique. In two-

dimensional texture mapping, each visible point p on an object is mapped into a two-

dimensional apace (normally a two-dimensional table). The two-dimensional texture 

space is then evaluated to determine the value associated with the particular location 
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two-space. This value is t hen used for the particular surface characteristic of the 

point P on the object. Two-dimensional texturing was originally used in modeling the 

surface color of objects. Blinn et al. (1976) extended texture mapping to modulate 

the specular and reflection characteristics of objects. Blinn (1978) further extended 

texturing to modulate the normal vector of surfaces as a way of simulating bumps 

and wrinkles on objects. Finally, Cook (1984) suggested using two-dimensional 

texturing to manipulate all aspects of the illumination of an object, including surface 

displacement and shadowing. 

 

There are several techniques for mapping the point into this two-dimensional 

texture space. For a survey of different mapping techniques, see (Heckbert and Paul, 

1986). These techniques can be classified into two different classes of mapping 

techniques. The first class maps each polygon or patch of the object into the entire 

two-dimensional space. Therefore, using this class of mapping technique repeats the 

texture on each polygon or patch of the object. Within this class of mappings, two 

different mapping techniques are commonly used. The first mapping technique is 

referred to as inverse bilinear interpolation (Heckbert and Paul, 1986). This 

technique first, uses the inverse perspective transformation to transform the image 

space location of the point on the surface of the object into object space. Then, the 

point in object space is mapped into the texture definition space through the use of 

inverse bilinear interpolation. The second technique uses simple bilinear 

interpolation in screen space, where the location of the point in screen space is used 

in the texture mapping, and not the location of point in object space, as in the 

previous technique. This technique, however, suffers from perspective distortion. A 

more detailed description of these techniques can he found in (Heckbert and Paul, 

1986). 

 

The second class of mapping techniques maps the entire surface of the object 

into the texture space. This class of mappings “wraps" the texture around the entire 

object instead of repeating the texture on each polygon or patch. The simplest 

technique of this class uses a spherical mapping. With spherical mapping, the polar 

coordinates of the pint, with respect to the object coordinate system, are used to map 

the surface of the object into the texture space. Simple linear interpolation in screen 

space can also be used to map the entire object surface into the texture space. In this 
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technique, the user assigns texture space coordinates with each vertex of a polygon 

(or control point of a patch). Then, during scan conversion, these texture space 

coordinates are simply linearly interpolated to determine the texture space coordinate 

for each visible point on the surface of the object.  

 

The mapping of each pint on the surface of a three-dimensional object into 

the two-dimensional texture space creates many problems in the resultant appearance 

of the texture applied to the object. The two-dimensional texture may suffer 

distortions when applied to the three-dimensional object. For example, when a 

simple spherical projection is used to map a two-dimensional texture onto an object, 

the texture is normally compressed near the poles and stretched near the equator of 

the object. Another problem caused by the texture mapping is discontinuities at the 

seams of the texture applied to the object. A seam is where two separate sides of the 

texture map meet when the texture is applied to the object. Discontinuities can occur 

at the seams for two reasons. First, the values in the texture map at the two edges that 

meet may not be the same. Second, the scale can change abruptly at the seams 

because of the mapping technique. The surface area that each section of the texture 

map occupies on opposite sides of the seam may be different because of the 

mapping. Blurring or averaging of values at the seams can be used to solve this 

problem (Burt et al., 1983). 

 

A few techniques have also been proposed to solve the distortion problem. 

The first technique is referred to as two-part texture mapping (Bier and Kenneth, 

1986). In this technique, the texture is first projected onto an intermediate three-

dimensional shape. Then the texture is mapped from the intermediate three-

dimensional shape onto the final object. The choice of the separate parts of the 

mapping allows for choosing a combination of techniques that minimize distortion 

for the particular object. 

 

Another solution can he termed object unfolding (Samek et al., 1986). In this 

technique, the polygons of the object are unfolded onto a flat two-dimensional plane. 

Then vertices in the object are associated with locations in the texture map. The user 

interactively assigns a texture space coordinate with each vertex in the unfolded 

object. The location of the vertices in the texture space, are then used during the 
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mapping to apply the texture to the object. Problems with this technique include the 

possibility of introducing discontinuities into the texture applied to the image and 

loss of texture when applied to the object (parts of the texture map may not be 

applied to the object). This technique is used to reduce distortion and scale changes 

when the texture map is applied to the object. It still does not solve the problem with 

seams. 

 

 

 

2.2.2 Three-Dimensional Texturing - Solid Texturing 

 

In 1985, Gardner (1985), Peachey and Darwyn (1985) and Perlin (1985) all 

independently suggested extending two-dimensional texturing to three-dimensional 

texturing or solid texturing. Solid texturing differs from two-dimensional texturing in 

that solid texturing maps each point on the surface of an object to a three-

dimensional texture space as opposed to a two-dimensional texture space. The 

location of the point in this three-dimensional “solid space” is used in calculating the 

value for modulating the surface characteristic of' the point on the object. 

 

Solid texturing is incorporated into the viewing algorithm in a manner similar 

to two-dimensional texture mapping. As in two-dimensional texturing, the three-

dimensional screen space location of each visible point on the surface of the object is 

mapped back to object space. The main difference is that then this three-dimensional 

object space location is used by the solid texturing functions to determine the value 

of the corresponding screen location, as opposed to the two-dimensional location 

used in two-dimensional texturing. 

 

Gardner (1985) uses three-dimensional texturing for simulating clouds. This 

technique is used as a model for clouds by using Fourier synthesis to control the 

transparency of hollow ellipsoids. Figure 2.1 shows complex clouds modeled by 

Gardner (1985) by making use of linked ellipsoids. 
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Figure 2.1: Complex clouds modeled by linked ellipsoids (Gardner, 1985) 

 

Peachey and Darwyn (1985) and Perlin (1985) both proposed solid texturing 

for controlling the color patterns of objects. They both also used solid texturing as a 

model for simulating objects carved from solid materials. In solid texturing, the 

texture is determined from evaluating three-dimensional functions based on the 

location of each point on the surface of an object in the solid texture Space. 

Therefore, solid texturing is an extremely powerful technique for simulating objects 

carved from solid materials such as wood, marble, granite, and other stone materials. 

 

Peachey and Darwyn (1985) use both three-dimensional functions and 

projected two-dimensional images for defining his three-dimensional textures. 

Peachey has suggested several functions, which can be used to create interesting 

three-dimensional textures. By randomly placing spheres of random size throughout 

a solid space, he simulates materials in which bubbles of one material are captured in 

the solidification of another material. To simulate wood, Peachey uses concentric 

cylinders of light and dark colors aligned along an arbitrary axis in three-space. 

Peachey simulates marble through placing starting locations for veins within the 

solid space. The direction of the veins is then controlled through the use of sinusoidal 

functions. The diameter of the cross-section of the veins is also controlled by more 

sinusoidal functions. 

 

Perlin (1985) also chose three-dimensional functions to define his three-

dimensional textures. Perlin makes extensive use of function composition to create 

interesting three-dimensional textures. The bases of most of these functions are two 

functions, one of which simulates random noise and the other which provides a 

“visual” simulation of turbulent flow. Through the use of these functions Perlin is 



 21

able to create very realistic images of marble, fire, water, and block glass. Details can 

be found in (Perlin, 1985). 

 

Solid texturing solves some problems of two-dimensional texturing. Since 

solid texturing uses an affine mapping from the three-dimensional object space to the 

three-dimensional texture space (normally scale and translation transformations), 

there is no distortion of the texture when it is to the object. In two-dimensional 

texturing where a two-dimensional image is mapped onto a complex three-

dimensional manifold, distortion and mapping of the texture applied to the object can 

occur. Solid texturing avoids these problems. 

 

 

 

2.3 Simulating Complex Geometry 

 

There have been many approaches to modeling the complex geometry of 

objects in our environment. Polygonal and patch models were the first models used. 

Constructive solid geometry (CSG) models were introduced later. More recent 

models can be categorized as either particle systems or procedural models. 

 

 

 

2.3.1 Polygonal and Patch Modeling 

 

The first geometric models of objects in computer graphics were polygonal 

meshes. A polygonal mesh is a collection of planner polygons containing vertex, 

edge, and connectivity information. Polygonal mesh models however, do not 

accurately model smooth surfaces, which are so commonly found in our 

environment. To circumvent this problem, Gouraud (Rogers and David, 1985) 

developed an intensity interpolation method for polygonal mesh objects to simulate 

the appearance of a curved surface. Phong (Rogers and David, 1985) developed an 

improved approximation method, which uses interpolation of the normal vector to 

approximate the illumination from curved surface. Both of those techniques suffer 

problems since they do not correctly model the geometry of a curved surface. For 
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example, the silhouette of the object is still polygonal and so is the line of' 

intersection of two polygonal objects. 

 

Spline surface patches solve some of the problems with polygonal patch 

models, since they are an actual curved surface model useful for simulating smooth 

surfaces in our environment. Surface patch models have been extended to 

formulations that are easier to control and they have advantages over earlier 

formulations, such as hierarchical Spline models. Forsey and Bartels (1988) have 

created a hierarchical spline model that allows for uneven spacing of control points 

to provide an efficient formalization for objects that have areas of varying degrees of 

surface details. 

 

Both polygonal and surface patch models are usually created by digitizing a 

real world model, or using an interactive system to create the model. 

 

 

 

2.3.2 Constructive Solid Geometry Models 

 

Polygonal and surface patch models are boundary representations of objects. 

The polygons and patches define the surface of the object. They separate points 

inside the object from points outside the object. The geometry of the solid interior of 

the object is not defined (the objects are hollow). Constructive solid geometry 

(CGS), on the other hand, is a solid model for objects. CSG objects are solid objects, 

not simply surfaces. The interior geometry of the object is part of the CSG 

representation of the object. CGS models use Boolean operations on simple shapes to 

define complex shapes. CSG models have several advantages over boundary 

representations. First, they are a very compact way of representing complex shapes 

and can be generated rapidly by solid modeling systems. Second, they contain the 

full three-dimensional volume geometry of the object as opposed to just the surface 

information. CSG models, however, do have some disadvantages when compared to 

boundary representations. First, they either require a volume rendering or ray tracing 

system to render the full three-dimensional volume of the object or they require the 

boundary representation to be calculated for use in a surface-based renderer. 
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Calculating the boundary representation from the CSG models requires extensive 

computations. Second, some shapes are not easily described as Boolean operations 

on simple shapes. 

 

 

 

2.3.3 Particle Systems 

 

A more recent approach to modeling complex geometric objects is particle 

systems. Reeves (1983) originated the use of particle systems. Particle systems have 

mainly been used for modeling natural phenomena, such as smoke, cloud, fire, trees, 

and water where the intricate detail of the phenomena is represented by a large 

collection of particles. Particle systems normally involve the use of a large number of 

small spherical particles. The animation of these particles is controlled through the 

use of procedures, which simulate the specific natural object, such as fire. The 

rendering of particle systems normally uses a simple constant shading model and 

often the color of the particle is determined by its three-dimensional location in 

space. For example, in Reeves' fire simulation (Reeves, 1983), the color of the 

particle is determined by its elevation from the base of the fire. 

 

Particle systems have several advantages over patch and polygonal models. 

Particle systems normally use simple spheres for representing the geometry of the 

object or phenomenon, instead of complex patch or polygonal models. Therefore, the 

rendering system only needs to handle simple spherical models. The particle system 

rendering process also usually uses constant flat shading for the illumination of the 

particles, which is much simpler and quicker than normal illumination algorithms 

used for patch and polygonal models. 

 

However, particle systems do have several disadvantages. They require an 

extremely large geometric database of particles to represent complex objects or 

phenomena. Shadowing algorithms and illumination algorithms for particle systems, 

although quicker, are not as realistic as the algorithms normally used for patch and 

polygonal models. Also, complex shapes can only be approximated by a large 

collection of spheres. Therefore, sharp edges are hard to simulate. 
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2.3.4 Procedural Modeling 

 

Many different, modeling techniques can he termed procedural modeling. 

Fractal synthesis (Mandelbrot, 1982), Fourier synthesis (Gardener, 1985), 

hypertextures (Perlin and Hoffert, 1989), L-systems (Prusinkiewicz et al., 1988), 

volume density functions (Ebert and Parent, 1990), and inverse particle systems can 

all be considered to be procedural models. Procedural modeling uses algorithms to 

represent the geometry of objects. Most, physically based modeling techniques are 

also procedural modeling techniques, for example Kajiya’s cloud modeling 

technique (Kajiya and Herzen, 1984). 

 

Procedural modeling techniques have many advantages over polygonal and 

patch modeling techniques. The procedural model is evaluated during the rendering 

process to determine the geometry of the object / phenomena. Usually, the model is 

evaluated at the resolution of image rendering. Therefore, the models provide the 

needed amount of detail without introducing high frequency details, which will result 

in aliasing artifacts. Secondly, complex shapes can be represented with very little 

data storage space. For instance, a fractal mountain can be represented with a 

procedure of less than 50 lines of C language code; whereas, to achieve an 

equivalently detailed polygona1 model might require 50,000 polygons (Ebert, 1996). 

Because of this, procedural modeling techniques are often used to represent objects 

of very high degrees of detail such as natural phenomena. 

 

Procedural models, however, do have disadvantages over particle systems, 

patch, and polygonal modeling. The main disadvantage is the computation time 

required to evaluate the procedure. Often the procedure is evaluated during rendering 

and many floating-point computations are usually performed during each evaluation 

of the procedural model. The computation time of rendering a procedural model is 

directly related to the computation time to evaluate the procedure for the model. 
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2.4 Modeling Natural Phenomena 

 

Natural phenomena are some of the hardest things to model in computer 

graphics. Modeling phenomena such as mountains, trees, plants, fire, water, clouds, 

and smoke have inspired much research in computer graphics. Realistic models of 

these phenomena, however, still elude current computer graphics techniques. The 

complex intricate geometry and motion of these phenomena make them very difficult 

to model. Some natural phenomena, such as mountains, trees, and plants have 

intricate rigid shapes, while others; such as clouds, fire, and water have intricate 

amorphous shapes. Most models for natural phenomena can he classified as fractals, 

particle systems, or other types of procedural models. 

 

 

 

2.4.1 Modeling Terrain and Vegetation 

 

Most approaches to modeling terrain have used a fractal modeling approach 

(Miller, 1986). Mandelbort and Musgrave (Musgrave et al., 1989) have done much 

work on the modeling of terrain using fractals. Recent work has included modeling 

terrain with fractals and then simulating the natural erosion processes that affect 

terrain to create a more realistic model (Musgrave et al., 1989). 

 

There has been a wider range of techniques used to model vegetation. Iterated 

functions systems (Demko et al., 1985), fractals, particle systems (Reeves and Blau, 

1985) and L-systems (Prusinkiewicz et al., 1988) have all been used to model plants 

and trees. Very realistic images of plants have recently been produced through the 

use of L-systems 

 

 

 

2.4.2 Modeling Fire and Water 

 

The modeling of water has received as much attention as the modeling of 

terrain and vegetation. Early models for water used simple cycloidal models for 
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controlling the height of the surface of the water (Max, 1981). This model had many 

problems, including its inability to simulate breaking or curling waves since there 

can only be one height value for each x-y location. 1986 and 1987 saw a flurry of 

research in modeling ocean waves (T'so and Barsky, 1987; Fournier and Reeves, 

1986; Peachey, 1986). Some of these models provided mom physically based models 

that simulated breaking waves and even spray from breaking waves created by 

particle systems (Fournier and Reeves, 1986). More recently, Kass and Miller (1990) 

have developed a model based on wave equations that even allows for the net 

transport of water volume. The main drawback with their approach is that they again 

use a height field, so they cannot simulate cresting or breaking waves. 

 

The modeling of fire has received very little attention compared to the 

modeling of water. The main approach to modeling fire has been the use of particle 

systems (Reeves, 1983; Sims, 1990). 

 

 

 

2.4.3 Modeling and Animating Gaseous Phenomena 

 

The rendering of scenes containing clouds, fog, atmospheric dispersion 

effects, and other gaseous phenomena has received much attention in the computer 

graphics literature. Several papers deal mainly with atmospheric dispersion effects 

(Willis, 1987; Nishita el al., 1987; Rushmeier and Torrance, 1987), while many 

cover the illumination of these gaseous phenomena in detail (Blinn, 1982; Kajiya and 

Herzen, 1984; Max, 1986; Kass and Miller, 1990). Most authors have used a low 

albedo reflection model, while a few, B1inn (1982), Kajiya and Herzen (1984), and 

Rushmeier and Torrance (1987), discuss the implementation of a high albedo model. 

 

A low albedo reflectance model assumes that secondary scattering effects are 

negligible, while a high albedo illumination model calculates the secondary and 

higher order scattering effects. 

 

Another issue is modeling the geometry of these gases. Some authors use a 

constant density medium (Klassen, 1987; Nishita et al., 1987), but do allow different 
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layers of constant densities. This allows for a very limited geometry for the gases. 

Voss (1983) uses fractals and Max (1986) uses height fields for modeling the 

geometry of clouds. Kajiya and Herzen (1984) use a physically based model for 

clouds, which simulates water vapor, heat flow, wing, etc to form a physical model 

for clouds. However, the resulting images are not very realistic. Gardner (1985) uses 

hollow ellipsoids to model the geometry of clouds. He controls the transparency of 

hollow ellipsoids through the use of Fourier synthesis. To form larger cloud 

formations, he combines many different ellipsoids to form cloud groups. The main 

problem with his approach is that it is not a true three-dimensional model for the 

clouds, so accurate cloud shadowing is impossible. Another problem is that once you 

enter a cloud, you can clearly see that it is a simple hollow object and not a full three-

dimensional cloud volume. 

 

Ebert and Parent (1990) use turbulent flow based functions to model the 

density of a variety of gases. These functions are based on Perlin’s visual simulation 

of turbulent flow (Perlin, 1985) and are similar to the idea of hypertextures (Perlin 

and Hoffert, 1989). This model is a true three-dimensional model for the geometry of 

gases and provides realistic results. This technique seems to provide more realistic 

results than most previous efforts by providing visually realistic renderings and 

animations of gaseous phenomena and the shadows they cast. These techniques are 

based on a visual simulation of turbulent flow, so it is a visual simulation of the 

turbulent processes that determines the geometry of gaseous phenomena. These 

techniques can also be extended to use a physically based turbulent flow model and 

can be very efficient when simplifying assumptions are made. This approach will be 

discussed in more detail later in this dissertation. 

 

 

 

2.5  Modeling Fuzzy Objects 

 

As is true for any object or phenomenon, there are multiple ways to model 

fuzzy objects such as clouds. An explicit representation of every water droplet in a 

cloud would require far too much computation and storage (Harris, 2003), so most 

researchers have used much coarser models. In this section I describe five general 
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methods that have been used to model and render clouds: particle systems, metaballs, 

voxel volumes, procedural noise, and textured solids. Note that these techniques are 

not mutually exclusive; multiple techniques have been combined with good results. 

 

 

 

2.5.1 Particle Systems 

 

Particle systems model objects as a collection of particles—simple primitives 

that can be represented by a single 3D position and a small number of attributes such 

as radius, color, and texture. Reeves (1983) introduced particle systems in as an 

approach to modeling clouds and other “fuzzy” phenomena, and described 

approximate methods of shading particle models in (Reeves and Blau, 1985). 

Particles can be created by hand using a modeling tool, procedurally generated, or 

created with some combination of the two. Particles can be rendered in a variety of 

ways. Harris and Lastra (2001) modeled static clouds with particles and rendered 

each particle as a small texture sprite (or “split” (Westover, 1990)). The details of 

this technique can be found in (Harris and Lastra, 2001). Figure 2.2 shows clouds 

modeled by Harria and Lastra (2001). 

 

 
Figure 2.2: Shading with multiple forward scattering. (Harris and Lastra, 2001) 

 

Particles have the advantage that they usually require only very simple and 

inexpensive code to maintain and render. Because a particle implicitly represents a 

spherical volume, a cloud built with particles usually requires much less storage than 

a similarly detailed cloud represented with other methods. This advantage may 

diminish as detail increases, because many tiny particles are needed to achieve high 

detail. In this situation other techniques may be more desirable. 
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2.5.2 Metaballs 

 

Metaballs (or “blobs”) represent volumes as the superposition of potential 

fields of a set of sources, each of which is defined by a center, radius, and strength 

(Blinn, 1982a). These volumes can be rendered in a number of ways, including ray 

tracing and splatting. Alternatively, isosurfaces can be extracted and rendered, but 

this might not be appropriate for clouds. Nishita et al. (1999) used metaballs to 

model clouds by first creating a basic cloud shape by hand-placing a few metaballs, 

and then adding detail via a fractal method of generating new metaballs on the 

surfaces of existing ones (Nishita et al., 1996). Dobashi et al. (1999) used metaballs 

to model clouds extracted from satellite images. In Dobashi et al. (2000), clouds 

simulated on a voxel grid were converted into metaballs for rendering with splatting. 

The figure 2.3 shows a snapshot of clouds formed around mountains, as modeled by 

Dobashi et al. (2000).  

 

 
Figure 2.3: Cloud formation around mountains (Dobashi et al., 2000) 

 

 

 

2.5.3 Voxel Volumes 

 

Voxels are another common representation for clouds. A voxel is the three-

dimensional analog of a pixel. It is a single cell of a regular grid subdivision of a 

rectangular prism. Voxel models provide a uniform sampling of the volume, and can 

be rendered with both forward and backward methods. There is a large body of 

existing work on volume rendering that can be drawn upon when rendering clouds 
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represented as voxel volumes (Levoy, 1988; Westover, 1990; Wilson et al., 1994; 

Cabral et al., 1994; Kniss et al., 2002). Voxel grids are typically used when 

physically-based simulation is involved. Kajiya and Herzen (1984) performed a 

simple physical cloud simulation and stored the results in a voxel volume which they 

rendered using ray tracing. Figure 2.4 shows clouds rendered by Kajiya and Herzen 

(1984). 

 

 
Figure 2.4: Cloud rendered by ray tracing (Kajiya and Herzen, 1984) 

 

Dobashi, et al. (1998) simulated clouds on a voxel grid using a cellular 

automata model similar to Nagel and Raschke (1992), converted the grid to 

metaballs, and rendered them using splatting (Dobashi et al., 2000). Miyazaki et al. 

(2001) also performed cloud simulation on a grid using a method known as a 

Coupled Map Lattice (CML), and then rendered the resulting clouds in the same way 

as Dobashi et al. Overby et al. (2002) solved a set of partial differential equations to 

generate clouds on a voxel grid and rendered them using SkyWorks rendering engine  

(Harris and Lastra, 2001). 

 

 

 

2.5.4 Procedural Noise 

 

Procedural solid noise techniques are another important technique for 

generating models of clouds. These methods use noise as a basis, and perform 

various operations on the noise to generate random but continuous density data to fill 
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cloud volumes (Lewis, 1989; Perlin, 1985). Ebert has done much work in modeling 

“solid spaces” using procedural solid noise, including offline computation of realistic 

images of smoke, steam, and clouds (Ebert and Parent, 1990; Ebert, 1997; Ebert et 

al., 2002). Ebert modeled clouds using a union of implicit functions. He then 

perturbed the solid space defined by the implicit functions using procedural solid 

noise, and rendered it using a scan line renderer. Schpok et al. (2003) recently 

extended Ebert’s techniques to take advantage of programmable graphics hardware 

for fast animation and rendering. Figure 2.5 shows volumetric implicit turbulent 

cloud modeled by Ebert (1997). 
 

 
Figure 2.5: Volumetric Implicit Turbulent Cloud (Ebert, 1997) 

 

 

 

2.5.5 Textured Solids 

 

Others have chosen surface representations of clouds rather than volume 

representations. Gardner used fractal texturing on the surface of ellipsoids to 

simulate the appearance of clouds (Gardner, 1985). By combining multiple textured 

and shaded ellipsoids, he was able to create convincing cloudy scenes. Lewis also 

used ellipsoids for clouds, but with procedural solid noise (Lewis, 1989). More 

recently, Elinas and Sturzlinger used a variation of Gardner’s method to interactively 
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render clouds composed of multiple ellipsoids (Elinas and Sturzlinger, 2001). Figure 

2.6 shows clouds modeled by Elinas and Sturzlinger (2001) using 30 ellipsoids. 

 

 
Figure 2.6: Cloud constructed from 30 ellipsoids (Elinas and Sturzlinger, 2001) 

 

 

 

2.6 Cloud Dynamics Simulation 

 

Cloud simulation has been of interest to meteorologists and atmospheric 

scientists since the advancement in high performance computing, but it has only 

recently drawn much interest from the computer graphics community. Scientific 

simulations of clouds and weather are typically very complex, requiring many hours 

of computation to simulate a relatively short time of cloud development. 

 

The earliest simulations in atmospheric science were simple one-dimensional 

models. These models represented only vertical motion and computed changes under 

the influences of condensation and precipitation. Later models extended the 

simulation to two dimensions, but the extreme computational expense of three 

dimensions was prohibitive, so researchers tended to resort to slab symmetry or axial 

symmetry. These symmetries limit simulation to two-dimensions, but they at least 

provide the ability to simulate horizontal wind shear, which is important to cloud 

dynamics. One of the earliest such simulations was presented in (Takeda, 1971). 

Because rotational flow—including vortices with both horizontal and vertical axes of 

rotation—is common in real clouds, three-dimensional simulation is essential for 

high accuracy. Steiner presented the first fully three-dimensional model, and in a 

comparison with a similar two-dimensional model, he showed important differences 
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in the rotational motion of the clouds (Steiner, 1973). Three-dimensional cloud 

simulation has progressed since then. 

 

Simulations from atmospheric physics are too expensive for computer 

graphics applications other than scientific visualization. Because they are used to 

understand our atmosphere and weather, many of them include a high level of detail 

that is not visible in nature, including very specific tracking of water state and droplet 

size distributions, complex microphysics, and detailed fluid dynamics at a variety of 

scales. If the goal is simply to create realistic images and animations of clouds, much 

less detailed visual simulations can be used. 

 

Kajiya and Herzen were the first in computer graphics to demonstrate a visual 

cloud simulation (Kajiya and Herzen, 1984). They solved a very simple set of partial 

differential equations to generate cloud data sets for their ray tracing algorithm. The 

Partial differential Equations (PDE) they solved were the Navier-Stokes equations of 

incompressible fluid flow; a simple thermodynamic equation to account for 

advection of temperature and latent heat effects; and a simple water continuity 

equation. The simulation required about 10 seconds per time step (one second of 

cloud evolution) to update a 10×10×20 grid on a VAX 11/780. Overby et al. 

described a similar but slightly more detailed physical model based on PDEs 

(Overby et al., 2002). They used the stable fluid simulation algorithm of (Stam, 

1999) to solve the Navier-Stokes equations. The stability of this method allows much 

larger time steps, so Overby et al. were able to achieve simulation rates of one 

iteration per second on a 15 × 50 × 15 grid using an 800MHz Pentium III. Harris has 

implemented a faster and slightly more realistic cloud simulation using 

programmable floating point graphics hardware (Harris et al., 2003; Harris, 2003). 

 

Other researchers have tried simpler, but less realistic rule-based simulation 

techniques. Neyret used an animated particle system to model cloud behavior, using 

a set of heuristics to approximate the rolling behavior of convective clouds (Neyret, 

1997). (Dobashi et al., 2000) used a simple cellular automata (CA) model of cloud 

formation to animate clouds offline. The model was based on the simple CA 

introduced by (Nagel and Raschke, 1992). Nagel and Raschke’s original CA had 

rules for the spread of humidity between neighboring cells and for the formation of 
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clouds in humid cells, but included no mechanism for evaporation. Dobashi et al. 

added a stochastic rule for evaporation so that the clouds would appear to grow and 

dissipate. Their model achieved a simulation time of about 0.5 seconds on a 256 × 

256 × 20 volume using a dual 500 MHz Pentium III. 

 

In similar work, Miyazaki et al. used a coupled map lattice rather than a 

cellular automaton (Miyazaki et al., 2001). This model was an extension of an earlier 

coupled map lattice model from the physics literature. Coupled map lattices (CML) 

are an extension of CA with continuous state values at the cells, rather than discrete 

values. Harris et al. have done work on performing CML simulations on 

programmable graphics hardware (Harris et al., 2002). The CML of Miyazaki et al. 

used rules based on atmospheric fluid dynamics, including a rule used to 

approximate incompressibility and rules for advection, vapor and temperature 

diffusion, buoyancy, and phase changes. They were able to simulate a 3–5 s time step 

on a 256 × 256 × 40 lattice in about 10 s on a 1 GHz Pentium III. 

 

 

 

2.7  Light Scattering and Cloud Radiometry 

 

Some of the earliest work on simulating light scattering for computer 

graphics was presented in (Blinn, 1982b). Motivated by the need to render the rings 

of Saturn, Blinn described an approximate method for computing the appearance of 

cloudy or dusty surfaces via statistical simulation of the light-matter interaction. 

Blinn (1982b) made a simplifying assumption in his model—that the primary effect 

of light scattering is due to reflection from a single particle in the medium, and 

multiple reflections can be considered negligible. This single scattering assumption 

has become common in computer graphics, but as Blinn (1982b) and others have 

noted, it is only valid for media with particles of low single scattering albedo. Blinn 

(1982b) also simplified the problem by limiting application of his model to plane 

parallel atmospheres, rather than handling scattering in arbitrary domains. 

 

As described by Harris (2003), accurate computation of light scattering in 

media with high single scattering albedo is expensive, because it requires evaluation 
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of a double integral equation. In practice, researchers either use simplifying 

assumptions to reduce the complexity of the problem, or perform long offline 

computations. There are multiple ways to compute light scattering, and many 

simplifications that can be applied. The previous work in this area can be grouped 

into five categories: Spherical Harmonics Methods, Finite Element Methods, 

Discrete Ordinates, Monte Carlo Integration, and Line Integral Methods. 

 

 

 

2.7.1 Spherical Harmonics Methods 

 

The spherical harmonics Yl
m (θ, φ) are the angular portion of the solution of 

Laplace’s equation in spherical coordinates. The spherical harmonics form a 

complete orthonormal basis. This means that an arbitrary function f(θ, φ) can be 

represented by an infinite series expansion in terms of spherical harmonics: 
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The method of determining the coefficients, Al
m, of the series is analogous to 

determining the coefficients of a Fourier series expansion of a function. If the value 

of f is known at a number of samples, then a series of linear equations can be 

formulated and solved for the coefficients. Spherical harmonics methods have been 

used by (Bhate and Tokuta, 1992; Kajiya and Herzen, 1984; Stam, 1995) to compute 

multiple scattering. 

 

Kajiya and Herzen presented a ray tracing technique for rendering arbitrary 

volumes of scattering media. In addition to a simple single scattering model, they 

also described a solution method for multiple scattering that uses spherical harmonics 

(Kajiya and Herzen, 1984). Their single scattering simulation method stored the 

cloud density and illumination data on voxel grids, and their algorithm required two 

passes. In the first pass, scattering and absorption were integrated along paths from 

the light source through the cloud to each voxel where the resulting intensities were 

stored. In the second pass, eye rays were traced through the volume of intensities and 
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scattering of light to the eye was computed, resulting in a cloud image. For multiple 

scattering, the authors derived a discrete spherical harmonics approximation to the 

multiple scattering equations, and solved the resulting matrix of partial differential 

equations using relaxation. This matrix solution replaces the first integration pass of 

the single scattering algorithm. As mentioned in (Stam, 1995), this method is known 

as the PN-method in the transport theory literature, where N is the degree of the 

highest harmonic in the spherical harmonic expansion. 

 

Following Kajiya and Herzen’s lead, two pass algorithms for computing light 

scattering in volumetric media are now common. Interestingly, (Max, 1994) points 

out that while Kajiya and Herzen attempted to compute multiple scattering for the 

case of an isotropic phase function, it is not clear if they succeeded, all of the images 

in the paper seem to have been computed with the simpler single scattering model. 

 

Stam explained in (Stam, 1995) that while (Kajiya and Herzen, 1984) derived 

a very general N-term expression for multiple scattering using a spherical harmonics 

expansion, they truncated the expansion after the first term to produce their results. 

He showed that this truncation results in a diffusion type equation for the scattered 

portion of the illumination field. In media where scattering events are very 

frequent— “optically thick” media—multiple scattering can be approximated as 

diffusion of the light energy. In other words, at any location in the medium, photons 

can be found traveling in arbitrary directions. The light is said to be diffuse. Stam 

presented this diffusion approximation in more detail. Like Kajiya and Herzen, Stam 

represented the scattering medium on a voxel grid. He described two ways to solve 

for the intensity. In the first method, he discretized the diffusion approximation on 

the grid to formulate a system of linear equations that he then solved using the 

multigrid method. The second method is a finite element method in which he used a 

series expansion of basis functions, specifically Gaussian kernel functions of 

distance. This expansion led to a matrix system that he solved using LU 

decomposition (Harris, 2003). 
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2.7.2 Finite Element Methods 

 

The finite element method is another technique for solving integral equations 

that has been applied to light transport. In the finite element method, an unknown 

function is approximated by dividing the domain of the function into a number of 

small pieces, or elements, over which the function can be approximated using simple 

basis functions (often polynomials). As a result, the unknown function can be 

represented with a finite number of unknowns and solved numerically. 

 

A common application of finite elements in computer graphics is the radiosity 

method for computing diffuse reflection among surfaces. In the radiosity method, the 

surfaces of a scene represent the domain of the radiosity function. An integral 

equation characterizes the intensity, or radiosity, of light reflected from the surfaces. 

To solve the radiosity equation, the surfaces are first subdivided into a number of 

small elements on which the radiosity will be represented by a sum of weighted basis 

functions. This formulation results in a system of linear equations that can be solved 

for the weights. The coefficients of this system are integrals over parts of the 

surfaces. Intuitively, light incident on an arbitrary point in the scene can be reflected 

to any other point; hence the coefficients are integrals over the scene. In the finite 

element case, these integrals are evaluated for every pair of elements in the scene, 

and are called form factors. 

 

Rushmeier and Torrance extended the radiosity method to include radiative 

transfer in volumes of participating media (Rushmeier and Torrance, 1987). This 

zonal method, like the radiosity method, was originally developed for radiant heat 

transfer analysis. The zonal method divides the volume of a participating medium 

into finite elements which are assumed to have constant radiosity. As with the 

radiosity method, form factors are computed for every pair combination of surface 

elements in the scene, as well as every pair of volume elements and all surface-

volume pairs. This is complicated by the fact that the form factors involve a double 

integral over points in both elements, as well as along the path between the elements. 

As in the radiosity method, a system of simultaneous linear radiosity equations is 

formulated based on these form factors. The solution of this system is the steady-

state diffuse radiosity at each element of the environment, including the effects of 
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scattering and absorption by the participating medium. Rushmeier and Torrance’s 

presentation of the zonal method was limited to isotropic scattering media, with no 

mention of phase functions. 

 

Nishita et al. introduced approximations and a rendering technique for global 

illumination of clouds, accounting for multiple anisotropic scattering and skylight 

(Nishita et al., 1996). This method can also be considered a finite element method, 

because the volume is divided into voxels and radiative transfer between voxels is 

computed. Nishita et al. made two simplifying observations that reduced the cost of 

the computation. The first observation was that the phase function of cloud water 

droplets is highly anisotropic, favoring forward scattering. The result of this is that 

not all directions contribute strongly to the illumination of a given volume element. 

Therefore, Nishita et al. computed a “reference pattern” of voxels that contributed 

significantly to a given point. This pattern is constant at every position in the volume, 

because the sun can be considered to be infinitely distant. Thus, the same sampling 

pattern can be used to update the illumination of each voxel. The second observation 

they made was that only the first few orders of scattering contribute strongly to the 

illumination of a given voxel. Therefore, Nishita et al. only computed up to the third 

order of scattering. 

 

 

 

2.7.3  Discrete Ordinates 

 

The method of discrete ordinates allocates the radiosity exiting each volume 

element into a collection of M discrete directions. The intensity is assumed to be 

constant over each direction “bin”. This method can be used to account for 

anisotropic scattering. If an interaction between a pair of elements can be represented 

by only one direction bin (this is unreasonable for elements that are close), then the 

number of non-zero elements in the matrix of linear coefficients is MN2, where N = 

n3 is the number of elements in the volume (Max, 1994). However, Max points out 

that this method introduces sampling artifacts because it effectively shoots energy 

from elements in infinitesimal beams along the discrete directions, missing the 

regions between them. In work inspired by (Patmore, 1993), Max (1994) improved 
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on the basic method of discrete ordinates by efficiently spreading the shot radiosity 

over an entire direction bin, rather than along discrete directions. The method 

achieves a large speedup by handling a whole plane of source elements 

simultaneously, which reduces the computation time to O(MN log N +M2N) (Harris, 

2003). 

 

 

 

2.7.4 Monte Carlo Integration 

 

Monte Carlo Integration is a statistical method that uses sequences of random 

numbers to solve integral equations (Harris, 2003). In complex problems like light 

transport, where computing all possible light-matter interactions would be 

impossible, Monte Carlo methods reduce the complexity by randomly sampling the 

integration domain. With enough samples, chosen intelligently based on importance, 

an accurate solution can be found with much less computation than a complete model 

would require. The technique of intelligently choosing samples is called importance 

sampling, and the specific method depends on the problem being solved. A common 

application of Monte Carlo methods in computer graphics is Monte Carlo ray tracing. 

In this technique, whenever a light ray traversing a scene interacts with matter (either 

a solid surface or a participating medium), statistical methods are used to determine 

whether the light is absorbed or scattered (for solids, this scattering may be thought 

of as reflection or refraction). If the light is scattered, the scattered ray direction is 

also chosen using stochastic methods. Importance sampling is typically used to 

determine the direction via the evaluation of a probability function. 

 

Blasi, et al. (1993) presented a technique for rendering arbitrary volumes of 

participating media using Monte Carlo ray tracing. They placed no restrictions on the 

medium, allowing arbitrary distributions of density and phase function, and 

accounting for multiple scattering. They demonstrated an importance sampling 

technique that uses the phase function as a probability function to determine the 

outgoing direction of scattered rays. This way, the in-scattering integral does not 

have to be evaluated over the entire sphere of incoming directions, and a large 

amount of computation is saved. Using the phase function for importance sampling 
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ensures that the most significant contributions of scattering are used to determine the 

intensity. In this way, the technique is similar to the “reference pattern” technique 

used by (Nishita et al., 1996). 

 

Photon mapping is a variation of pure Monte Carlo ray tracing in which 

photons (particles of radiant energy) are traced through a scene (Jensen, 1996). Many 

photons are traced through the scene, starting at the light sources. Whenever a photon 

lands on a nonspecular surface it is stored in a photon map, a data structure that 

stores the position, incoming direction, and radiance of each photon hit. The radiance 

on a surface can be estimated at any point from the photons closest to that point. 

Photon mapping requires two passes; the first pass builds the photon map, and the 

second generates an image from the photon map. Image generation is typically 

performed using ray tracing from the eye. The photon map exhibits the flexibility of 

Monte Carlo ray tracing methods, but avoids the grainy noise that often plagues 

them. Jensen and Christensen extended the basic photon map to incorporate the 

effects of participating media (Jensen and Christensen, 1998). To do so, they 

introduced a volume photon map to store photons within participating media, and 

derived a formula for estimating the radiance in the media using this map. Their 

techniques enable simulation of multiple scattering, volume caustics (focusing of 

light onto participating media caused by specular reflection or refraction), and color 

transfer between surfaces and volumes of participating media. 

 

 

 

2.7.5 Line Integral Methods 

 

Recently, interest in simulating light scattering has grown among developers 

of interactive applications. For view-dependent effects and dynamic phenomena, the 

techniques described in the previous sections are not practical. While those 

techniques accurately portray the effects of multiple scattering, they require a large 

amount of computation. For interactive applications, simplifications must be made. 

 

A first step in simplifying the computation is to ignore volumetric scattering 

altogether. With or without scattering, visualization of the shadowing effects of 
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absorption by the medium is desirable. This requires at least one pass through the 

volume (along the direction of light propagation) to integrate the intensity of 

transmitted light. Because methods that make this simplification perform the 

intensity integration along lines from the light source through the volume may be 

called line integral methods. Kajiya and Herzen’s original single scattering algorithm 

is a line integral method. Intuitively, line integral methods are limited to single 

scattering because they cannot propagate light back to points already traversed. 

 

Dobashi et al. (2000) described a simple line integral technique for 

computing the illumination of clouds using the standard blending operations 

provided by computer graphics Application Programming Interface (API) such as 

OpenGL (Segal and Akeley, 2001). Dobashi et al. (2000) represented clouds as 

collections of large “particles” represented by textured billboards. To compute 

illumination, they rendered the particles in order of increasing distance from the sun 

into an initially white frame buffer. They configured OpenGL blending operations so 

that each pixel covered by a particle was darkened by an amount proportional to 

attenuation by the particle. After rendering a particle, they read the color of the pixel 

at the center of projection of the particle from the frame buffer. They stored this 

value as the intensity of incident light that reached the particle through the cloud. 

Traversal of the particles in order of increasing distance from the light source 

evaluates the line integral of extinction through each pixel. Because pixels are 

darkened by every particle that overlaps them, this method computes accurate self-

shadowing of the cloud. After this first pass, they rendered particles from back to 

front with respect to the view point, using the intensities computed in the first pass. 

They configured blending to integrate absorption and single scattering along lines 

through each pixel of the image, resulting in a realistic image of the clouds. Dobashi 

et al. (2000) further enhanced this realism by computing the shadowing of the terrain 

by the clouds and shafts of light between the clouds. 

 

Kniss et al. (2002) presented a similar line integral approach for absorption 

and multiple forward scattering in the context of direct volume rendering. They 

rendered volumes of translucent media from 3D textures by rendering slices of the 

volume oriented to face along the halfway vector between the light and view 

directions. This “half angle slice” technique allowed them to interleave light 
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transport integration with the display of the volume. The method traverses the 

volume slices in order of increasing distance from the light source, performing 

alternate display and illumination passes. Three buffers are maintained: two for the 

computation of the illumination of the volume (current and next), and one (typically 

the frame buffer) for display of the volume. During the display pass, the current slice 

is rendered from the observer’s point of view. The slice is textured with the 3D 

volume texture blended with the current illumination buffer. This results in self-

shadowing of the volume as in Dobashi et al. (2000), as well as incorporating the 

scattering computed during the illumination pass as in Harris and Lastra (2001). 

During the illumination pass, the slice is rendered into the next illumination buffer 

from the light’s point of view, and blended with the current illumination buffer to 

compute the next step in the line integral of extinction and forward in-scattering. 

During this blending, the current buffer is sampled multiple times at jittered 

locations, and the samples are averaged. This accomplishes a blurring of the forward-

scattered light, an ad hoc approximation of multiple scattering over a small solid 

angle around the forward direction. Even though this method is ad hoc, it is 

physically-based because multiple scattering in media with a high single scattering 

albedo results in “blurring” of the light intensity (the light is diffused). 

 

 

 

2.8  Virtual Environment 

 

 Since fiction writers have already been exploring the role of computer in a 

future world, and have described a synthetic 3D universe that is as believable as the 

real physical universe. Such Virtual Reality (VR) systems create a ‘cyberspace’ 

where it is possible to interact with anything and anyone on a virtual level (Vince, 

1995).  

 

The key technologies behind such imaginative writing are real-time computer 

graphics, color displays and simulation software. Computer graphics provides the 

basis for creating the synthetic images, while a Head-Mounted Display (MHD) 

supplies the user’s eyes with a stereoscopic view of a computer generated world. 
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Complex software creates the Virtual Environment (VE), which could be anything 

from 3D objects to abstract databases. 

 

Virtual reality systems have two important areas: the first concerns with user 

immersion, and the second relates to the degree of interaction the user has with the 

virtual environment.  

 

 

 

2.8.1  Immersion 

 

 The sensation of being immersed within a virtual environment is greatly 

influenced by the user’s integration with the synthetic images. For example, in the 

case of flight simulator, the pilot and co-pilot sit inside a replica cockpit and gaze 

through the window into a 200° panoramic mirror reflecting the computer-generated 

graphics. This creates a realistic sensation of being in a real plane flying over some 

3D landscape. Some virtual reality systems, on the other hand, provide each user 

with personal view of the virtual environment using an HMD which visually isolates 

them from the real world and provides the left and right eyes with two separate 

images that include parallax differences, which, given the right conditions, produce a 

realistic stereoscopic sensation. The user can acquire a positive sense of being 

immersed in the virtual environment, which is further enhanced when touch and 

sound are introduced. The immersion is further enhanced by allowing the user’s head 

movements to control the gaze of direction of the synthetic images.  

 

 Virtual reality systems can be divided into three groups: immersive, non-

immersive and hybrid. Immersive systems, replace the view of real world with 

computer generated images that react to the position and orientation of the user’s 

head. A non-immersive system, on the other hand, leaves the user visually aware of 

the real world but able to observe the virtual world through some display device such 

as graphics workstation. The user navigates the virtual world using a device such as a 

space mouse. A hybrid virtual reality system permits the user to view the real world 

with virtual images superimposed over this view – such systems are also known as 

‘augmented reality’ systems. 



 44

 

2.8.2  Interaction 

 

 When visually immersed with a virtual environment, there is a natural 

inquisitive temptation to reach out and touch virtual objects. Obviously this is 

impossible, as there is nothing to touch. The user’s sense of immersion can be greatly 

enhanced by including part of a ‘virtual body’ such as hand in the virtual 

environment. The user now sees in the HMD a 3D virtual hand as part of the 

stereoscopic scene. If the user also wears an interactive glove, or a similar device, 

any movements their hand makes can be tracked and used to control the status of the 

virtual hand. The user has now been coupled to the VE in a way that allows some 

high level interaction to occur. 

 

 

 

2.9  Summary 

 

Brief review of modeling techniques for various natural phenomena in 

computer graphics has been discussed. The various methods used by researchers to 

model clouds have been presented. The methods for cloud radiometry have also been 

described. The Figure 2.7 a hierarchical diagram of the modeling techniques used for 

cloud modeling as described by Muhammad Azam Rana et al. (2003). 
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Figure 2.7: Hierarchy for cloud modeling techniques 

(Muhammad Azam Rana et al., 2003) 
 

Kajiya and Herzen (1984) modeled cloud by physical model. He made use of 

numerical simulation of fluid dynamics. Solution of complicated non-linear 

equations is difficult and resource intensive, requiring special knowledge to set 

proper boundary conditions. Neyret (1997) tried physical method for modeling 

clouds by making use of qualitative simulation. The method focuses on simulating 

growth of a single cluster of cloud and is not suitable for animation. Heinzlreiter et 

al. (2002) uses alpha-blended billboard textures to enhance the rendering process. 

The use hardware API makes real time rendering possible. The observer position 

cannot be changed. Cloud model needs improvements. Gardner (1985) uses 

procedural approach. He uses textured ellipsoids to simulate clouds. This model 

lacks true 3D geometric model, scattering effects cannot be simulated to calculate 

color of clouds. Elinas and Sturzlinger (2001) uses fractal/3D textured ellipsoid to 

model clouds. His approach is similar to Gardner (1985). This model produces good 

results for clouds at medium distance but may not produce good results for clouds at 

shorter distance. Ebert (1997) uses metaballs with noise function to model clouds. 

Metaballs and noise function are used to create animation of cloud formation. Shape 

of cloud is determined in advance and then visible parts are increased gradually. To 

include time as parameter, no way has been described. Stam and Fuime (1995) use 

Stochastic rendering of density fields to model clouds. This method can create 

realistic clouds, but it is impractical to create large-scale clouds viewed from space. 
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Trembilski (2002) simulates clouds by isosurfaces generated by Marching Cube 

algorithm. This method is developed for weather forecast. Lighting model is not true 

physical; graphics hardware is used for color calculations. Harris (2002) uses 

procedural approach by making use of particle system and dynamically generated 

imposters. Hardware accelerated API has made possible to achieve very high frame 

rates (greater than 50 fps). 



 

 

 

CHAPTER III 

 

 

 

 

PARTICLE SYSTEMS 

 

 

 

3.1  Introduction 

 

Particle systems differ from the other techniques in that their abstraction is in 

control of the animation and specification of the object. Particle systems do use a 

large database of geometric primitives to represent natural objects (“fuzzy objects”), 

but the animation, location, birth, and death of the particles representing the object 

are controlled algorithmically. Particle systems are most commonly used to represent 

natural phenomena such as fire, water, clouds, snow, rain, grass, and trees (Reeves, 

1983). A particle- system object is represented by a large collection (cloud) of very 

simple geometric particles that change stochastically over time. The procedural 

aspect and main power of particle systems allow the specification and control of this 

extremely large cloud of geometric particles with very few parameters. Besides the 

geometric particles, a particle system has controllable stochastic particle animation 

procedures that govern the creation, movement, and death of the particles. These 

animation procedures often include physically based forces to simulate effects such 

as gravity, vorticity, conservation of momentum, and energy. Particle systems pose 

special rendering problems because of the large number of primitives, but specialized 

rendering techniques, including probabilistic rendering algorithms, have been 

developed to render particle systems (Reeves and Blau, 1985). 

 

A particle system is a collection of many minute particles that together 

represent a fuzzy object. Over a period of time, particles are generated into a system, 
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move and change from within the system, and die from the system. To compute each 

frame in a motion sequence, new particles are generated into the system. Each new 

particle is assigned its individual attributes. Any particles that have existed within the 

system past their prescribed lifetime are extinguished. The remaining particles are 

moved and transformed according to their dynamic attributes. And finally an image 

of the living particles is rendered in a frame buffer 

 

The particle system can be programmed to execute any set of instructions at 

each step. Because it is procedural, this approach can incorporate any computational 

model that describes the appearance or dynamics of the object. For example, the 

motions and transformations of particles could be tied to the solution of a system of 

partial differential equations, or particle attributes could be assigned on the basis of 

statistical mechanics. We can, therefore, take advantage of models, which have been 

developed in other scientific or engineering disciplines. 

 

Simple stochastic processes can be used as the procedural element of each 

step in the generation of a frame. To control the shape, appearance, and dynamics of 

the particles within a particle system, the model designer has access to a set of 

parameters. Stochastic processes that randomly select each particle's appearance and 

movement are constrained by these parameters. In general, each parameter specifies 

a range in which a particle's value must lie. Normally, a range is specified by 

providing its mean value and maximum variance. 

 

In modeling fuzzy objects, the particle system approach has several important 

advantages over classical surface-oriented techniques. 

 

• First, a particle (a point in three-dimensional space) is a much simpler primitive 

than a polygon, the simplest of the surface representations. Therefore, in the same 

amount of computation time one can process more of the basic primitives and 

produce a more complex image. 

 

• Second, the model definition is procedural and is controlled by random numbers. 

Therefore, obtaining a highly detailed model does not necessarily require a great 

deal of human design time as is often the case with existing surface-based 
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systems. Because it is procedural, a particle system can adjust its level of detail to 

suit a specific set of viewing parameters. As with fractal surfaces Fournier et al. 

(1982), zooming in on a particle system can reveal more and more detail. 

 

• Third, particle systems model objects that are "alive," that is, they change form 

over a period of time. It is difficult to represent complex dynamics of this form 

with surface-based modeling techniques. 

 

 
 
3.2  Usage of Particles System 
 
 

Dobashi et al. (2000) presented a method for simulation of clouds using 

Cellular Automation. 3D grids represent the simulation space and three state 

variables are assigned at each grid point. The state of each variable is either 0 or 1. 

Their status at time t+1 is calculated by the status at time t using transition rules. 

 

The method of Dobashi et al. (2000) consists of two processes, simulation 

and rendering. The simulation space is divided into voxels. The voxels correspond to 

cells used in the cellular automaton. At each cell, three logical variables, 

vapor/humidity (hum), clouds (cld), and phase transition (or activation) factors (act) 

are assigned. The state of each variable is either 0 or 1. Cloud evolution is simulated 

by applying simple transition rules at each time step. The transition rules represent 

formation, extinction, and advection by winds. Since the state is either 0 or 1, the 

rules can be expressed by Boolean operations. 

 

Images are generated in the rendering process by making use of the 

simulation results. What we can obtained from the simulation is no more than there 

are clouds (cld = 1) or, there are not-clouds (cld = 0) at each voxel. Therefore, a 

density at each point is calculated by smoothing the binary distribution. The clouds 

are then rendered using volume rendering techniques. The rendering process consists 

of two steps. The first step calculates the intensity of light reaching the center of each 

voxel. Cloud shadows are also calculated in this step. The shadows are obtained as a 

texture. Then, in the second step, images are generated. Clouds are rendered by using 
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a splatting method. To render shafts of light, consider multi spherical shells with 

their center at the viewpoint are considered.. The shells are then drawn from back to 

front using the hardware alpha-blending function. Shafts of light are rendered by 

mapping the shadow texture on the shells. 

 

For growth simulation, the simulation space is aligned parallel to xyz axes 

and the number of cells is assumed to be nx × ny × nz. As mentioned before, three 

logical variables, hum, act, and cld are assigned at each cell. The state of each 

variable is either 0 or 1. hum=1 means there is enough vapor to form clouds, act=1 

means the phase transition from vapor to water (clouds) is ready to occur, and cld=1 

means there are clouds. In the following, B Ι A and BΥA indicate conjunction and 

disjunctinon between A and B, respectively, and ¬A indicates negation of A. Their 

transition rules are given as follows.  

 
 ),,,(),,,()1,,,( itkjiactitkjihumitkjihum ¬=+ Ι    (3.1) 

 
 ),,,(),,,()1,,,( itkjiactitkjiclditkjicld Υ=+    (3.2) 

 
 ),,(),,,(),,,()1,,,( kjifitkjihumitkjiactitkjiact actΙΙ¬=+  (3.3) 

 

where fact(i,j,k) is a Boolean function and its value is calculated by the status of act 

around the cell. The following function is used by taking into account the fact that 

clouds grow upward and horizontally. 

 
 

          (3.4) 
 

For cloud extinction, firstly the animator specifies cloud extinction 

probability, pext. Next, at each cell whose cld is 1, a random number, rnd (0 ≤ rnd ≤ 
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each cell at different times, the animator can specify regions where cloud extinction 

occurs frequently. Although this realizes the cloud extinction, there remains another 

problem. Clouds are never generated after the extinction at the cell. To solve this, 

vapor (hum) and phase transition factors (act) are supplied at specified time intervals. 

Similar to extinction, vapor probability, phum, and phase transition probability, pact, 

are used to set them randomly. That is, hum is changed to 1 if rnd < phum and act is 

changed to 1 if rnd < pact. Cloud motion can be controlled by controlling the 

probabilities, phum, pact, and pext at each cell at each time step. The methods described 

in this section are summarized by the following three transition rules.  

 
)),,,((),,,()1,,,( itkjiprndISitkjiclditkjicld ext>=+ Ι   (3.5) 

 
)),,,((),,,()1,,,( itkjiprndISitkjihumitkjihum hum<=+ Υ  (3.6) 

 
)),,,((),,,()1,,,( itkjiprndISitkjiactitkjiact act<=+ Υ   (3.7) 

 

where rnd is a uniform random number, IS(e) is a Boolean function that returns 1 if 

the expression e is true, otherwise returns 0. 

 

Beginning from initial random status, cloud growth is simulated by updating 

the state of each variable. First, hum is initialized by using uniform random numbers 

of probability phum. That is, hum is set to 1 if a random number between 0 and 1 is 

less than phum, otherwise hum is set to 0. Similarly, act is set to either 0 or 1 by using 

the probability pact. 

 

For continuous density distribution, metaballs are used. Metaballs are spheres 

in which a field function is defined. A metaball has two parameters, that is, density at 

the center and effective radius. Metaballs are placed at each grid point and the 

continuous distribution is represented as a weighted sum of the field functions. 

Continuous distribution is obtained by adjusting densities at their centers and their 

effective radii, based on the binary distribution.  

 

Clouds can be observed moving in one direction, blown by winds. New 

transition rules are introduced to include the wind effect. The idea is simply to shift 
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all the variables toward the wind direction. It is assumed, for simplicity, the wind 

blows toward the direction of x-axis. Other cases can be handled by rotating the 

simulation space according to the wind direction. Furthermore, it is well known that 

the wind velocity is different depending on the height from the ground. The wind 

velocity, v(zk), is therefore specified as a function of z-coordinate of each cell (i,j,k). 

To implement the wind effect in the context of the cellular automaton, the function 

v(zk), is assumed to return integer value. The transition rules as follows. 

 

hum(i-v(zk),j,k,ti), i-v(zk) >0 

hum(i,j,k,ti+1) =   

0,   otherwise  (3.8) 

 

cld(i-v(zk),j,k,ti), i-v(zk) >0 

cld(i,j,k,ti+1) =   

0,   otherwise  (3.9) 

 

act(i-v(zk),j,k,ti), i-v(zk) >0 

act(i,j,k,ti+1) =   

0,   otherwise  (3.10) 

 

Rendering of clouds is based on the splatting algorithm using billboards. 

Details of the splatting method are well described in (Westover, 1990; Blythe, 1999; 

Meuller et. al 1999). The basic idea for applying it to cloud display is described here. 

First, the sum of the scattered light reaching from the sun on the viewing ray is 

calculated. The attenuated light reaching from behind the clouds is also calculated. 

The light reaching the viewpoint is the sum of those two. Therefore, the color of a 

voxel depends on the scattered color of the sun, the transmitted color of the sky, and 

the attenuation due to cloud particles. Calculation of cloud color using splatting is as 

follows. First, textures for billboards are pre-calculated. Each element of the texture 

stores the attenuation ratio and cumulative density of the light passing through the 

metaball. Since the attenuation is not proportional to it, the texture has to be prepared 

for all meatballs when their center densities are different. However, this requires a 

large amount of memory. So, the density is discretized into nq levels and nq textures 

are prepared. The value used for nq is 64. The texture corresponding to the nearest 
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density of each metaball is mapped onto the corresponding billboard. An image is 

calculated in two steps using the texture-mapped billboards. In the first step, the 

intensity of the light is calculated reaching from the sun at each metaball. The 

shadows of the clouds are also calculated in this step. In the second step, the image 

viewed from the viewpoint is generated. 

 

The basic idea is to calculate an image viewed from the sun direction to 

obtain the intensity of light reaching each metaball. First, the viewpoint is placed at 

the sun position and the parallel projection is assumed. The frame buffer is initialized 

as 1.0. Then the billboards are stored as a light map texture to cast shadows on the 

ground. In the second step, the image is generated by using the color of the metaball 

obtained in the first step. First, all the objects except clouds are rendered. Next, the 

billboards are faced perpendicularly to the viewpoint and sorted in descending order 

based on distances from the viewpoint. Then they are projected onto the image plane 

in back-to-front order. The color in the frame buffer is blended with that of the 

billboard texture. For blending process, the colors in the frame buffer are multiplied 

by the attenuation ratio of the billboard texture and then the colors in the texture are 

added. The same process is repeated for all metaballs. 

 

Shafts of light are caused by particles in the atmosphere. The sunlight passing 

through gaps in clouds is scattered by the particles. The scattered light, Is, reaching 

the viewpoint is recognized as shafts of light. The scattering/absorption due to the 

atmospheric particles must therefore be taken into account. The intensity of light 

reaching the viewpoint is obtained by the following equation. 
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where ns and s∆  are the number of sample and the sampling interval. The 

attenuation, β(T), in the first term is calculated analytically by the positions of the 

viewpoint and each metaball. The color of each metaball is then attenuated by 

multiplying it. To calculate the second term, spherical shells are considered. Their 

centers are placed at viewpoint and their radii are determined so that the intervals of 

shells coincide to ∆s. The shells are approximated by a set of polygons to render 
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them using OpenGL. Polygons outside the viewing pyramid are discarded. Next, the 

intensity of the light scattered at each vertex and the attenuation ratio of the path 

between the viewpoint and the vertex are calculated. Then Is(k∆s) β(k∆s) ∆s is stored 

as the colors of vertices of all the polygons in the viewing pyramid. Finally, the 

second term is computed by rendering the shells with OpenGL’s additive blending 

function. To render the shafts of light, the colors of the polygons have to be 

multiplied by attenuation ratio due to clouds, γ(s). This can be easily achieved just by 

mapping the shadow texture onto the polygons using OpenGL’s texture mapping 

function.  

 

Harris (2002) presented a method for realistic real-time rendering of clouds 

for flight simulators and games using particle systems. He described a cloud 

illumination algorithm that approximates multiple forward scattering in a pre-process 

and first order anisotropic scattering at runtime. Impostors are used to accelerate 

cloud rendering by exploiting frame-to-frame coherence in an interactive flight 

simulation. The method allows hundreds of clouds with hundreds of thousands of 

particles to be rendered at high frame rates, and improves interaction with clouds by 

reducing artifacts introduced by direct particle rendering. The following is details of 

his method. Harris used Particle system, as it is simple and efficient method for 

representing and rendering clouds. He assumed that a particle represents a roughly 

spherical volume in which a Gaussian distribution governs the density falloff from 

the center of the particle. Each particle is made up of a center, radius, density, and 

color. He got good approximations of real clouds by filling space with particles of 

varying size and density. The researcher rendered particles using splatting technique, 

by drawing screen-oriented polygons texture-mapped with a Gaussian density 

function. A particle system was selected for cloud representation, but both shading 

algorithm and fast rendering system are independent of the cloud representation, and 

can be used with any model composed of discrete density samples in space.  

 

Scattering illumination models presented by Harris (2002) simulate the 

emission and absorption of light by a medium as well as scattering through the 

medium. Single scattering models simulate scattering through the medium in a single 

direction. This direction is usually the direction leading to the point of view. Multiple 

scattering models are more physically accurate, but must account for scattering in all 
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directions (or a sampling of all directions), and therefore are much more complicated 

and expensive to evaluate. In a multiple scattering simulation that samples N 

directions on the sphere, each additional order of scattering that is simulated 

multiplies the number of simulated paths by N. Fortunately, as demonstrated by 

(Nishita et. al, 1996), the contribution of most of these paths is insignificant to cloud 

rendering. Nishita et al. found that scattering illumination is dominated by the first 

and second orders, and therefore they only simulated up to the 4th order. They 

reduce the directions sampled in their evaluation of scattering to sub-spaces of high 

contribution, which are composed mostly of directions near the direction of forward 

scattering and those directed at the viewer. Harris (2002) made further simplification 

and approximated multiple scattering only in the light direction – or multiple forward 

scattering – and anisotropic single scattering in the eye direction. The rendering 

method used by Harris (2002) is a two-pass algorithm similar to the one presented by 

Dobashi et. al (2000). Harris pre-computes cloud shading in the first pass, and uses 

this shading to render the clouds in the second pass.  

  

For calculation of multiple forward scattering, the first pass of our shading 

algorithm computes the amount of light incident on each particle. The simplified 

equation used is as follows. 

 

   gk-1 + Tk-1 · Ik-1, 2≤ k ≤N 

Ik =   

   I0,   k=1     (3.12) 

 

In addition to multiple forward scattering approximation, Harris (2002) 

implements single scattering toward the viewer as in Dobashi et. al (2000). The 

equation for this is as follows. 

 

Ek = Sk +Tk · Ek-1,   1 ≤ k ≤ N    (3.13) 

 

The above equation says that the light, Ek, exiting any particle pk is equal to 

the light incident on it that it does not absorb, Tk · Ek-1, plus the light that it scatters, 

Sk. In the first pass the light Ik incident on each particle from the light source is 

computed. In the second, the portion of this light that is scattered toward the viewer 
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is calculated. This can be achieved by replacing Sk with ak · τk · p( ω, -l) · Ik / 4π, 

where ω is the view direction, and p( ω, -l) is phase function discussed below. This 

recurrence approximates single scattering toward the viewer. 

 

The phase function, p( ω, ω’) is very important to cloud shading. Clouds 

exhibit anisotropic scattering of light (including the strong forward scattering that we 

assume in our multiple forward scattering approximation). The phase function 

determines the distribution of scattering for a given incident light direction.  
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where θ  is scattering angle and g is an symmetric function which is determined by 

the cloud condition and the wavelength, if g=0, this function is equivalent to 

Rayleigh scattering. 

 

The rendering presented by Harris (2002) is a two pass algorithm which is 

similar to the one presented by Dobashi et. al (2000). A shading phase runs once per 

scene and a rendering phase runs in real time. The key to the implementation is the 

use of hardware blending and pixel read back. Blending operates by computing a 

weighted average of the frame buffer contents (the destination) and an incoming 

fragment (the source), and storing the result back in the frame buffer. This weighted 

average can be written as. 

 

destdestsrcsrcresult CfCfC ·· +=       (3.15) 

 

If we let Cresult = Ik, fsrc = 1, Csrc = gk-1, fdest = Tk-1, and Cdest = Ik–1, then we see 

that (3.15) and (3.17) are equivalent if the contents of the frame buffer before 

blending represent I0. The runtime phase uses the same algorithm, with particles 

sorted with respect to the viewpoint, and without reading pixels. The pre-computed 

illumination of each particle Ik is used in this phase to compute scattering toward the 

eye. 
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In both passes, particles are rendered in sorted order as polygons textured 

with a Gaussian “splat” texture. The polygon color is set to the scattering factor ak · 

τk · p( ω,l) ·Ik / 4π and the texture is modulated by this color. In the first pass, ω is the 

light direction, and in the second pass it is the direction of the viewer. The source and 

destination blending factors are set to one and one minus source alpha, respectively.  

 

While the cloud rendering method described above provides beautiful results 

and is fast for relatively simple scenes, it suffers under the weight of many complex 

clouds. The games for which we developed this system dictate that we must render 

complicated cloud scenes at fast interactive rates. Clouds are only one component of 

a complex game environment, and therefore can only use a small percentage of a 

frame time. With direct particle rendering, even a scene with ten or twenty thousand 

particles is prohibitively slow on current hardware. In order to render many clouds 

made up of many particles at high frame rates, Harris (2002) used dynamically 

generated impostors. An impostor replaces an object in the scene with a semi-

transparent polygon texture-mapped with an image of the object it replaces. To 

generate impostors, a view frustum is positioned so that its viewpoint is at the 

position from which the impostor will be viewed, and it is tightly fit to the bounding 

volume of the object. Then the object is rendered into an image used to texture the 

impostor polygon. 

 

 

 

3.3  Summary 

 

 In this chapter, the basic model of particle systems has been discussed. 

Various advantages of particle systems making it a good choice for simulation of 

fuzzy objects as compared with other surface-based techniques has been presented. 

Methods for controlling some of basic features such as particle generation, particle 

attributes, particle dynamics, particle extinction, and particle rendering have been 

discussed. Finally, the use of particle systems by some selected researchers in 

computer graphics has been summarized. 
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 Dobashi et. al (2000) used cellular automation (CA) to model clouds data. 

The simulation space divided into small voxels and each voxel corresponds to a cell 

used in the cellular automation. At each cell three logical variables are assigned. 

Cloud evolution is simulated by applying transition rules to each cell at each time 

step. The cloud density obtained from simulation has two values, that is, 0 or1, 

whereas in the real world it is continuous from 0 to 1. So, they require calculation for 

smoothing the density distribution. The whole method for simulation of cloud 

evolution involves a lot of calculations and is difficult in use. In a contrast, particles 

system provides a very simple way to model cloud data. Particles system may require 

a little more computer space for storing particle data, but it needs fewer calculations 

for modeling and rendering the particles and getting final images of the cloud shapes. 

 

Harris (2002)  used particle systems to model clouds. For rendering of clouds 

he used the approach of Dobashi et. al (2000) and extended their model of single 

light scattering to multiple light scattering model. In order to enhance the rendering 

process, he used dynamically generated imposters. However, Harris (2002) generated 

the data for cloud particles with other means such as 3D Studio Max, which is 

copyright software. The main work of Harris (2002) is on rendering part of clouds. 

 

 Virtual reality applications, such as flight simulators, have built in scene 

stages that are pre-designed. Providing a randomized method along with interactive 

development environment can prove more useful to these applications. 



 

 

 

CHAPTER IV 

 

 

 

 

RANDOMIZED ALGORITHM AND IMPLEMENTATION 

 

 

 

4.1  Introduction 

 

This chapter tends to deal with foundation of the research work. At first, it 

states the proposed system overview, where it explains the modules that are going to 

be established. A particle system is a collection of many minute particles that 

together represent a fuzzy object. Over a period of time, particles are generated into a 

system, move and change from within the system, and die from the system.  

 

The purpose of a model of an entity is to allow people to visualize and 

understand the structure or behavior of the entity (Foley et al., 1990). For clouds and 

gases the model is often implemented as a density function listed below. 

 

ρ(x), x ε R3         (4.1) 

 where ρ represents density of matter, 

x represents any real number, 

ε means belongs to and 

R3 represents volume space. 

 

such that, for each point in space, evaluates to the amount of cloud matter that exists 

at that point. Particle systems are simple and efficient method for representing 

clouds. It is assumed that a particle represents a roughly spherical volume in which a 

Gaussian distribution governs the density falloff from the centre of the particle. Each 
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particle is made of a centre, radius, density and color. For a good approximation of 

real clouds, cloud space is filled with particles of varying sizes and density.  

 

Clouds can be built by filling a volume with particles or by using an editing 

application that allows placing particles and build clouds interactively. The 

randomized method is a good way to get quick field of clouds. 

 

 

 

4.2  Flow Diagram of Shaping Modeling Algorithm 

 

The following is the flow diagram of the proposed algorithm for cloud shape 

modeling process. 

 

 
Figure 4.1: Flow diagram of Shape Modeling Algorithm 
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4.3  Input Data 

 

Data required for the cloud shape modeling algorithm consists of the 

attributes of the particles making clouds and coordinates of 3-D space in virtual 

environment that contains particle clouds. The data inputs that are used are described 

below: 

 

 

 

4.3.1  Cloud Centre 

 

Cloud Centre consists of coordinates in 3D space. It consists of X-

Coordinate, Y-Coordinate, Z-Coordinate values representing the centre of cloud 

bounding volume. 

 

 

 

4.3.2  Number of Particles 

 

It represents the total number of particles that are randomly distributed in the 

cloud bounding volume to make shape of a cloud. Each particle is consists of a 

number of attributes such as centre, radius, density and color.  

  

 

 

4.3.3  Radius 

 

It represents the maximum value for radius of cloud particles. In order to get 

good approximation of cloud, particles of varying sizes are used to make cloud. The 

radius of each particle is randomly calculated that is les than or equal to this value. 
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4.3.4  Data File Format 

 

In the following, the organization of the input data files is discussed. This 

data file serves as input data files for the proposed cloud shape modeling algorithm. 

Table 4.1 shows the format of a data file. On the first line, it has total number of 

particles in the system. On the second line, it has total number of cubes in the system. 

Rest of each line contains the information about each cube such as particles in a 

cube, cube dimension, cube centre and radius of particles in that cube. 

 

Table 4.1: Format of input data file 

Line Number Input Data 

 

1 

2 

3 

 

<Total Particles> 

<Total cubes> 

<Particles, Cube(height, width, length), Center(x,y,z), Radius> 

 

 

The description of each and every piece of data and its type is as described 

below: 

 

TotalParticles:  

 

It represents the total number of particles in the system. The integer 

data type is used for this data. 

 

TotalCubes:   

 

It represents the total number of cubes used in the system to build the 

apparent shape of the clouds. The integer data type is used for this data. 
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Particles:  

 

It represents the total number of particles to be distributed in a 

particular cube. The integer data type is used for this data. 

 

Length:  

 

It represents length of a particular cube. The float data type is used for 

this data.  

 

Height:  

 

It represents height of a particular cube. The float data type is used for 

this data.  

 

Width: 

 

It represents width of a particular cube. The float data type is used for 

this data.  

 

X-Coordinate for Centre: 

 

It represents X-Coordinate for the centre of a particular cube. The 

float data type is used for this data. 

 

Y-Coordinate for Centre: 

 

It represents Y-Coordinate for the centre of a particular cube. The 

float data type is used for this data. 

  

Z-Coordinate for Centre: 

 

It represents Z-Coordinate for the centre of a particular cube. The 

float data type is used for this data. 
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Radius: 

 

It represents maximum value for the radius of particles in a particular 

cube. The float data type is used for this data. 

 

 

 

4.4  Data Acquisition 

 

This research has come up with an editing application – namely cloud editor, 

to allow design of the cloud shapes. The approach used allows the design of cloud 

macro shapes with the help of cubes. Any number of cubes can be used to design 

cloud shapes. The dimension and size of cubes can be changes by the use of various 

control of the cloud editor. After finishing design, the data related to cubes such as 

cube centre, cube length, cube height and cube width, maximum of value for the 

radius of particles and the total number of particles to be randomly distributed in the 

cubes are stored in a data file. This data file serves as input data for the proposed 

cloud shape modeling algorithm. 

 

Table 4.2 shows a sample data file that has a total of 2000 particles in the 

system and the number of cubes used to model cloud shape is 3.  

 

Table 4.2: A sample of input data file 

Line Number Input Data 

 

1 

2 

3 

4 

5 

 

2000 

3 

1000, 8.0, 7.0, 3.0,  10.0,  10.0,  10.0, 2.5 

600,  5.0,  3.0, 3.0,  15.0,  20.0, -20.0, 2.9 

400,  6.0,  4.0, 2.0, -10.0, -5.0,  -10.0, 3.0 
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According to the Table 4.2, Line Number 1 contains the total number of 

particles in the system and the value for this data is 2000. Line Number 2 contains the 

total number of cubes used to model the apparent shape of the cloud. According to 

data file, the number of cubes used in the system is 3. The rest of the data file, from 

Line Number 3 to onward, contains the data about the cubes such as number of 

particles contained in a cube, cube length, cube height, cube width and maximum 

value for radius for particles in the cube. Line Number 3 shows that the number of 

particles in the first cube is 1000, its length is 8.0, width is 7.0, and height is 3.0. The 

value for the centre (x, y, z) of this cube is (10.0, 10.0, 10.0). The maximum length 

for the particle radius is 2.5. Line Number 4 shows that the number of particles in the 

second cube is 600, its length is 5.0, width is 3.0, and height is 3.0. The value for the 

centre of the cube is (15.0, 20.0, -20.0). The maximum length for the particle radius 

is 2.9. Similarly, Line Number 5 shows that the number of particles in the third cube 

is 400, its length is 6.0, width is 4.0, and height is 2.0. The value for the centre of the 

cube is (-10.0, -5.0, -10.0). The maximum length for the particle radius is 3.0. 

 

 

 

4.5  Design of Shape Modeling Algorithm 

 

 This section presents the general model formulation of cloud shape modeling 

algorithm based on randomized method. Part of the reason that particle clouds look 

any good is that it incorporates randomness in a controlled way. Most of the work 

involved in achieving this is an approximation contained in noise function. 

 

 Each particle is assumed to have a roughly spherical volume in which a 

Gaussian distribution governs the density falloff from the centre of the particle. Each 

particle has attributes of a centre, radius, density and color. For a good 

approximation, particles of varying sizes and densities are used build a cloud space. 
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4.5.1  Model Formulation 

 

The model formulation for each step of the cloud shape modeling process is 

presented using the following notation (Gunadi, 2003). 

 

N     = Total number of particles. 

XL    = Length of cloud bounding volume along x-axis. 

YL    = Length of cloud bounding volume along y-axis. 

ZL    = Length of cloud bounding volume along z-axis. 

Rmax = Maximum value for radius of particles. 

XC    = X-coordinate for centre of cloud space. 

YC    = Y-coordinate for centre of cloud space. 

ZC    = Z-coordinate for centre of cloud space. 

R(i)  = Radius of particle i. 

 

The model formulation is as follows. 

 

Step 1: 

 

For each particle, evaluate the location of particles in cloud bounding volume. 

Let X(i), Y(i) and Z(i) represent the X-coordinate, Y-coordinate and Z-coordinate 

respectively for the location of particle i. Then these values are calculated as follows: 

 

X(i)  = random(s) 

Y(i)  = random(s) 

Z(i)  = random(s)      (4.2) 

where i=0,1,2, …, N-1, 

s is seed for random-number generator and sets starting point 

for generating a series of pseudorandom numbers, and 

random(s) is a function takes seed as an argument and  

generates a random number. 
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The constraints on the values are 

 

X(i) ≤ XL,   for all i 

Y(i) ≤ YL,   for all i 

Z(i) ≤ ZL,   for all i     (4.3) 

 

In order to transform X(i), Y(i) and Z(i), for all values of i, to meet above 

constraints, we compute as; 

 

X(i)  = X(i) % XL 

Y(i)  = Y(i) % YL 

Z(i)  = Z(i) % ZL      (4.4) 

 

where % is the modulus operator. 

 

To add randomness, we add phase shifts in X(i), Y(i) and Z(i). Let Px, Py and 

Pz be the phase shifts, then their values are calculated according to the following 

relationships (Gardner, 1985): 

 

Px = π⁄2 Sin(0.5 Y(i)) 

Py = π⁄2 Sin(0.5 X(i)) 

Pz = π⁄2 Sin(0.5 Z(i))      (4.5) 

 

The phase shifts produce a controlled pseudo-random effect by shifting the X 

component as a function of Y and Y component as a function of X component. To 

provide three dimensional variations, the phase shifts are augmented by added sine 

variations with Z component (Gardner, 1985): 

 

Px = Px  + π Sin(Px * Z(i)/2) 

Py = Py  + π Sin(Px * Z(i)/2)     (4.6) 

 

Then the phase shift values calculated above added to X(i), Y(i) and Z(i) to 

get their new values as listed below: 
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X(i) = X(i) + Px 

Y(i) = Y(i) + Py 

Z(i) = Z(i) + Pz      (4.7) 

 

Finally, the values of coordinates for the location of particle that fits within 

the cloud bounding volume in virtual environment with respect to cloud centre are 

calculated by adding the value of cloud centre (Xc, Yc, Zc), as shown by the 

equations listed below: 

 

X(i) = Xc + X(i)/2 

Y(i) = Yc + Z(i)/2 

Z(i) = Zc + Z(i)/2      (4.8) 

 

Step 2: 

 

Calculate the radius of each particle. Each particle has a different value of 

radius which is less than or equal to a preset value Rm. Let R(i) represents radius of 

particle i,  then the value for radius of the particle is calculated as follows: 

 

R(i)  = random(seed)      (4.9) 

 

where  i = 0,1,2, …, N-1. 

and random(seed) is a function takes seed as an argument and  

generates a random number. 

 

The constraints on the values are 

 

R(i) ≤ R,   for all i     (4.10) 

 

In order to transform R(i), for all values of i, to meet above constraint, we 

compute as; 

 

R(i)  = R(i) % R      (4.11) 
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where % is the modulus operator. 

 

In order to get randomness in the values of radius, some noise is added to it as 

listed below: 

 

R(i) = R(i) + π⁄2 Sin (R(i))     (4.12) 

 

Step 3: 

 

Add the particle to cloud and repeat the process of generating data for new 

particles according to step 1 and step 2 till total number of particles (N) is reached. 

 

 

 

4.5.2  Pseudo Code of Shaping Modeling Algorithm 

 

The following is the pseudo code of the proposed algorithm for cloud shape 

modeling process. 

 

get no_of_clouds 

for each cloud 

get cloud_center 

get no_of_particles 

get cloud_bounding_volume 

for n=1 to no_of_clouds 

get center(x,y,z) of a particle 

if (center lies in cloud_bounding_volume) 

add particle to cloud space 

else      get a new particle 

end if 

next 

next 

 

Figure 4.2: Pseudo code for Shape Modeling Algorithm 
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4.6  Implementation of Randomized Algorithm in Cloud Editor 

 

The evolving structure of clouds is modeled using a two-level approach. For 

controlling the general shape of clouds, cubes have been used. Various cubes can be 

sized and arranged in order to create a desired shape of clouds. For low-level cloud 

details particles system has been used to ill he cloud volume with particles. 

 

In order to evaluate the shapes modeled by the proposed algorithm, we make 

use of an interactive editing application – cloud macrostructure editor and use it to 

design the apparent shape of clouds. The snapshot of cloud macrostructure editor is 

shown in Figure 5.1 and the further details about this editor are presented in 

Appendix A. 

 

 

 
  

Figure 4.3: Snapshot of Cloud Macrostructure Editor 
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To design cloud shapes, we can add cubes by pressing ‘Add Cube’ button 

from the control group named as ‘Cubes’. The attached parameters with each cube 

are its length, width, breadth, centre and number of particles and radius of particles. 

We can use any number of cubes to design cloud apparent shape.  

  

After finishing the design of the cloud apparent shape, the data related with 

these cubes is used by the proposed algorithm and it models the microstructure of the 

cloud by filling the cloud space with particles of varying sizes at random position. 

 

In the following Figure 5.2 shows the snapshot of cloud editor showing a 

number of cubes placed at different location and having different number of particles 

and size of particle radius. The cube in red color is active one and its attributes such 

as size, location, number of particles and size of radius can be changed by using 

various controls. 

 

 

 
 Figure 4.4: Using 17 cubes for clouds apparent shape 

 

In the following, Table 5.1 shows the data file generated by cloud 

macrostructure editor using 17 cubes as shown in Figure 5.2. The total number of 
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particles used to model cloud in this system is 554. The details about data file are 

discussed in section 4.2.4. 

 

Table 4.3: Data file generated by snapshot of Figure 4.4 

Line Number Input Data 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

554 

17 

200, 7.39642, 1.07048, 2.89284, -3.4, -3.3, -0.600002, 2.1 

10, 1.12383, 0.893671, 0.750589, 2.8, -3.1, -0.4, 2.2 

5, 1.29472, 0.981624, 1, 1.1, -3.2, 0, 2 

100, 4.99599, 1.30149, 2.33467, 1.1, -0.899999, 0, 3 

110, 3.02839, 1.58117, 3.05433, -3.8, -0.499999, 0, 3 

10, 1, 1, 1, 2.5, 0.600001, 0, 2 

8, 1, 1, 1, -0.399999, 0.800001, 0, 3 

7, 1, 1, 1, 1.1, 0.500001, 0, 2.2 

5, 1, 1, 1, 1.5, 1.8, 0, 2.4 

8, 1, 1, 1, -2, 1.3, 0, 2.123 

9, 1, 1, 1, 6.12438e-007, 2.1, 0, 2 

50, 2.36429, 1.50285, 2.29693 4.6, -3, 0, 2.2345 

8, 1, 1, 1, -4, 2.5, 0, 2 

0, 1, 1, 1, 0.500001, 3, 0, 2.5 

7, 1, 1, 1, -4, 1.3, 0, 2 

7, 1, 1, 1, -2.8, 2, 0, 2 

10, 1, 1, 1, -1.4, 2.6, 0, 2 

 

In the following, Figure 4.5 shows the snapshot of cloud modeled by 554 

particles according to data generated by the cloud macrostructure editor shown in 

Figure 4.4. The data used by the proposed algorithm to model cloud is shown in 

Table 4.3 By making use of data of Table 4.3, the cloud shape modeling algorithm 

modeled cloud data. This cloud modeled data was rendered in the renderer presented 

by Harris (2002), Figure 4.5 shows this rendered image.  
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Figure 4.5: Cloud modeled with 554 particles 

 

In the following Figure 4.6 shows another snapshot of cloud editor showing 

23 cubes placed at different locations to represent apparent shape of cloud. 

 

 
Figure 4.6: Using 23 cubes for clouds apparent shape 
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In the following, Table 4.4 shows the data file generated by cloud 

macrostructure editor using 23 cubes as shown in Figure 4.6. The total number of 

particles used to model cloud in this system is 615. 

 

Table 4.4: Data file generated by snapshot of Figure 4.6 

Line Number Input Data 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

615 

23 

200, 7.39642, 1.07048, 2.89284, -3.4, -3.3, -0.600002, 2.1 

10, 1.21266, 1.14308, 0.963248, 2.7, -3.1, -0.4, 2.2 

5, 1.36688, 1.05379, 1.07216, 1.1, -3.2, 0, 2 

100, 4.99599, 1.30149, 2.33467, 1.1, -0.899999, 0, 3 

110, 3.02839, 1.58117, 3.05433, -3.8, -0.499999, 0, 3 

10, 1, 1, 1, 2.5, 0.600001, 0, 2 

8, 1, 1, 1, -0.399999, 0.800001, 0, 3 

7, 1, 1, 1, 1.1, 0.500001, 0, 2.2 

5, 1, 1, 1, 1.5, 1.8, 0, 2.4 

8, 1, 1, 1, -2, 1.3, 0, 2.123 

9, 1, 1, 1, 6.12438e-007, 2.1, 0, 2 

50, 2.36429, 1.50285, 2.29693, 4.6, -3, 0, 2.2345 

8, 1, 1, 1, -4, 2.5, 0, 2 

10, 1, 1, 1, 0.500001, 3, 0, 2.5 

7, 1, 1, 1, -4, 1.3, 0, 2 

7, 1, 1, 1, -2.8, 2, 0, 2 

10, 1, 1, 1, -1.4, 2.6, 0, 2 

10, 1, 1, 1, 4.8, 1.9, 0, 2 

7, 1, 1, 1, 3.2, 2, 0, 2 

10, 1, 1, 1, 4, 0.600001, 0, 2.1 

9, 1, 1, 1, 2.2, 2.3, 0, 2 

5, 1, 1, 1, 3.9, 2.3, 0, 2.123 

10, 1.62329, 1.19516, 1.31986, 4.7, -0.999999, 0, 3 

 

Similarly, the following Figure 4.7 shows the snapshot of cloud modeled by 

615 particles according to data generated by the cloud macrostructure editor shown 
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in Figure 4.7. The data used by the proposed algorithm to model cloud is also shown 

in Table 4.4. The image shown in Figure 4.7 was also rendered by the renderer 

presented by Harris (2002). 

 

 
Figure 4.7: Cloud modeled with 615 particles 

 

 

 

4.7  Summary 

 

A cloud shape modeling algorithm is proposed to address the problem in the 

area of cloud shape modeling. By proper selection of cube sizes and position, number 

of particles in cubes, and particles radius, the proposed algorithm is able to model 

almost all types of cloud shapes. The randomized method is used to model the 

algorithm.  

 

As the Virtual Reality application have level of details and these details need 

be designed by the designers. The proposed framework includes an interactive 

editing application – cloud macrostructure editor (Muhammad Azam Rana et al., 

2004), which allows designers to model the details of cloud scene interactively and 
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in a very easy manner. Cloud macrostructure editor can easily be used to design the 

details of each stage and generate data files for each stage. Then the proposed 

algorithms can be used to model the cloud scenes by using the data for each stage. 

 

 However, the proposed algorithm cannot model cloud dynamics. To make the 

problem simple, only static clouds have been addressed in this research. The target of 

this research is to model clouds for Virtual Environments such as flight simulators 

and games etc. and this application do not need much about cloud dynamics. Future 

research may address this problem and extend the proposed algorithm to incorporate 

cloud dynamics. 



 

 

 

CHAPTER V 

 

 

 

 

TESTING AND RESULTS  

 

 

 

5.1  Introduction 

 

As is true for any object or phenomenon, there are multiple ways to model 

clouds. An explicit representation of every water droplet in a cloud requires far too 

much computation and storage, so most of the researchers have used much coarser 

models. In general, the most common methods that have been used to model and 

render clouds are particle systems, metaballs, voxel volumes, procedural noise, and 

textured solids.  

 

 Particle systems model objects as a collection of particles – simple primitives 

that can be represented by a single 3D position and a small number of attributes such 

as radius, color, and texture etc. 

 

 Particles can be created by hand using a modeling tool, procedurally 

generated or created with some contribution of the two. Particles have the advantage 

that they usually require only very simple and inexpensive code to maintain and 

render. Because a particle implicitly represents a spherical volume, a cloud built with 

particles usually requires much less storage than a similarly detailed cloud 

represented with other methods. This advantage may diminish as detail increases, 

because many tiny particles are needed to achieve high details. 
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This chapter discusses the evaluation of the proposed algorithm, test for 

efficiency of randomized algorithm and summarizes rendering performance test 

results of the research. A number of interesting issues are presented. The discussion 

of the proposed algorithm is also presented. 

 

 

 

5.2  Efficiency of the Randomized Algorithm 

 

We have performed test for efficiency of the randomized algorithm. For this 

purpose, process time taken by the algorithm to model the cloud data has been 

calculated for a number of particles. The machine used for this purpose is Intel 

Pentium® IV 3.2 GHz having 1 GB RAM. Figure 5.1 through Figure 5.3 show the 

graphs for these tests. Figure 5.1 shows resulting graph for a Pentium® IV 3.2 GHz 

Processor having 1 GB RAM. Figure 5.2 shows resulting graph for a Pentium® IV 

2.0 GHz Processor having 248 MB RAM. Figure 5.3 shows resulting graph for a 

Pentium® III 797 MHz Processor having 128 MB RAM. It is obvious that as the 

number of particles is increased, the process time taken by the algorithm to model 

cloud data is almost increasing linearly.  
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Figure 5.1: Test result for efficiency of the algorithm 
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Figure 5.2: Test result for efficiency of the algorithm 
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Figure 5.3: Test result for efficiency of the algorithm 

 

 

 

 



 80

5.3  Rendering Performance Tests 

 

 We have implemented our cloud shape modeling system using OpenGL. The 

rendering of the clouds has been done using the method described by Harris and 

Lastra (2001), Harris (2002) and Harris et al. (2003). 

 

 We have performed several performance tests for rendered images of clouds 

modeled by our proposed randomized cloud shape modeling algorithm. Our first test 

machine was Pentium® IV processor; the details of this system - System1 are listed in 

the following Table 5.1.  

 

Table 5.1: Specifications of Test System – System1 

Processor Intel Pentium IV 3.2 GHz 

System RAM 1 GB 

Graphics Card nVADIA GeForce FX 5950 Ultra 

RAM on GPU 256 MB 

 

In this test, we created the data for cloud particles using our proposed 

randomized algorithm, distributed the cloud particles randomly in the cloud 

bounding volume and then rendered the resulting cloud images. Figure 5.2 shows the 

results of the performance test for a resolution of 800×600, 960×600 and 1024×876. 

The tests have been performed for a maximum number of 50000 particles. The chart 

in Figure 5.2 shows the graphs for these test results.  
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Figure 5.4: Performance Test results for System1 

 

Figure 5.4 shows the test results for the system having Intel Pentium IV 3.2 

GHz, 1GB RAM and AGP as nVADIA GeForce FX 5950 Ultra. It is observed that 

for a less number of particles such as 500 particles, the frame is more than 120 

frames per second whereas for a large number of particles we have frames rate 

around 20 frames per second. It has been observed that a small piece of cloud can be 

modeled by using a number of particles around 500 to 1000. This shows that even for 

scenes consisting of several thousands particles we can achieve interactive frame 

rates and the proposed method is applicable to design cloud shapes interactively. 

 

In order to further test performance of proposed algorithm, a number of 

performance tests were conducted on other machines having different specifications 

and with a different variety of AGP card. The specification of these test machines are 

listed in the following tables from Table 5.2 to Table 5.5. These systems have been 

labeled as System2, System3, System4 and System5.  
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Table 5.2: Specifications of Test System – System2 

Processor Intel Pentium IV 1.5 GHz 

System RAM 384 MB 

Graphics Card ATI Radeon 9600 XT 

RAM on GPU 128 MB 

 

Table 5.3: Specifications of Test System – System3 

Processor Intel Pentium IV 1.4 GHz 

System RAM 256 MB 

Graphics Card nVADIA GeForce FX 5200 

RAM on GPU 128 MB 

 

Table 5.4: Specifications of Test System – System4 

Processor Intel Pentium IV 2.8 GHz 

System RAM 512 MB 

Graphics Card nVADIA GeForce FX 5200 

RAM on GPU 128 MB 

 

Table 5.5: Specifications of Test System – System5 

Processor AMD Athlon™  X 1600 + 1.4 GHz 

System RAM 256 MB 

Graphics Card nVADIA GeForce MX 

RAM on GPU 64 MB 

 

Figure 5.5 shows the results of the performance test for System2 for a 

resolution of 800×600 and 1024×876. The hardware on this system only supported 

these two mentioned resolution modes and the other resolution modes were not 

available for testing.  
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Figure 5.5: Performance Test results for System2 

 

 Figure 5.5 shows the test results for a test system having processor as 

Pentium IV 1.5 GHz, 384 MB RAM and AGP card as ATI Radeon 9600 XT. As 

shown in the graph, for less number of particles, the frame rate is very good. 

Between 500 particles and 10000 particles, the frame rate drops quickly and then it 

drops down linearly. The AGP card used in this system is ATI Radeon 9600 XT. 

This type of behavior looks due to limitation of computational power of AGP card. 

For higher number of particles, the frame rate drops below 20 frames per second, but 

even then this is quite reasonable to design clouds interactively on low power PCs.  

 

Figure 5.6 shows the results of the performance test for System3 for a 

resolution of 800×600, 1024×876, 1088x612 and 1152x864.  
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Figure 5.6: Performance Test results for System3 

 

Figure 5.6 shows the test results for a test system having processor as 

Pentium IV 1.4 GHz, 256 MB RAM and AGP card as nVADIA GeForce FX 5200. 

As shown in the graph, for less number of particles, the frame rate is closer to 50 

frames per second. For higher number of particles, the frame rate drops closer to 10 

frames per second. In the series of tests, this is the low power machine and looks 

reasonable to design cloud images interactively using the proposed interactive 

environment proposed by this research. 

 

Figure 5.7 shows the results of the performance test for System4 for a 

resolution of 800×600 and 1024×876. The hardware on this system only supported 

these two mentioned resolution modes and the other resolution modes were not 

available for testing. 
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Figure 5.7: Performance Test results for System4 

 

Figure 5.7 shows the test results for a test system having processor as 

Pentium IV 2.8 GHz, 512 MB RAM and AGP card as nVADIA GeForce FX 5200. 

As shown in the graph, for less number of particles, the frame rate is closer to 120 

frames per second. For higher number of particles, the frame rate drops closer to 20 

frames per second. As seen on the graph, the difference in the frame rate for the two 

mentioned resolution is very close and is insignificant.  

 

Figure 5.8 shows the results of the performance test for System5 for a 

resolution of 800×600, 1024×876 and 1152×864.  
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Figure 5.8: Performance Test results for System5 

 

Figure 5.8 shows the test results for a test system having processor as AMD 

Athlon™  X 1600 + 1.4 GHz, 256 MB RAM and AGP card as nVADIA GeForce 

MX. As shown in the graph, for less number of particles, the frame rate is closer to 

120 frames per second. For higher number of particles, the frame rate drops closer to 

10 frames per second. As seen on the graph, the difference in the frame rate for les 

number of particles is considerable but this difference is insignificant for higher 

number of particles in the system. 

 

In the following, figures 5.9 through 5.11 show the comparison of rendering 

performance test for 800×600, 1024×768 and 1152×864 resolutions. 
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Figure 5.9: Comparison of Performance Test for 800×600 resolution 
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Figure 5.10: Comparison of Performance Test for 1024×768 resolution 
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Figure 5.11: Comparison of Performance Test for 1152×864 resolution 

 

Figure 5.9 and figure 5.10 show comparison of frame rate per second for all 

systems for the resolution of 800×600 and 1024×768 respectively. For the number of 

particles up to 10000, the frame rate is more than required for real time rendering. 

For particles more than 20000, the frame rate is close to real time. For the System1 

and System4, frame rate is close to real time even for 50,000 particles. System2, 

System3 and System5 have slightly less frame rate than required for real time as the 

number of particles increases from 20000; it is due the les power of Graphical 

Processing Units (GPU). The frame rate greater than real time shows that the 

modeled clouds can be used in a virtual environment (VE), as clouds are one small 

part of a VE and should get less time for their processing. Figure 5.11 shows 

comparison of frame rate at 1152×864 for System3 and System5 only, as the GPUs 

on other test machines don’t support these resolution modes. The frame rate is 

dropped as the resolution is increased as expected. From above figures, we can 

deduce that the resolution mode of 600×800 is most sited for the efficient rendering 

of the clouds. 
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5.4  Summary 

 

This chapter presents performance test results and discuses these results 

produced by the research that models the shape of clouds by proposed randomized 

algorithm. Specification of the test machines and the charts of these performance 

tests have been presented and discussed. 

 

 The efficiency of the randomized particles algorithm has been performed. 

The time taken for particles up to 1000 particles is about 1millisecond. Even for 

50000 particles, the time taken by the algorithm is around 90 milliseconds. For 

modeling a reasonable good scene of clouds, a number of particles around 10000 to 

20000 is enough, which shows that algorithm can model cloud data very quickly 

from stage to stage as needed by the VE applications, without interrupting the user. 

 

 The tests for the performance of the proposed cloud shape modeling 

algorithm are run on various low cost PCs having a variety of processors such as 

Intel Pentium IV having CPUs varying from 1.4 GHz to 3.2 GHz and  of from 

different and an AMD Athlon 1.4 GHz processor. These test machines have different 

ordinary Accelerated Graphics Port (AGP) cards. The complete specifications of 

these test machines are listed in Chapter V. As shown in Figure 5.2 - 5.9, for less 

number of particles the achieved frame rates are more than hundred frames per 

second. This frame rate is more than required for real time application. The reason is 

as we are testing clouds only, whereas in a VE clouds are just a small part and should 

demand a less processing time. This shows the suitability of the modeled clouds for 

VE. Even for larger number of particles, the frame rates are in the range of 20-10 

frames per second which looks reasonable for synthesizing cloud shapes 

interactively. This shows that the cloud shape modeling framework proposed by this 

research is reasonable good for synthesizing cloud shapes interactively for virtual 

reality applications on low-cost PCs. 

 

 The performance testing also shows that as we increase the resolution of the 

display, the rending time for the scenes is increased and 600×800 is the most suitable 

resolution for getting fast rendered cloud images. 



 

 

 

CHAPTER VI 

 

 

 

 

DISCUSSION AND CONCLUSIONS  

 

 

 

6.1  Introduction 

 

This chapter discusses and concludes the work introduced in this research, 

and recommends the future work. The topics discussed include Discussion, 

Conclusion of the introduced work, recommendation for the future work and 

Summary. 

 

 

 

6.2  Discussion 

 

This study describes a system for real-time simulation of cloud shapes 

suitable for interactive Virtual Environments (VE) applications such as flight 

simulators and games. These applications require realism, but cannot afford to 

sacrifice speed to achieve it. Controlling shapes of clouds is a difficult task as they 

are amorphous objects. Clouds can be built by filling a volume by particles or by 

using an editing application that allows users to place particles, have control over 

number of particles, and have control over size that can build clouds interactively.  

 

The randomized method is a good way to get a quick field of clouds. A 

combination of randomized method and an editing application serves a good choice 

for designing cloud for Virtual Reality (VR) applications as they have a range of 
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designed levels and need more control over details of scenes. Providing editing 

applications for such Virtual reality applications can produce beautiful cloud shapes 

tailored to the need of the Virtual Environment (VE). The resulting images of clouds 

shapes, modeled by the proposed algorithm have been demonstrated. It shows these 

images are promising, easy to design using the proposed framework and almost any 

type of clouds can be modeled. The proposed framework and algorithm are 

developed with these requirements in mind. 

 

Thus, this research has demonstrated that realistic cloud shapes can be simulated 

and rendered in real time using efficient algorithms implemented entirely on 

programmable graphics processors. To the knowledge, this work is the first in 

Computer Graphics to model cloud shapes with particle systems based on 

randomized method. 

 

 

 

6.3  Conclusions 

 

 This chapter discusses and concludes the study of the research. Contributions 

made by this study are described. Finally, limitations of this work and suggestions 

for future work have also been discussed. 

 

 The focus of this study is modeling of realistic clouds virtual applications 

such as games and flight simulators. These applications demand realism regarding 

presence of clouds and are not mostly concerned with movement of clouds and 

changes in their shapes under the influence of atmosphere. So, this research focuses 

on modeling of static clouds only and cloud dynamics are not studied for simplicity. 

 

 This research proposes a two-level approach for modeling cloud shapes. In 

the second level, cloud shape modeling algorithm is developed. This algorithm is 

based on randomized method and particles system is used to model cloud data. The 

data generated by cloud macrostructure editor is used by the proposed cloud shape 

modeling algorithm for modeling cloud shapes. Choosing proper size of cubes, 
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number of particles and size of particles, interesting shapes of clouds can be 

synthesized by the proposed framework. 

 

In the second level, an interactive editing application – cloud 

macrostructure editor has been proposed which helps in designing cloud apparent 

shape by making use of cubes. This interactive environment enables full control over 

size and location of cubes in three-dimensional space, number of particles in a cube 

and size of particles. Using cubes of varying sizes, placing them at appropriate 

places, distributing proper number of particles and adjusting size of particles, the 

resulting data about cloud apparent shape is then saved in data file. 

 

 Virtual reality applications have pre-designed levels of details. The two-level 

design approach used in this algorithm has proved successful to interactively design 

cloud shapes for each stage and then save data about these details in separate files for 

each level.  

 

 

 

6.4  Limitations and Future Work 

 

In this section, the major limitations of this work are listed. Most of these 

limitations are addresses with the ideas of future works and suggest several 

directions for future explorations including visual improvements for clouds, creative 

controls, new directions and applications for general-purpose computation on 

Graphics Processing Units (GPU). 

 

 The most obvious direction for the future is to continue to improve the quality 

and realism of clouds. A number of limitations and problems with this current work 

provide goals for future work. 

 

a) The most limitation of proposed cloud shape modeling algorithms is the 

number of different clouds it can support. It is not currently possible to 

simulate multiple cloud clusters. Future work can address this issue by 

dividing cloud particles into a cluster of small clouds and then render only 
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those clouds that come along the view direction. This will increase the 

performance of rendering process. 

 

b) The most important limitation is the scale and detail that can be supported. 

Currently, it is not possible to simulate a sky full of clouds due to large 

processing requirements. For flight simulators, clouds must extend as far as 

possible as the user desires to fly. The basic reason for scale and detail 

limitation is that volumetric data requires immense computation and storage 

resources. Fortunately, Graphics Processing Units are rapidly increasing both 

of these resources. This will help, but it will not solve the problem of 

populating the skies with dynamic clouds. More creative techniques will be 

required. 

 

c) A possible method of creating higher detail at lower cost is to use procedural 

noise techniques. Much work has been done in the past on generating clouds 

using noise (Lewis, 1989; Ebert, 1997; Ebert et al., 2002; Schpok et al., 

2003). Recently, Perlin and Neyret (2001) made the observation that while 

noise is a very useful primitive for creating texture detail, it does not work 

well for describing flowing detail. It lacks “swirling” and advection behavior. 

To overcome this, they presented a few simple extensions to Perlin (1985) 

Noise that make the noise appear to flow more realistically (Perlin and 

Neyret, 2001). Very recently, Neyret (2003) has also presented a method for 

overcoming problems of basic advection of textures to add detail to flows. An 

interesting avenue of research would be to combine techniques for advecting 

procedural noise with physical cloud simulation. 

 

d) Current model assumes that clouds exist alone. In order to represent affect of 

terrain (such as tall mountains) on the clouds, arbitrary bounding conditions 

would need to be evaluated. Such boundaries can be implemented as 

described in (Griebel et al., 1998). 
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e) General-purpose computation on GPUs is an interesting area of research. 

GPUs will see increasing use in computer games for procedural texturing and 

physically-based simulation. Also, the low cost, high speed, and parallelism 

of GPUs makes them ideal in many ways for scientific computing. Imagine 

giant clusters of PCs with powerful GPUs crunching through massive 

physical and numerical simulations. 
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CLOUD MACROSTRUCTURE EDITOR 
 

 

 

In order to design cloud shapes easily, an interactive cloud editor – cloud 

macrostructure editor has been developed. GLUI controls have been used to 

develop intuitive and easy to use user interface for this editor. The main window is 

used for visually placing cubes forming the shape of clouds. The other two 

accompanying sub-windows hold the various function controls for performing 

various task related to create cloud shapes.  

 

Followings are the features of cloud editor: 

 

1. GLUI controls have been used to develop this editor. 

2. The main window is used for visually placing cubes forming the shape of 

clouds.  

3. The other two accompanying sub-windows hold the various function controls 

for performing various task related to create cloud shapes.  

4. The user interface is very intuitive and easy to use.  

5. Any novice user can easily use it to define high-level appearance of clouds. 

 

The controls have been grouped into four general groups; 

 

1. Viewing parameters. 

2. Global rendering parameters. 

3. Cloud media shape controls. 

4. File manipulation controls.  

 

Figure A1 shows the snapshot of cloud editor. 

 

 



 107

 

 
 Figure A1: Snapshot of Cloud Editor 

 

As shown in Figure A1, when the modeling system selected in cloud editor is 

Texture, then the following groups of control are provided to work with clouds: 

 

 Files. 

 Cubes. 

 Texture Option. 

 Scale. 

 Move. 

 View 

 

When the option selected is Particle System then the following groups of control 

are provided to work with clouds (see Figure A2): 

 

 Files. 

 Cubes. 

 Particle Option. 

 Scale. 
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 Move. 

 View 

 

 

 
 Figure A2: Snapshot of Cloud Editor using Particle System 

 

To design cloud shapes, the designer can add cubes by pressing ‘Add Cube’ 

button from the control group named as ‘Cubes’. He can also delete any specific 

cube or all cubes at once by using ‘Delete’ or ‘Delete All’ buttons.  

  

Figure A3 shows the snapshot of cloud editor showing cubes. The cube in red 

color is active and its attributes such as size and location can be changed by using 

various controls. 

 

After adding cubes to model cloud shapes, selecting textures with each cube, 

selecting number billboards for each cube, and etc, the designer can preview the 

clouds in the same window.   
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 Figure A3: Cloud Editor in action – Adding cubes to shape clouds 

 

In the following, Figure A4 shows the snapshot of cloud editor showing 

textured clouds by using three cubes as shown in Figure3 above. 

 

 

 
 Figure A4: Cloud Editor showing textured clouds 
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In order to model clouds for particles system, Figure A5 and Figure A6 show 

arrangement of various cubes having varying sizes and randomly placed at different 

locations in 3-D space. 

 

 

 
 Figure A5: Designing cloud shape for particles system 

 

 

 
 Figure A6: Designing cloud shape for particles system 
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Figure A7 and Figure A8 below show clouds modeled according to shapes 

designed by cloud editor as listed in Figure A5 and Figure A6, using particles 

system. The designer can add any number of cubes to model the exact shape of 

clouds he wants to create. 

 

 

 
 Figure A7: Cloud modeled with 554 particles 

 

 

 
 Figure A8: Cloud modeled with 615 particles 

 




