
VOT 74079

THE DEVELOPMENT OF CLOUD MODELLING AND MOTION
ANALYSIS FOR VIRTUAL ENVIRONMENT

(PEMBANGUNAN PERMODELAN AWAN DAN ANALISA
PERGERAKAN UNTUK PERSEKITARAN MAYA)

MOHD SHAHRIZAL SUNAR
DAUT DAMAN
SARUDIN KARI

NORHAIDA MOHD SUAIB
ABDULLAH BADE

RESEARCH VOTE NO:
74079

JABATAN GRAFIK KOMPUTER DAN MULTIMEDIA
FAKULTI SAINS KOMPUTER DAN SISTEM MAKLUMAT

UNIVERSITI TEKNOLOGI MALAYSIA

2005

UUNNIIVVEERRSSIITTII TTEEKKNNOOLLOOGGII MMAALLAAYYSSIIAA

 BBOORRAANNGG PPEENNGGEESSAAHHAANN
LLAAPPOORRAANN AAKKHHIIRR PPEENNYYEELLIIDDIIKKAANN

TAJUK PROJEK : THE DEVELOPMENT OF CLOUD MODELLING AND
MOTION ANALYSIS FOR VIRTUAL ENVIRONMENT

 Saya MOHD SHAHRIZAL BIN SUNAR
 (HURUF BESAR)

 mengaku membenarkan Laporan Akhir Penyelidikan ini disimpan di Perpustakaan Universiti

Teknologi Malaysia dengan syarat-syarat kegunaan seperti berikut:

1. Laporan Akhir Penyelidikan adalah hak milik Universiti Teknologi Malaysia.
2. Perpustakaan Universiti Teknologi Malaysia dibenarkan membuat salinan untuk tujuan

pengajian sahaja.
3. Perpustakaan dibenarkan membuat salinan Laporan Akhir Penyelidikan ini bagi kategori

TIDAK TERHAD.
4. *Sila tandakan ()

SULIT (Mengandungi maklumat yang berdarjah keselamatan atau
kepentingan Malaysia seperti yang termaktub di dalam
AKTA RAHSIA RASMI 1972)

TERHAD (Mengandungi maklumat TERHAD yang telah ditentukan oleh

organisasi/badan di mana penyelidikan dijalankan)

 TIDAK TERHAD

 (TANDATANGAN KETUA PROJEK)

 Nama & Cop Ketua Penyelidik

 Tarikh: 15/11/2005

 i

ABSTRACT

Modelling the natural phenomena such as clouds is one of the most

challenging problems in computer graphics. The complexity of cloud formation,

dynamics and light interaction makes real time cloud modelling a difficult task. The

visual portrayal of the sky and cloud is a common requirement when rendering the

outdoor scenes in computer graphics. The traditional way to create the sense of

cloudy is by using the captured sky images as background. This main output of this

project is a cloud modelling editor for designing cloud shapes namely RekAwan. The

editor provides integrated environment for modelling volumetric clouds with particle

system and surfaced based cloud using texture. This invention uses the newly

developed randomized algorithm to fill the cloud volume with particle systems.

Randomized method provides an efficient mean in modelling cloud particles data

very quickly and filling the cloud volume space with particles randomly. The

invention gives on-the-fly control over size of particles and number of particles and

radius of particles in the system. This shows its suitability for real time virtual reality

applications such as flight simulator and 3D games. The user can pass through the

cloud with realistic visual effect. The completed 3D cloud model output from

RekAwan can be easily imported into any OpenGL based virtual environment such

as simulator, animation and games. RekAwan can also become plug-ins to current

commercial 3D modeller software such as AutoCAD, 3D Studio Max, Maya and

Rhino3D. The potential industries that highly use RekAwan are weather

visualization, film, advertisement, games and flight simulator. This invention will cut

the development cost of the industry such as simulator and entertainment. This

product can be used effectively by 3D artists, designers and game developer to model

cloud shapes easily through interactive user interface. It is simple to use, efficient

and gives extensive control over the cloud shapes. RekAwan can also be used to

model any other gaseous object such as smoke, haze and fog.

 ii

ABSTRAK

Permodelan fenomena semulajadi seperti awan merupakan salah satu cabaran

dalam grafik komputer. Ini disebabkan oleh bentuknya yang kompleks, dinamik dan

interaksi cahaya diantara setiap partikel yang terdapat di dalamnya. Awan dan langit

merupakan perkara yang asas sebagai latar belakang dalam proses menghasilkan

suasana persekitaran luaran. Kaedah tradisional dalam menghasilkan suasana

berlatarbelakangkan awan dalam persekitaran maya ialah dengan menggunakan imej

yang diambil dengan kamera. Output utama dalam projek penyelidikan ini ialah satu

editor untuk permodelan awan bagi merekabentuk bentuk awan yang dinamakan

RekAwan. Editor ini menggabungkan kaedah permodelan awan secara isipadu

dengan penggunaan partikel dan juga kaedah permukaan menggunakan tekstur.

Inovasi ini juga menghasilkan algoritma perawakan untuk memenuhi partikel bagi

sesuatu bentuk awan. Algoritma ini membolehkan proses permodelan awan

dilaksanakan dengan lebih laju dan pengisian isipadu awan dilakukan secara rawak.

Pengguna dibenarkan untuk mengawal saiz dan bilangan partikel dalam sistem. Ini

menunjukkan keserasiannya dengan aplikasi realiti maya masa nyata seperti

simulator penerbangan dan permainan komputer 3D. Pengguna juga boleh

menembusi awan dengan kesan yang realistik. Model 3D yang dihasikan oleh

RekAwan boleh diimport ke mana-mana persekitaran maya yang berasaskan

OpenGL seperti simulator, animasi dan permainan komputer. RekAwan juga boleh

dijadikan sebagai plig-ins kepada perisian permodelan 3D komersil yang ada di

pasaran kini seperti AutoCAD, 3D Studio Max, Maya dan Rhina3D. Industri yang

berpotentsi untuk menggunakan RekAwan termasuklah visualisasi cuaca, filem,

pengiklanan, permainan komputer dan simulator penerbangan. Hasil inovasi ini dapat

mengurangkan kos pembangunan seperti simulator dan juga hiburan. Hasil produk

ini juga boleh digunakan secara efektif oleh artis 3D, perekabentuk dan pembangun

permainan komputer untuk memodelkan bentuk awan dengan lebih mudah menerusi

antaramuka yang interaktif dan mudah. RekAwan juga boleh digunakan untuk

memodel sebarang objek berasaskan gas seperti asap, jerebu dan kabus.

 iii

TABLE OF CONTENTS

CHAPTER TITLE PAGE

DECLARATION

ABSTRACT i

ABSTRAK ii
LIST OF TABLES vi

LIST OF FIGURES vii

LIST OF ABBREVIATIONS ix

 LIST OF APPENDICES x

I INTRODUCTION 1

 1.1 Introduction 1

1.2 Motivation 4

1.3 Problem Background 5

1.4 Problem Statement 9

1.5 Objective of the Study 9

1.6 Importance of the Study 10

1.7 Scope of the Study 11

1.8 Thesis Contributions 11

1.9 Thesis Organization 12

II CLOUD MODELING 14

2.1 Introduction 14

2.2 Texture Mapping Techniques 15

2.2.1 Two-Dimensional Texturing 16

2.2.2 Three-Dimensional Texturing – Solid

 Texturing 19

2.3 Simulating Complex Geometry 21

 iv

2.3.1 Polygonal and Patch Modeling 21

2.3.2 Constructive solid Geometry Models 22

2.3.3 Particle Systems 23

2.3.4 Procedural Modeling 24

2.4 Modeling Natural Phenomena 25

2.4.1 Modeling Terrain and Vegetation 25

2.4.2 Modeling Fire and Water 25

2.4.3 Modeling and Animating Gaseous

 Phenomena 26

2.5 Modeling Fuzzy Objects 27

2.5.1 Particle Systems 28

2.5.2 Metaballs 29

2.5.3 Voxel Volumes 29

2.5.4 Procedural Noise 30

2.5.5 Textured Solids 31

2.6 Cloud Dynamics Simulation 32

2.7 Light Scattering and Cloud Radiometry 34

2.7.1 Spherical Harmonics Methods 35

2.7.2 Finite Element Methods 37

2.7.3 Discrete Ordinates 38

2.7.4 Monte Carlo Integration 39

2.7.5 Line Integral Methods 40

2.8 Virtual Environment 42

2.8.1 Immersion 43

2.8.2 Interaction 44

2.9 Summary 44

III PARTICLE SYSTEMS 47

3.1 Introduction 47

3.2 Use of Particles System 49

3.3 Summary 57

IV RANDOMIZED ALGORITHM

AND IMPLEMENTATION 59

 v

4.1 Introduction 59

4.2 Flow Diagram of Shaping Modeling Algorithm 60

4.3 Input Data 61

4.3.1 Cloud Centre 61

4.3.2 Number of Particles 61

4.3.3 Radius 61

4.3.4 Data File Format 62

4.4 Data Acquisition 64

4.5 Design of Shape Modeling Algorithm 65

4.5.1 Model Formulation 66

4.5.2 Pseudo Code of Shaping

Modeling Algorithm 69

 4.6 Implementation of Randomized Algorithm

 in Cloud Editor 70

4.7 Summary 75

V TESTING AND RESULTS 77

 5.1 Introduction 77

5.2 Efficiency of the Randomized Algorithm 78

5.3 Rendering Performance Tests 80

5.4 Summary 89

VI DISCUSSION AND CONCLUSIONS 90

6.1 Introduction 90

6.2 Discussion 90

6.3 Conclusions 91

6.4 Limitations and Future Work 92

REFFERENCES 95

APPENDIX A 106-111

 vi

LIST OF TABLES

TABLE TITLE PAGE

4.1 Format of input data file 62

4.2 A sample of input data file 64

4.3 Data file generated by snapshot of Figure 4.4 72

4.4 Data file generated by snapshot of Figure 4.6 74

5.1 Specifications of Test System – System1 80

5.2 Specifications of Test System – System2 82

5.3 Specifications of Test System – System3 82

5.4 Specifications of Test System – System4 82

5.5 Specifications of Test System – System5 82

 vii

LIST OF FIGURES

FIGURE TITLE PAGE

2.1 Complex clouds modeled by linked ellipsoids 20

2.2 Shading with multiple forward scattering. 28

2.3 Cloud formation around mountains 29

2.4 Cloud rendered by ray tracing 30

2.5 Volumetric Implicit Turbulent Cloud 31

2.6 Cloud constructed from 30 ellipsoids 32

2.7 Hierarchy for cloud modeling techniques 45

4.1 Flow diagram of Shape Modeling Algorithm 60

4.2 Pseudo code for Shape Modeling Algorithm 69

4.3 Snapshot of Cloud Macrostructure Editor 70

4.4 Using 17 cubes for clouds apparent shape 71

4.5 Cloud modeled with 554 particles 73

4.6 Using 23 cubes for clouds apparent shape 73

4.7 Cloud modeled with 615 particles 75

5.1 Test result for efficiency of the algorithm 78

5.2 Test result for efficiency of the algorithm 79

5.3 Test result for efficiency of the algorithm 79

5.4 Performance Test results for System1 81

5.5 Performance Test results for System2 83

5.6 Performance Test results for System3 84

 viii

5.7 Performance Test results for System4 85

5.8 Performance Test results for System5 86

5.9 Comparison of Performance Test for 800×600 resolution 87

5.10 Comparison of Performance Test for 1024×768 resolution 87

5.11 Comparison of Performance Test for 1152×864 resolution 88

 ix

LIST OF ABBREVIATIONS

ABBREVIATION DESCRIPTION

AGP Accelerated Graphics Port

API Application Programming Interface

CA Cellular Automation

CML Coupled Map Lattice

CSG Constructive Solid Geometry

GPU Graphical Processing Unit

HMD Head Mounted Display

PDE Partial differential Equation

VE Virtual Environment

VR Virtual Reality

 x

LIST OF APPENDICES

APPENDIX TITLE PAGE

A Cloud Macrostructure Editor 106

CHAPTER I

INTRODUCTION

1.1 Introduction

If clouds were the mere result of the condensation of vapor in the masses of

atmosphere which they occupy, if their variations were produced by the movements

of the atmosphere alone, then indeed might the study of them be deemed an useless

pursuit of shadows, an attempt to describe forms which, being the sport of winds,

must be ever varying, and therefore not to be defined. But the case is not so with

clouds.

So began Luke Howard, the “Godfather of the Clouds”, in his ground

breaking 1802 essay on the classification of the forms of clouds (Howard, 1804).

Howard’s classification system—most noted for its three main classes cirrus, stratus,

and cumulus—is still in use today, and is well-known even among lay people.

Howard’s work and its influence on the world exemplify the importance of clouds to

humankind. Long before his time, people had looked to the clouds as harbingers of

changing weather, but Howard knew that understanding and predicting changes in

the weather required a better understanding of clouds. This understanding could not

be improved without a concrete yet flexible nomenclature with which clouds could

be discussed among scientists. Howard’s contemporaries were immediately taken

with his classification, and his fame quickly expanded outside of the circle of

amateur scientists to which he presented his work.

 2

Clouds are a frequently observed natural phenomenon. They are estimated to

cover between 60 and 70 % of the globe at any given time. At most locations on

earth some clouds will occur on every single day. Clouds exist in a great variety of

forms and on a large range of both temporal and spatial scales. Individual small

cumulus clouds for instance cover a few hundred meters in the horizontal and

vertical and normally have a lifetime of less than an hour. In contrast the vast,

virtually ubiquitous stratocumulus decks covering the eastern parts of the subtropical

oceans have a horizontal extent of several hundred kilometers, while being no more

than a few hundred meters thick. The processes involved in the formation and

dissipation of clouds span an even larger range of scales from micrometers for the

condensation of individual droplets to thousands of kilometers for cloud formation in

frontal systems associated with mid-latitude baroclinic systems (Christian, 2000).

An analysis of satellite observations shows that about half of the earth's

clouds extend above the freezing level and, therefore, are capable of ice production.

The clouds, however, do not glaciate instantly as they are exposed to negative

temperatures. Mixed phase clouds are commonly observed at temperatures down to -

20°C and below. Nucleation of ice crystals in clouds may occur either by

homogeneous freezing of drops or by heterogeneous nucleation on ice nuclei. The

former process is believed to be important at temperatures below about -40°C. This

process is essential for cirrus formation but its effects may be neglected for most low

and middle tropospheric clouds in mid-latitudes (Mikhail, 1997).

Clouds are directly linked to a large variety of weather phenomena. Rain and

snow are obviously produced in clouds, as are thunder and lightning. The latent heat

release due to condensation processes is known to be one of the most important

processes in the spin up and maintenance of tropical storms, which appear in their

most violent form as hurricanes and typhoons. It is an everyday experience that

clouds influence the radiative fluxes emitted both by the sun and the earth. If clouds

form on a sunny day, the maximum temperature near the surface will be lower than

without them, a direct consequence of the reflection of sunlight by clouds. Likewise,

if low clouds cover the sky at night the near-surface temperature will not drop as low

as under clear sky conditions due to the trapping of terrestrial radiation by the clouds.

Because of all these reasons it is obvious that it is desirable for any form of weather

 3

forecast to include a prediction of the occurrence and type of clouds and

precipitation. Just as importantly, the desire to estimate the future evolution of our

planet's climate requires knowledge about clouds. This is due to their strong

interaction with the radiative fluxes whose modification through changes in the

atmospheric composition is of considerable concern.

Clouds are a ubiquitous feature of our world. They provide a fascinating

dynamic backdrop to the outdoors, creating an endless array of formations and

patterns. As with stars, observers often attribute fanciful creatures to the shapes they

form, but this game is endless, because unlike constellations, cloud shapes change

within minutes. Beyond their visual fascination, clouds are also an integral factor in

Earth’s weather systems. Clouds are the vessels from which rain pours, and the shade

they provide can cause temperature changes below. The vicissitudes of temperature

and humidity that create clouds also result in tempestuous winds and storms. Their

stunning beauty, physical and visual complexity, and pertinence to weather have

made clouds an important area of study for meteorology, physics, art, and computer

graphics (Harris, 2003).

Cloud realism is especially important to flight simulation. Nearly all pilots

these days spend time training in flight simulators. To John Wojnaroski, a former

USAF fighter pilot and an active developer of the open-source FlightGear Flight

Simulator project (FlightGear, 2003), realistic clouds are an important part of flight

that is missing from current professional simulators.

 One sensation that clouds provide is the sense of motion, both in the

simulation and in real life. Not only are clouds important, they are absolutely

essential to give the sky substance. Like snowflakes, no two clouds are alike and

when you talk to folks involved in soaring you realize that clouds are the fingerprints

that tell you what the air is doing.

The complexity of cloud formation, dynamics, and light interaction makes

cloud simulation and rendering difficult in real time. In an interactive flight

simulation, users would like to fly in and around realistic, volumetric clouds, and to

see other aircraft convincingly pass within and behind them. Ideally, simulated

 4

clouds would grow and disperse as real clouds do, get blown by the wind, and move

in response to forces induced by passing aircraft. Simulated clouds should be

realistically illuminated by direct sunlight, internal scattering, and reflections from

the sky and the earth below. Previous real-time techniques have not provided users

with such experiences.

Clouds have fascinated and vexed computer graphics researchers for many

years. The visual appearance of clouds is very complex and extremely varied, yet it

is very easy to recognize an "incorrect" cloud model, probably because we see clouds

in one form or another every day (Gustav, 1999).

1.2 Motivation

Clouds remain one of the most significant challenges in the area of modeling

natural phenomena for computer graphics and it has been a challenge for nearly

twenty years. This has made the simulation of various natural phenomena one of the

important research fields in computer graphics. Aspects such as sky, clouds, water,

fire, trees, smoke, terrains, desert scenes, snow and fog play an important role for

creating realistic images of natural scenes. In particular, clouds are indispensable for

creating realistic images of natural scenes, outdoor scenes, flight simulators, space

flight simulators, visualization of the weather information, creation of realistic clouds

from satellite images, simulation of surveys of the earth, earth viewed from outer

space, film, art and so on. Some of the motivations factors can be summarized as

following:

• Clouds are familiar objects in everyday life, it is desirable to simulate them

effectively for the applications, such as entertainment, advertising, and art

etc.

• Clouds are a critical element in air-to-air combat and are important in the

simulation of intelligent weapon systems, which seek and identify aerial

targets in cluttered backgrounds.

 5

• Realistic cloud simulation would also be an effective tool in the field of

meteorology.

• Indeed, it is reasonable to say that we want to simulate these beautiful natural

features simply because they are there.

1.3 Problem Background

There are two important issues for synthesizing photo-realistic images of all

natural phenomena including clouds. These are modeling and rendering. Generally,

the modeling process includes the creation of shapes of objects, their dynamics

(motion/movement) and their physical properties such as surface reflectance. This is

however not an easy task for objects such as clouds, smoke and sand dunes (Nishita

and Dobashi, 2001). Rendering is the process of generating images by calculating

colors for every pixel. The ray-tracing algorithm is often employed for generating

images including the sky, clouds, smoke, desert scenes, and the atmospheric effects.

Although the ray-tracing algorithm can create extremely realistic images, the

computation time is very long.

There are two main approaches to cloud modeling and rendering. These two

approaches classified as procedural techniques and physically based techniques.

Procedural techniques try to capture the visual appearance of clouds without

simulating the actual physical processes. Voss (1983) and Musgrave (1990) created

realistic clouds with fractals. Gardner (1985) has produced realistic images of clouds

by using Fourier synthesis. However, this does not create a true three-dimensional

geometric model. Ebert and Parent (1990) have used solid texture to generate clouds

in three-dimensional spaces. Ebert (1997) has also developed a method combining

metaballs and a noise function to model clouds. Sakas (1993) has modeled clouds by

using spectral synthesis and Nishita et. al (1996) created clouds by generating

metaballs using the idea of fractals. Using these methods to create clouds is,

however, very difficult since many parameters have to be specified by trial and error.

 6

Stam and Fiume (1991) have developed a simple method for modeling

clouds. In their method, a user specifies density values at several points in three-

dimensional space. Then the density distribution of the clouds is obtained by

interpolating the specified density values. Although this method can create realistic

clouds, it is impractical for creating large-scale clouds viewed from space. Methods

for modeling a set of clusters of clouds have also been developed. Ebert et al. (1998)

created realistic images of typhoons by the procedural approach. Nishita et al. (1996)

have modeled clouds to generate realistic images of the earth viewed from space. In

both these methods, however, clouds are simply modeled by applying two-

dimensional fractals. The color and shape of clouds change depending on both the

viewpoint and the position of the sun. These methods cannot simulate such effects.

The physically based techniques attempt to simulate the meteorological

processes that create clouds and the interaction between light and cloudy air (Kajiya

and Herzen, 1984; Stam and Fiume, 1991, 1993; Harris et al., 2003).Kajiya and

Herzen (1984) used a simple method based on Partial Differential Equations (PDE)

to generate cloud data sets for their ray-tracing algorithm. Dobashi et al. (2000) used

a simple cellular automata model of cloud formation to animate clouds offline.

Miyazaki et al. (2001) extended this to use a coupled map lattice model based on

atmospheric fluid dynamics. Overby et al. (2002) described another physical model

that, like ours, is based on the stable fluid simulation of Stam (1999). Harris et al.

(2003) presented a method most similar to the work by Kajiya and Herzen (1984)

and Overby et al. (2002). He implements simulation, dynamics and radiometric

entirely on programmable floating-point graphics hardware to get real time

simulation. It seems, however, this method is not applicable for large-scale clouds as

required by games and flight simulator applications running on desktop machines.

Physical based simulation methods produce realistic images by

approximating the physical processes within a cloud. Computational fluid

simulations produce some of the most realistic images and movement of gaseous

phenomena. However, despite the recent breakthroughs in real-time fluid simulation,

large-scale high quality simulation still exhausts commodity computational resources

(Schpok et al., 2003). Therefore, using simulation approaches makes cloud modeling

 7

a slow offline process, where artists manipulate low-complexity avatars as

placeholders for the high quality simulation results. With this method, fine tuning the

results becomes a very slow, iterative process, where tweaking physical parameters

may have no observable consequence or give rise to undesirable side-effects,

including loss of precision and numeric instability. Unpredictable results may be

introduced from approximations in low-resolution calculations during trial renders.

These physics-based interfaces can also be very cumbersome and non-intuitive for

artists to express their intention and can limit the animation by the laws of physics.

Clouds consist of small particles and it is very difficult to define their definite

shapes. The simulation of their dynamics (movement) is also a difficult task, since

their shape changes continuously with time. Therefore, a lot of modeling methods

have been developed to address this problem. Using these methods, however,

obtaining realistic-looking shapes and motion is very time consuming. For example,

the rendering of clouds and smoke requires the integration of the intensity of light

scattered by small particles along the viewing ray. On the other hand, the processing

speed of graphics hardware has become faster and faster recently. In addition, high

performance graphics hardware is available even on low-end PCs. These facts have

encouraged researchers to develop hardware-accelerated methods for rendering

realistic images (Ofek and Rappoport, 1998; Heidrich and Seidel, 1999; Stam, 1999;

Cabral et al., 1999).

After efficiently computing the dynamics and illumination of clouds, there

remains the task of generating a cloud image. The translucent nature of clouds means

that they cannot be represented as simple geometric “shells”, like the polygonal

models commonly used in computer graphics. Instead, a volumetric representation

must be used to capture the variations in density within the cloud. Rendering such

volumetric models requires much computation at each pixel of the image. This

computation can result in excessive rendering times for each frame.

In order to model realistic clouds, there are two possibilities - the first is

physical-based simulation and the second is use of procedural techniques. Physical-

based simulation provides a straight-forward approach to create realistic clouds by

simulating the physical phenomena. This type of simulation creates a three

 8

dimensional density map, which describes the density of the water vapor the object

consists of. The density-map is rendered by means of a volume renderer, which takes

into account the specific scattering of light-rays, caused by tiny water droplets inside

the object. Physical-based simulation, however, demands a high computational cost

and is impractical for real time applications. Even on today’s fastest processors,

rendering times of about a few minutes per image are common.

Procedural modeling techniques provide simple and efficient methods to

simulate natural phenomena and give visually convincing results. Such techniques

provide an abstraction of model, encode classes of objects, and allow high-level

control and specification of the model. The goal of these modeling techniques is to

provide a concise, efficient, flexible, and controllable mechanism for specifying and

animating models of complex objects and natural phenomena. Code segments or

algorithms are used to abstract and encode the details of the model instead of

explicitly storing vast numbers of low-level primitives. The use of algorithms

provides great flexibility, and allows amplification of efforts through parametric

control - a few parameters to the model yield large amounts of geometric details.

Particle system is one of the procedural techniques. Particle systems are most

commonly used to represent natural phenomena such as fire, water, clouds, snow,

rain, grass, and trees. A particle-system object is represented by a large collection of

very simple geometric particles that change stochastically over time. Particle systems

do use a large database of geometric primitives to represent natural objects, but the

animation, location, birth, and death of the particles representing the object are

controlled algorithmically. The procedural aspect and main power of particle systems

allow the specification and control of this extremely large cloud of geometric

particles with very few parameters. Besides the geometric particles, a particle system

has controllable stochastic particle animation procedures that govern the creation,

movement, and death of the particles. These animation procedures often include

physically based forces to simulate effects such as gravity, vorticity, conservation of

momentum, and energy.

Clouds behave like live objects i.e., clouds move from one place to another,

clouds disappear while moving, and clouds appear while moving. So clouds are very

 9

easily modeled with the particle systems. Particle systems are a simple and efficient

method for representing clouds. Cloud model assumes that a particle represents a

roughly spherical volume in which a Gaussian distribution governs the density falloff

from the center of the particle. Each particle is made up of a center, radius, density,

and color. Good approximations of real clouds can be achieved by filling space with

particles of varying size and density. Clouds can very easily be built by filling a

volume with particles, or by using an editing application that allows placing particles

and building clouds interactively. The randomized method is a good way to get a

quick field of clouds. Virtual reality applications such as flight simulators have pre-

designed levels and require fine control over all details of the scene. Providing an

interactive editor allows producing beautiful clouds tailored to the needs.

1.4 Problem Statement

This research focuses on the development of a technique that can be used for

synthesizing cloud images in an interactive way. Particles system is used to model

these fuzzy objects.

The following research questions are addressed to solve the problem:

a) How efficient is particle system with randomized method for synthesizing

cloud images?

b) How can interactive-ness be employed for cloud modeling?

1.5 Objectives of the Study

 The main objective of this research is development of a shape modeling

algorithm using particles system and an interactive editing application in the area of

 10

cloud shape modeling problem. This research also aims to achieve the following

objectives:

a) To investigate, analyze and formulate an appropriate technique for modeling.

b) To define an appropriate mathematical model for the deformation of the

physically based cloud motion.

c) To construct a software library for modeling the cloud with the motion

analysis.

1.6 Importance of the Study

This study is conducted particularly to construct a randomized based model in

solving cloud shape modeling problem. In general, this study introduces a technique

consisting of a randomized based algorithm by making use of particles system for

modeling cloud shapes and an interactive editor application – cloud macrostructure

editor.

 The whole research can be divided into two parts. The first part of the

research consists on development of a randomized based algorithm using particles

system that can fill cloud space by placing particles at random positions to model

microstructure of the clouds. The second part deals with the development of an

interactive editor application – cloud macrostructure editor, which can be used to

model apparent shapes of clouds interactively.

 Results of this study can be used for conducting comparative study in the

future in order to discover whether the proposed system is suitable for different

problems in the area of cloud shape modeling problem.

 11

1.7 Scope of the Study

 The scope of the research conducted in this study can be summarized as

follows:

a) In a real system, the number of particles keeps on changing with the passage

of time. Some particles die from the system and at the same time some new

particles are born in the system. For simplicity, the number of particles is

considered as constant in this research i.e., no particle is born and no particle

dies with the passage of time.

b) In reality, each particle may not resemble the other particles and particles

may have different shapes. This research has considered a roughly spherical

volume for each particle for simplicity.

c) Particles in a system are free to move and continuously change their position

as they move along the atmosphere. In this research, each particle has a static

position as this research does not focus on study of cloud dynamics. So

particle do not move in any direction along the atmosphere.

1.8 Thesis Contributions

In this thesis, particles systems are used to model clouds and then synthesize

cloud images by making use of proposed algorithm based on randomized method

that fills the cloud volume with particles randomly. It provides an applicable

platform for the efficient and interactive synthesis of cloud images.

In general, the major contribution described in this thesis can be summarized

as follows:

a) Development of cloud shape modeling algorithm based on randomized

method using particle systems.

 12

b) Development of an interactive cloud editing application – cloud

macrostructure editor, to model cloud shapes in an interactive way. This

approach provides control over number of particles in a particular cloud area

and control over size of the particles.

c) Application of cloud macrostructure editor to test interactive-ness of the

randomized algorithm for modeling cloud shapes.

1.9 Thesis Organization

This section presents how this thesis is organized. The main structure of the

thesis consists of introduction, literature review, methodology, design, results,

discussion and conclusions in chapters described as below.

Chapter I: Introduction. This chapter introduces the research topic consisting of

various sections i.e. Introduction, Motivation, Problem Background, Problem

Statement, Objectives of the Research, Importance of the Study, Scope of the Study,

Thesis Contributions and Thesis Organization.

Chapter II: Cloud Modeling. This chapter presents current studies in the area of

cloud modeling problem and evaluates the advantages and disadvantages of the

existing solutions.

Chapter III: Particle Systems. This chapter discusses the basics of the particle

system.

Chapter IV: Randomized Particle Algorithm. Definition of the problem addressed

in this research and model formulation are presented in this chapter. Proposed

Algorithm and its testing are also presented in this chapter.

 13

Chapter V: Results and Testing. Results of the experiments are summarized and

discussed in this chapter.

Chapter VI: Discussion and Conclusions. This final chapter discusses the strength

and weaknesses of the thesis. This chapter also suggests the future work that can be

done for the extension of the proposed technique. Finally, this chapter concludes the

work of this research.

CHAPTER II

CLOUD MODELING

2.1 Introduction

Throughout the history of computer graphics, advances have been driven by

the quest for visual realism. This quest for visual realism encompassed all aspects of

image creation from object definition to object color, illumination and shadowing.

For example, early models for representing objects used polygonal meshes. These

early polygonal models for representing objects were not used to represent abstract

artistic shapes; they were model, of actual objects. Spline patch models were later

used for object modeling to more accurately represent cured surfaces in the real

world. Early rendering systems rendered faceted shaded, flatly illuminated, alias-

prone images. Techniques were then developed by Gouraud and Phong to

approximate curved surfaces from polygonal models (Rogers and David, 1985). The

illumination models for these objects have also greatly improved from simple

Larnbertian models to complex illumination models using radiosity, ray tracing and

Cook-Torrance illumination models (Ebert, 1996).

Much effort has been made in computer graphics on the synthesis of real-

world imagery. The sky is an essential part of realistic outdoor scenery. Because of

this, cloud rendering has been an active area of research in computer graphics for the

past twenty years.

 15

A survey of previous work on clouds would be incomplete without a

description of the variety of methods that have been used in computer graphics to

synthesize the images of various natural phenomena including clouds. The rest of

this introductory chapter will review advances in creating state-of-the-art images in

computer graphics. The use of texture mapping techniques for modeling the surface

attributes of objects will be discussed, followed by a discussion on various

techniques used for cloud modeling and rendering.

2.2 Texture Mapping Techniques

Texture mapping is a technique for simulating the surface characteristics of

an object. This, technique was originally proposed by Catmull in 1974 (Rogers and

David, 1985) and is still an important technique for creating realistic images. Texture

mapping varies the surface characteristics of an object through the use of

mathematical functions, or two-dimensional or three-dimensional tables. This

technique has been used to modulate many surface characteristics, including color,

roughness, reflection, transparency and even the actual surface geometry

(displacement mapping).

Texturing is commonly used in applying a two-dimensional image onto an

object to produce a color pattern on the object. Examples of this include creating a

label on a wine bottle and the woven fabric color pattern on a sofa.

This technique is also commonly used to simulate bumps, wrinkles, and

imperfections on the surface of objects by modifying the normal to the surface of the

object. This helps in creating realistic images by reducing the smooth “antiseptic”

quality of computer-generated images. Scratches in a table, the winkles on the

surface of an orange and the bumps in a stucco wall can all be simulated with two-

dimensional texturing of surface normals (bump mapping).

To model the actual surface geometry created by bumps, dents, and scratches,

displacement mapping can be used. Displacement mapping differs from bump

 16

mapping in that the actual geometry of the surface is modulated (on displaced)

instead of just the normal to the surface. Displacement mapping solves two problems

that occur with bump mapping, smooth silhouettes and smooth intersections. In

bump mapping, the silhouette of the object will not show the effects of' the bump

mapping, since the normal vector is just perturbed. The actual geometry of the

silhouette (and the entire object) remains unchanged. The intersection of two bump

mapped objects will also not show the effects of the bump mapping for the same

reason. However, with displacement mapping, the geometry of the object is actually

changed, so these problems will not occur.

Displacement mapping and other types of texture mapping are incorporated

as follows into the rendering process. Texture mapping normally occurs just before

the illumination calculations are performed to determine the final color of the surface

element. Texture mapping of surface color, surface normal vector, surface reflection,

and other surface illumination parameters is performed just prior to the illumination

calculation to determine the final color of this surface element. Texture mapping of

surface transparency normally occurs just prior to the combination of this surface

element with the surface element behind it. In most rendering systems, displacement

mapping needs to be performed before the hidden surface algorithm and actual

changes the geometric representation of the object. In most rendering algorithm,

texturing is only applied to the visible points on the surface of the object (after the

hidden surface calculations). To avoid perspective distortions in the texture, the

object space location of the visible point on the surface of the object is usually used

in the texture mapping calculation. Different mapping algorithms will be discussed in

the following subsections.

2.2.1 Two-Dimensional Texturing

Texture mapping was originally a two-dimensional technique. In two-

dimensional texture mapping, each visible point p on an object is mapped into a two-

dimensional apace (normally a two-dimensional table). The two-dimensional texture

space is then evaluated to determine the value associated with the particular location

 17

two-space. This value is t hen used for the particular surface characteristic of the

point P on the object. Two-dimensional texturing was originally used in modeling the

surface color of objects. Blinn et al. (1976) extended texture mapping to modulate

the specular and reflection characteristics of objects. Blinn (1978) further extended

texturing to modulate the normal vector of surfaces as a way of simulating bumps

and wrinkles on objects. Finally, Cook (1984) suggested using two-dimensional

texturing to manipulate all aspects of the illumination of an object, including surface

displacement and shadowing.

There are several techniques for mapping the point into this two-dimensional

texture space. For a survey of different mapping techniques, see (Heckbert and Paul,

1986). These techniques can be classified into two different classes of mapping

techniques. The first class maps each polygon or patch of the object into the entire

two-dimensional space. Therefore, using this class of mapping technique repeats the

texture on each polygon or patch of the object. Within this class of mappings, two

different mapping techniques are commonly used. The first mapping technique is

referred to as inverse bilinear interpolation (Heckbert and Paul, 1986). This

technique first, uses the inverse perspective transformation to transform the image

space location of the point on the surface of the object into object space. Then, the

point in object space is mapped into the texture definition space through the use of

inverse bilinear interpolation. The second technique uses simple bilinear

interpolation in screen space, where the location of the point in screen space is used

in the texture mapping, and not the location of point in object space, as in the

previous technique. This technique, however, suffers from perspective distortion. A

more detailed description of these techniques can he found in (Heckbert and Paul,

1986).

The second class of mapping techniques maps the entire surface of the object

into the texture space. This class of mappings “wraps" the texture around the entire

object instead of repeating the texture on each polygon or patch. The simplest

technique of this class uses a spherical mapping. With spherical mapping, the polar

coordinates of the pint, with respect to the object coordinate system, are used to map

the surface of the object into the texture space. Simple linear interpolation in screen

space can also be used to map the entire object surface into the texture space. In this

 18

technique, the user assigns texture space coordinates with each vertex of a polygon

(or control point of a patch). Then, during scan conversion, these texture space

coordinates are simply linearly interpolated to determine the texture space coordinate

for each visible point on the surface of the object.

The mapping of each pint on the surface of a three-dimensional object into

the two-dimensional texture space creates many problems in the resultant appearance

of the texture applied to the object. The two-dimensional texture may suffer

distortions when applied to the three-dimensional object. For example, when a

simple spherical projection is used to map a two-dimensional texture onto an object,

the texture is normally compressed near the poles and stretched near the equator of

the object. Another problem caused by the texture mapping is discontinuities at the

seams of the texture applied to the object. A seam is where two separate sides of the

texture map meet when the texture is applied to the object. Discontinuities can occur

at the seams for two reasons. First, the values in the texture map at the two edges that

meet may not be the same. Second, the scale can change abruptly at the seams

because of the mapping technique. The surface area that each section of the texture

map occupies on opposite sides of the seam may be different because of the

mapping. Blurring or averaging of values at the seams can be used to solve this

problem (Burt et al., 1983).

A few techniques have also been proposed to solve the distortion problem.

The first technique is referred to as two-part texture mapping (Bier and Kenneth,

1986). In this technique, the texture is first projected onto an intermediate three-

dimensional shape. Then the texture is mapped from the intermediate three-

dimensional shape onto the final object. The choice of the separate parts of the

mapping allows for choosing a combination of techniques that minimize distortion

for the particular object.

Another solution can he termed object unfolding (Samek et al., 1986). In this

technique, the polygons of the object are unfolded onto a flat two-dimensional plane.

Then vertices in the object are associated with locations in the texture map. The user

interactively assigns a texture space coordinate with each vertex in the unfolded

object. The location of the vertices in the texture space, are then used during the

 19

mapping to apply the texture to the object. Problems with this technique include the

possibility of introducing discontinuities into the texture applied to the image and

loss of texture when applied to the object (parts of the texture map may not be

applied to the object). This technique is used to reduce distortion and scale changes

when the texture map is applied to the object. It still does not solve the problem with

seams.

2.2.2 Three-Dimensional Texturing - Solid Texturing

In 1985, Gardner (1985), Peachey and Darwyn (1985) and Perlin (1985) all

independently suggested extending two-dimensional texturing to three-dimensional

texturing or solid texturing. Solid texturing differs from two-dimensional texturing in

that solid texturing maps each point on the surface of an object to a three-

dimensional texture space as opposed to a two-dimensional texture space. The

location of the point in this three-dimensional “solid space” is used in calculating the

value for modulating the surface characteristic of' the point on the object.

Solid texturing is incorporated into the viewing algorithm in a manner similar

to two-dimensional texture mapping. As in two-dimensional texturing, the three-

dimensional screen space location of each visible point on the surface of the object is

mapped back to object space. The main difference is that then this three-dimensional

object space location is used by the solid texturing functions to determine the value

of the corresponding screen location, as opposed to the two-dimensional location

used in two-dimensional texturing.

Gardner (1985) uses three-dimensional texturing for simulating clouds. This

technique is used as a model for clouds by using Fourier synthesis to control the

transparency of hollow ellipsoids. Figure 2.1 shows complex clouds modeled by

Gardner (1985) by making use of linked ellipsoids.

 20

Figure 2.1: Complex clouds modeled by linked ellipsoids (Gardner, 1985)

Peachey and Darwyn (1985) and Perlin (1985) both proposed solid texturing

for controlling the color patterns of objects. They both also used solid texturing as a

model for simulating objects carved from solid materials. In solid texturing, the

texture is determined from evaluating three-dimensional functions based on the

location of each point on the surface of an object in the solid texture Space.

Therefore, solid texturing is an extremely powerful technique for simulating objects

carved from solid materials such as wood, marble, granite, and other stone materials.

Peachey and Darwyn (1985) use both three-dimensional functions and

projected two-dimensional images for defining his three-dimensional textures.

Peachey has suggested several functions, which can be used to create interesting

three-dimensional textures. By randomly placing spheres of random size throughout

a solid space, he simulates materials in which bubbles of one material are captured in

the solidification of another material. To simulate wood, Peachey uses concentric

cylinders of light and dark colors aligned along an arbitrary axis in three-space.

Peachey simulates marble through placing starting locations for veins within the

solid space. The direction of the veins is then controlled through the use of sinusoidal

functions. The diameter of the cross-section of the veins is also controlled by more

sinusoidal functions.

Perlin (1985) also chose three-dimensional functions to define his three-

dimensional textures. Perlin makes extensive use of function composition to create

interesting three-dimensional textures. The bases of most of these functions are two

functions, one of which simulates random noise and the other which provides a

“visual” simulation of turbulent flow. Through the use of these functions Perlin is

 21

able to create very realistic images of marble, fire, water, and block glass. Details can

be found in (Perlin, 1985).

Solid texturing solves some problems of two-dimensional texturing. Since

solid texturing uses an affine mapping from the three-dimensional object space to the

three-dimensional texture space (normally scale and translation transformations),

there is no distortion of the texture when it is to the object. In two-dimensional

texturing where a two-dimensional image is mapped onto a complex three-

dimensional manifold, distortion and mapping of the texture applied to the object can

occur. Solid texturing avoids these problems.

2.3 Simulating Complex Geometry

There have been many approaches to modeling the complex geometry of

objects in our environment. Polygonal and patch models were the first models used.

Constructive solid geometry (CSG) models were introduced later. More recent

models can be categorized as either particle systems or procedural models.

2.3.1 Polygonal and Patch Modeling

The first geometric models of objects in computer graphics were polygonal

meshes. A polygonal mesh is a collection of planner polygons containing vertex,

edge, and connectivity information. Polygonal mesh models however, do not

accurately model smooth surfaces, which are so commonly found in our

environment. To circumvent this problem, Gouraud (Rogers and David, 1985)

developed an intensity interpolation method for polygonal mesh objects to simulate

the appearance of a curved surface. Phong (Rogers and David, 1985) developed an

improved approximation method, which uses interpolation of the normal vector to

approximate the illumination from curved surface. Both of those techniques suffer

problems since they do not correctly model the geometry of a curved surface. For

 22

example, the silhouette of the object is still polygonal and so is the line of'

intersection of two polygonal objects.

Spline surface patches solve some of the problems with polygonal patch

models, since they are an actual curved surface model useful for simulating smooth

surfaces in our environment. Surface patch models have been extended to

formulations that are easier to control and they have advantages over earlier

formulations, such as hierarchical Spline models. Forsey and Bartels (1988) have

created a hierarchical spline model that allows for uneven spacing of control points

to provide an efficient formalization for objects that have areas of varying degrees of

surface details.

Both polygonal and surface patch models are usually created by digitizing a

real world model, or using an interactive system to create the model.

2.3.2 Constructive Solid Geometry Models

Polygonal and surface patch models are boundary representations of objects.

The polygons and patches define the surface of the object. They separate points

inside the object from points outside the object. The geometry of the solid interior of

the object is not defined (the objects are hollow). Constructive solid geometry

(CGS), on the other hand, is a solid model for objects. CSG objects are solid objects,

not simply surfaces. The interior geometry of the object is part of the CSG

representation of the object. CGS models use Boolean operations on simple shapes to

define complex shapes. CSG models have several advantages over boundary

representations. First, they are a very compact way of representing complex shapes

and can be generated rapidly by solid modeling systems. Second, they contain the

full three-dimensional volume geometry of the object as opposed to just the surface

information. CSG models, however, do have some disadvantages when compared to

boundary representations. First, they either require a volume rendering or ray tracing

system to render the full three-dimensional volume of the object or they require the

boundary representation to be calculated for use in a surface-based renderer.

 23

Calculating the boundary representation from the CSG models requires extensive

computations. Second, some shapes are not easily described as Boolean operations

on simple shapes.

2.3.3 Particle Systems

A more recent approach to modeling complex geometric objects is particle

systems. Reeves (1983) originated the use of particle systems. Particle systems have

mainly been used for modeling natural phenomena, such as smoke, cloud, fire, trees,

and water where the intricate detail of the phenomena is represented by a large

collection of particles. Particle systems normally involve the use of a large number of

small spherical particles. The animation of these particles is controlled through the

use of procedures, which simulate the specific natural object, such as fire. The

rendering of particle systems normally uses a simple constant shading model and

often the color of the particle is determined by its three-dimensional location in

space. For example, in Reeves' fire simulation (Reeves, 1983), the color of the

particle is determined by its elevation from the base of the fire.

Particle systems have several advantages over patch and polygonal models.

Particle systems normally use simple spheres for representing the geometry of the

object or phenomenon, instead of complex patch or polygonal models. Therefore, the

rendering system only needs to handle simple spherical models. The particle system

rendering process also usually uses constant flat shading for the illumination of the

particles, which is much simpler and quicker than normal illumination algorithms

used for patch and polygonal models.

However, particle systems do have several disadvantages. They require an

extremely large geometric database of particles to represent complex objects or

phenomena. Shadowing algorithms and illumination algorithms for particle systems,

although quicker, are not as realistic as the algorithms normally used for patch and

polygonal models. Also, complex shapes can only be approximated by a large

collection of spheres. Therefore, sharp edges are hard to simulate.

 24

2.3.4 Procedural Modeling

Many different, modeling techniques can he termed procedural modeling.

Fractal synthesis (Mandelbrot, 1982), Fourier synthesis (Gardener, 1985),

hypertextures (Perlin and Hoffert, 1989), L-systems (Prusinkiewicz et al., 1988),

volume density functions (Ebert and Parent, 1990), and inverse particle systems can

all be considered to be procedural models. Procedural modeling uses algorithms to

represent the geometry of objects. Most, physically based modeling techniques are

also procedural modeling techniques, for example Kajiya’s cloud modeling

technique (Kajiya and Herzen, 1984).

Procedural modeling techniques have many advantages over polygonal and

patch modeling techniques. The procedural model is evaluated during the rendering

process to determine the geometry of the object / phenomena. Usually, the model is

evaluated at the resolution of image rendering. Therefore, the models provide the

needed amount of detail without introducing high frequency details, which will result

in aliasing artifacts. Secondly, complex shapes can be represented with very little

data storage space. For instance, a fractal mountain can be represented with a

procedure of less than 50 lines of C language code; whereas, to achieve an

equivalently detailed polygona1 model might require 50,000 polygons (Ebert, 1996).

Because of this, procedural modeling techniques are often used to represent objects

of very high degrees of detail such as natural phenomena.

Procedural models, however, do have disadvantages over particle systems,

patch, and polygonal modeling. The main disadvantage is the computation time

required to evaluate the procedure. Often the procedure is evaluated during rendering

and many floating-point computations are usually performed during each evaluation

of the procedural model. The computation time of rendering a procedural model is

directly related to the computation time to evaluate the procedure for the model.

 25

2.4 Modeling Natural Phenomena

Natural phenomena are some of the hardest things to model in computer

graphics. Modeling phenomena such as mountains, trees, plants, fire, water, clouds,

and smoke have inspired much research in computer graphics. Realistic models of

these phenomena, however, still elude current computer graphics techniques. The

complex intricate geometry and motion of these phenomena make them very difficult

to model. Some natural phenomena, such as mountains, trees, and plants have

intricate rigid shapes, while others; such as clouds, fire, and water have intricate

amorphous shapes. Most models for natural phenomena can he classified as fractals,

particle systems, or other types of procedural models.

2.4.1 Modeling Terrain and Vegetation

Most approaches to modeling terrain have used a fractal modeling approach

(Miller, 1986). Mandelbort and Musgrave (Musgrave et al., 1989) have done much

work on the modeling of terrain using fractals. Recent work has included modeling

terrain with fractals and then simulating the natural erosion processes that affect

terrain to create a more realistic model (Musgrave et al., 1989).

There has been a wider range of techniques used to model vegetation. Iterated

functions systems (Demko et al., 1985), fractals, particle systems (Reeves and Blau,

1985) and L-systems (Prusinkiewicz et al., 1988) have all been used to model plants

and trees. Very realistic images of plants have recently been produced through the

use of L-systems

2.4.2 Modeling Fire and Water

The modeling of water has received as much attention as the modeling of

terrain and vegetation. Early models for water used simple cycloidal models for

 26

controlling the height of the surface of the water (Max, 1981). This model had many

problems, including its inability to simulate breaking or curling waves since there

can only be one height value for each x-y location. 1986 and 1987 saw a flurry of

research in modeling ocean waves (T'so and Barsky, 1987; Fournier and Reeves,

1986; Peachey, 1986). Some of these models provided mom physically based models

that simulated breaking waves and even spray from breaking waves created by

particle systems (Fournier and Reeves, 1986). More recently, Kass and Miller (1990)

have developed a model based on wave equations that even allows for the net

transport of water volume. The main drawback with their approach is that they again

use a height field, so they cannot simulate cresting or breaking waves.

The modeling of fire has received very little attention compared to the

modeling of water. The main approach to modeling fire has been the use of particle

systems (Reeves, 1983; Sims, 1990).

2.4.3 Modeling and Animating Gaseous Phenomena

The rendering of scenes containing clouds, fog, atmospheric dispersion

effects, and other gaseous phenomena has received much attention in the computer

graphics literature. Several papers deal mainly with atmospheric dispersion effects

(Willis, 1987; Nishita el al., 1987; Rushmeier and Torrance, 1987), while many

cover the illumination of these gaseous phenomena in detail (Blinn, 1982; Kajiya and

Herzen, 1984; Max, 1986; Kass and Miller, 1990). Most authors have used a low

albedo reflection model, while a few, B1inn (1982), Kajiya and Herzen (1984), and

Rushmeier and Torrance (1987), discuss the implementation of a high albedo model.

A low albedo reflectance model assumes that secondary scattering effects are

negligible, while a high albedo illumination model calculates the secondary and

higher order scattering effects.

Another issue is modeling the geometry of these gases. Some authors use a

constant density medium (Klassen, 1987; Nishita et al., 1987), but do allow different

 27

layers of constant densities. This allows for a very limited geometry for the gases.

Voss (1983) uses fractals and Max (1986) uses height fields for modeling the

geometry of clouds. Kajiya and Herzen (1984) use a physically based model for

clouds, which simulates water vapor, heat flow, wing, etc to form a physical model

for clouds. However, the resulting images are not very realistic. Gardner (1985) uses

hollow ellipsoids to model the geometry of clouds. He controls the transparency of

hollow ellipsoids through the use of Fourier synthesis. To form larger cloud

formations, he combines many different ellipsoids to form cloud groups. The main

problem with his approach is that it is not a true three-dimensional model for the

clouds, so accurate cloud shadowing is impossible. Another problem is that once you

enter a cloud, you can clearly see that it is a simple hollow object and not a full three-

dimensional cloud volume.

Ebert and Parent (1990) use turbulent flow based functions to model the

density of a variety of gases. These functions are based on Perlin’s visual simulation

of turbulent flow (Perlin, 1985) and are similar to the idea of hypertextures (Perlin

and Hoffert, 1989). This model is a true three-dimensional model for the geometry of

gases and provides realistic results. This technique seems to provide more realistic

results than most previous efforts by providing visually realistic renderings and

animations of gaseous phenomena and the shadows they cast. These techniques are

based on a visual simulation of turbulent flow, so it is a visual simulation of the

turbulent processes that determines the geometry of gaseous phenomena. These

techniques can also be extended to use a physically based turbulent flow model and

can be very efficient when simplifying assumptions are made. This approach will be

discussed in more detail later in this dissertation.

2.5 Modeling Fuzzy Objects

As is true for any object or phenomenon, there are multiple ways to model

fuzzy objects such as clouds. An explicit representation of every water droplet in a

cloud would require far too much computation and storage (Harris, 2003), so most

researchers have used much coarser models. In this section I describe five general

 28

methods that have been used to model and render clouds: particle systems, metaballs,

voxel volumes, procedural noise, and textured solids. Note that these techniques are

not mutually exclusive; multiple techniques have been combined with good results.

2.5.1 Particle Systems

Particle systems model objects as a collection of particles—simple primitives

that can be represented by a single 3D position and a small number of attributes such

as radius, color, and texture. Reeves (1983) introduced particle systems in as an

approach to modeling clouds and other “fuzzy” phenomena, and described

approximate methods of shading particle models in (Reeves and Blau, 1985).

Particles can be created by hand using a modeling tool, procedurally generated, or

created with some combination of the two. Particles can be rendered in a variety of

ways. Harris and Lastra (2001) modeled static clouds with particles and rendered

each particle as a small texture sprite (or “split” (Westover, 1990)). The details of

this technique can be found in (Harris and Lastra, 2001). Figure 2.2 shows clouds

modeled by Harria and Lastra (2001).

Figure 2.2: Shading with multiple forward scattering. (Harris and Lastra, 2001)

Particles have the advantage that they usually require only very simple and

inexpensive code to maintain and render. Because a particle implicitly represents a

spherical volume, a cloud built with particles usually requires much less storage than

a similarly detailed cloud represented with other methods. This advantage may

diminish as detail increases, because many tiny particles are needed to achieve high

detail. In this situation other techniques may be more desirable.

 29

2.5.2 Metaballs

Metaballs (or “blobs”) represent volumes as the superposition of potential

fields of a set of sources, each of which is defined by a center, radius, and strength

(Blinn, 1982a). These volumes can be rendered in a number of ways, including ray

tracing and splatting. Alternatively, isosurfaces can be extracted and rendered, but

this might not be appropriate for clouds. Nishita et al. (1999) used metaballs to

model clouds by first creating a basic cloud shape by hand-placing a few metaballs,

and then adding detail via a fractal method of generating new metaballs on the

surfaces of existing ones (Nishita et al., 1996). Dobashi et al. (1999) used metaballs

to model clouds extracted from satellite images. In Dobashi et al. (2000), clouds

simulated on a voxel grid were converted into metaballs for rendering with splatting.

The figure 2.3 shows a snapshot of clouds formed around mountains, as modeled by

Dobashi et al. (2000).

Figure 2.3: Cloud formation around mountains (Dobashi et al., 2000)

2.5.3 Voxel Volumes

Voxels are another common representation for clouds. A voxel is the three-

dimensional analog of a pixel. It is a single cell of a regular grid subdivision of a

rectangular prism. Voxel models provide a uniform sampling of the volume, and can

be rendered with both forward and backward methods. There is a large body of

existing work on volume rendering that can be drawn upon when rendering clouds

 30

represented as voxel volumes (Levoy, 1988; Westover, 1990; Wilson et al., 1994;

Cabral et al., 1994; Kniss et al., 2002). Voxel grids are typically used when

physically-based simulation is involved. Kajiya and Herzen (1984) performed a

simple physical cloud simulation and stored the results in a voxel volume which they

rendered using ray tracing. Figure 2.4 shows clouds rendered by Kajiya and Herzen

(1984).

Figure 2.4: Cloud rendered by ray tracing (Kajiya and Herzen, 1984)

Dobashi, et al. (1998) simulated clouds on a voxel grid using a cellular

automata model similar to Nagel and Raschke (1992), converted the grid to

metaballs, and rendered them using splatting (Dobashi et al., 2000). Miyazaki et al.

(2001) also performed cloud simulation on a grid using a method known as a

Coupled Map Lattice (CML), and then rendered the resulting clouds in the same way

as Dobashi et al. Overby et al. (2002) solved a set of partial differential equations to

generate clouds on a voxel grid and rendered them using SkyWorks rendering engine

(Harris and Lastra, 2001).

2.5.4 Procedural Noise

Procedural solid noise techniques are another important technique for

generating models of clouds. These methods use noise as a basis, and perform

various operations on the noise to generate random but continuous density data to fill

 31

cloud volumes (Lewis, 1989; Perlin, 1985). Ebert has done much work in modeling

“solid spaces” using procedural solid noise, including offline computation of realistic

images of smoke, steam, and clouds (Ebert and Parent, 1990; Ebert, 1997; Ebert et

al., 2002). Ebert modeled clouds using a union of implicit functions. He then

perturbed the solid space defined by the implicit functions using procedural solid

noise, and rendered it using a scan line renderer. Schpok et al. (2003) recently

extended Ebert’s techniques to take advantage of programmable graphics hardware

for fast animation and rendering. Figure 2.5 shows volumetric implicit turbulent

cloud modeled by Ebert (1997).

Figure 2.5: Volumetric Implicit Turbulent Cloud (Ebert, 1997)

2.5.5 Textured Solids

Others have chosen surface representations of clouds rather than volume

representations. Gardner used fractal texturing on the surface of ellipsoids to

simulate the appearance of clouds (Gardner, 1985). By combining multiple textured

and shaded ellipsoids, he was able to create convincing cloudy scenes. Lewis also

used ellipsoids for clouds, but with procedural solid noise (Lewis, 1989). More

recently, Elinas and Sturzlinger used a variation of Gardner’s method to interactively

 32

render clouds composed of multiple ellipsoids (Elinas and Sturzlinger, 2001). Figure

2.6 shows clouds modeled by Elinas and Sturzlinger (2001) using 30 ellipsoids.

Figure 2.6: Cloud constructed from 30 ellipsoids (Elinas and Sturzlinger, 2001)

2.6 Cloud Dynamics Simulation

Cloud simulation has been of interest to meteorologists and atmospheric

scientists since the advancement in high performance computing, but it has only

recently drawn much interest from the computer graphics community. Scientific

simulations of clouds and weather are typically very complex, requiring many hours

of computation to simulate a relatively short time of cloud development.

The earliest simulations in atmospheric science were simple one-dimensional

models. These models represented only vertical motion and computed changes under

the influences of condensation and precipitation. Later models extended the

simulation to two dimensions, but the extreme computational expense of three

dimensions was prohibitive, so researchers tended to resort to slab symmetry or axial

symmetry. These symmetries limit simulation to two-dimensions, but they at least

provide the ability to simulate horizontal wind shear, which is important to cloud

dynamics. One of the earliest such simulations was presented in (Takeda, 1971).

Because rotational flow—including vortices with both horizontal and vertical axes of

rotation—is common in real clouds, three-dimensional simulation is essential for

high accuracy. Steiner presented the first fully three-dimensional model, and in a

comparison with a similar two-dimensional model, he showed important differences

 33

in the rotational motion of the clouds (Steiner, 1973). Three-dimensional cloud

simulation has progressed since then.

Simulations from atmospheric physics are too expensive for computer

graphics applications other than scientific visualization. Because they are used to

understand our atmosphere and weather, many of them include a high level of detail

that is not visible in nature, including very specific tracking of water state and droplet

size distributions, complex microphysics, and detailed fluid dynamics at a variety of

scales. If the goal is simply to create realistic images and animations of clouds, much

less detailed visual simulations can be used.

Kajiya and Herzen were the first in computer graphics to demonstrate a visual

cloud simulation (Kajiya and Herzen, 1984). They solved a very simple set of partial

differential equations to generate cloud data sets for their ray tracing algorithm. The

Partial differential Equations (PDE) they solved were the Navier-Stokes equations of

incompressible fluid flow; a simple thermodynamic equation to account for

advection of temperature and latent heat effects; and a simple water continuity

equation. The simulation required about 10 seconds per time step (one second of

cloud evolution) to update a 10×10×20 grid on a VAX 11/780. Overby et al.

described a similar but slightly more detailed physical model based on PDEs

(Overby et al., 2002). They used the stable fluid simulation algorithm of (Stam,

1999) to solve the Navier-Stokes equations. The stability of this method allows much

larger time steps, so Overby et al. were able to achieve simulation rates of one

iteration per second on a 15 × 50 × 15 grid using an 800MHz Pentium III. Harris has

implemented a faster and slightly more realistic cloud simulation using

programmable floating point graphics hardware (Harris et al., 2003; Harris, 2003).

Other researchers have tried simpler, but less realistic rule-based simulation

techniques. Neyret used an animated particle system to model cloud behavior, using

a set of heuristics to approximate the rolling behavior of convective clouds (Neyret,

1997). (Dobashi et al., 2000) used a simple cellular automata (CA) model of cloud

formation to animate clouds offline. The model was based on the simple CA

introduced by (Nagel and Raschke, 1992). Nagel and Raschke’s original CA had

rules for the spread of humidity between neighboring cells and for the formation of

 34

clouds in humid cells, but included no mechanism for evaporation. Dobashi et al.

added a stochastic rule for evaporation so that the clouds would appear to grow and

dissipate. Their model achieved a simulation time of about 0.5 seconds on a 256 ×

256 × 20 volume using a dual 500 MHz Pentium III.

In similar work, Miyazaki et al. used a coupled map lattice rather than a

cellular automaton (Miyazaki et al., 2001). This model was an extension of an earlier

coupled map lattice model from the physics literature. Coupled map lattices (CML)

are an extension of CA with continuous state values at the cells, rather than discrete

values. Harris et al. have done work on performing CML simulations on

programmable graphics hardware (Harris et al., 2002). The CML of Miyazaki et al.

used rules based on atmospheric fluid dynamics, including a rule used to

approximate incompressibility and rules for advection, vapor and temperature

diffusion, buoyancy, and phase changes. They were able to simulate a 3–5 s time step

on a 256 × 256 × 40 lattice in about 10 s on a 1 GHz Pentium III.

2.7 Light Scattering and Cloud Radiometry

Some of the earliest work on simulating light scattering for computer

graphics was presented in (Blinn, 1982b). Motivated by the need to render the rings

of Saturn, Blinn described an approximate method for computing the appearance of

cloudy or dusty surfaces via statistical simulation of the light-matter interaction.

Blinn (1982b) made a simplifying assumption in his model—that the primary effect

of light scattering is due to reflection from a single particle in the medium, and

multiple reflections can be considered negligible. This single scattering assumption

has become common in computer graphics, but as Blinn (1982b) and others have

noted, it is only valid for media with particles of low single scattering albedo. Blinn

(1982b) also simplified the problem by limiting application of his model to plane

parallel atmospheres, rather than handling scattering in arbitrary domains.

As described by Harris (2003), accurate computation of light scattering in

media with high single scattering albedo is expensive, because it requires evaluation

 35

of a double integral equation. In practice, researchers either use simplifying

assumptions to reduce the complexity of the problem, or perform long offline

computations. There are multiple ways to compute light scattering, and many

simplifications that can be applied. The previous work in this area can be grouped

into five categories: Spherical Harmonics Methods, Finite Element Methods,

Discrete Ordinates, Monte Carlo Integration, and Line Integral Methods.

2.7.1 Spherical Harmonics Methods

The spherical harmonics Yl
m (θ, φ) are the angular portion of the solution of

Laplace’s equation in spherical coordinates. The spherical harmonics form a

complete orthonormal basis. This means that an arbitrary function f(θ, φ) can be

represented by an infinite series expansion in terms of spherical harmonics:

∑ ∑
∞

= =
=

0 0
),(),(

l

l

m

m
l

m
l YAf φθφθ (2.1)

The method of determining the coefficients, Al
m, of the series is analogous to

determining the coefficients of a Fourier series expansion of a function. If the value

of f is known at a number of samples, then a series of linear equations can be

formulated and solved for the coefficients. Spherical harmonics methods have been

used by (Bhate and Tokuta, 1992; Kajiya and Herzen, 1984; Stam, 1995) to compute

multiple scattering.

Kajiya and Herzen presented a ray tracing technique for rendering arbitrary

volumes of scattering media. In addition to a simple single scattering model, they

also described a solution method for multiple scattering that uses spherical harmonics

(Kajiya and Herzen, 1984). Their single scattering simulation method stored the

cloud density and illumination data on voxel grids, and their algorithm required two

passes. In the first pass, scattering and absorption were integrated along paths from

the light source through the cloud to each voxel where the resulting intensities were

stored. In the second pass, eye rays were traced through the volume of intensities and

 36

scattering of light to the eye was computed, resulting in a cloud image. For multiple

scattering, the authors derived a discrete spherical harmonics approximation to the

multiple scattering equations, and solved the resulting matrix of partial differential

equations using relaxation. This matrix solution replaces the first integration pass of

the single scattering algorithm. As mentioned in (Stam, 1995), this method is known

as the PN-method in the transport theory literature, where N is the degree of the

highest harmonic in the spherical harmonic expansion.

Following Kajiya and Herzen’s lead, two pass algorithms for computing light

scattering in volumetric media are now common. Interestingly, (Max, 1994) points

out that while Kajiya and Herzen attempted to compute multiple scattering for the

case of an isotropic phase function, it is not clear if they succeeded, all of the images

in the paper seem to have been computed with the simpler single scattering model.

Stam explained in (Stam, 1995) that while (Kajiya and Herzen, 1984) derived

a very general N-term expression for multiple scattering using a spherical harmonics

expansion, they truncated the expansion after the first term to produce their results.

He showed that this truncation results in a diffusion type equation for the scattered

portion of the illumination field. In media where scattering events are very

frequent— “optically thick” media—multiple scattering can be approximated as

diffusion of the light energy. In other words, at any location in the medium, photons

can be found traveling in arbitrary directions. The light is said to be diffuse. Stam

presented this diffusion approximation in more detail. Like Kajiya and Herzen, Stam

represented the scattering medium on a voxel grid. He described two ways to solve

for the intensity. In the first method, he discretized the diffusion approximation on

the grid to formulate a system of linear equations that he then solved using the

multigrid method. The second method is a finite element method in which he used a

series expansion of basis functions, specifically Gaussian kernel functions of

distance. This expansion led to a matrix system that he solved using LU

decomposition (Harris, 2003).

 37

2.7.2 Finite Element Methods

The finite element method is another technique for solving integral equations

that has been applied to light transport. In the finite element method, an unknown

function is approximated by dividing the domain of the function into a number of

small pieces, or elements, over which the function can be approximated using simple

basis functions (often polynomials). As a result, the unknown function can be

represented with a finite number of unknowns and solved numerically.

A common application of finite elements in computer graphics is the radiosity

method for computing diffuse reflection among surfaces. In the radiosity method, the

surfaces of a scene represent the domain of the radiosity function. An integral

equation characterizes the intensity, or radiosity, of light reflected from the surfaces.

To solve the radiosity equation, the surfaces are first subdivided into a number of

small elements on which the radiosity will be represented by a sum of weighted basis

functions. This formulation results in a system of linear equations that can be solved

for the weights. The coefficients of this system are integrals over parts of the

surfaces. Intuitively, light incident on an arbitrary point in the scene can be reflected

to any other point; hence the coefficients are integrals over the scene. In the finite

element case, these integrals are evaluated for every pair of elements in the scene,

and are called form factors.

Rushmeier and Torrance extended the radiosity method to include radiative

transfer in volumes of participating media (Rushmeier and Torrance, 1987). This

zonal method, like the radiosity method, was originally developed for radiant heat

transfer analysis. The zonal method divides the volume of a participating medium

into finite elements which are assumed to have constant radiosity. As with the

radiosity method, form factors are computed for every pair combination of surface

elements in the scene, as well as every pair of volume elements and all surface-

volume pairs. This is complicated by the fact that the form factors involve a double

integral over points in both elements, as well as along the path between the elements.

As in the radiosity method, a system of simultaneous linear radiosity equations is

formulated based on these form factors. The solution of this system is the steady-

state diffuse radiosity at each element of the environment, including the effects of

 38

scattering and absorption by the participating medium. Rushmeier and Torrance’s

presentation of the zonal method was limited to isotropic scattering media, with no

mention of phase functions.

Nishita et al. introduced approximations and a rendering technique for global

illumination of clouds, accounting for multiple anisotropic scattering and skylight

(Nishita et al., 1996). This method can also be considered a finite element method,

because the volume is divided into voxels and radiative transfer between voxels is

computed. Nishita et al. made two simplifying observations that reduced the cost of

the computation. The first observation was that the phase function of cloud water

droplets is highly anisotropic, favoring forward scattering. The result of this is that

not all directions contribute strongly to the illumination of a given volume element.

Therefore, Nishita et al. computed a “reference pattern” of voxels that contributed

significantly to a given point. This pattern is constant at every position in the volume,

because the sun can be considered to be infinitely distant. Thus, the same sampling

pattern can be used to update the illumination of each voxel. The second observation

they made was that only the first few orders of scattering contribute strongly to the

illumination of a given voxel. Therefore, Nishita et al. only computed up to the third

order of scattering.

2.7.3 Discrete Ordinates

The method of discrete ordinates allocates the radiosity exiting each volume

element into a collection of M discrete directions. The intensity is assumed to be

constant over each direction “bin”. This method can be used to account for

anisotropic scattering. If an interaction between a pair of elements can be represented

by only one direction bin (this is unreasonable for elements that are close), then the

number of non-zero elements in the matrix of linear coefficients is MN2, where N =

n3 is the number of elements in the volume (Max, 1994). However, Max points out

that this method introduces sampling artifacts because it effectively shoots energy

from elements in infinitesimal beams along the discrete directions, missing the

regions between them. In work inspired by (Patmore, 1993), Max (1994) improved

 39

on the basic method of discrete ordinates by efficiently spreading the shot radiosity

over an entire direction bin, rather than along discrete directions. The method

achieves a large speedup by handling a whole plane of source elements

simultaneously, which reduces the computation time to O(MN log N +M2N) (Harris,

2003).

2.7.4 Monte Carlo Integration

Monte Carlo Integration is a statistical method that uses sequences of random

numbers to solve integral equations (Harris, 2003). In complex problems like light

transport, where computing all possible light-matter interactions would be

impossible, Monte Carlo methods reduce the complexity by randomly sampling the

integration domain. With enough samples, chosen intelligently based on importance,

an accurate solution can be found with much less computation than a complete model

would require. The technique of intelligently choosing samples is called importance

sampling, and the specific method depends on the problem being solved. A common

application of Monte Carlo methods in computer graphics is Monte Carlo ray tracing.

In this technique, whenever a light ray traversing a scene interacts with matter (either

a solid surface or a participating medium), statistical methods are used to determine

whether the light is absorbed or scattered (for solids, this scattering may be thought

of as reflection or refraction). If the light is scattered, the scattered ray direction is

also chosen using stochastic methods. Importance sampling is typically used to

determine the direction via the evaluation of a probability function.

Blasi, et al. (1993) presented a technique for rendering arbitrary volumes of

participating media using Monte Carlo ray tracing. They placed no restrictions on the

medium, allowing arbitrary distributions of density and phase function, and

accounting for multiple scattering. They demonstrated an importance sampling

technique that uses the phase function as a probability function to determine the

outgoing direction of scattered rays. This way, the in-scattering integral does not

have to be evaluated over the entire sphere of incoming directions, and a large

amount of computation is saved. Using the phase function for importance sampling

 40

ensures that the most significant contributions of scattering are used to determine the

intensity. In this way, the technique is similar to the “reference pattern” technique

used by (Nishita et al., 1996).

Photon mapping is a variation of pure Monte Carlo ray tracing in which

photons (particles of radiant energy) are traced through a scene (Jensen, 1996). Many

photons are traced through the scene, starting at the light sources. Whenever a photon

lands on a nonspecular surface it is stored in a photon map, a data structure that

stores the position, incoming direction, and radiance of each photon hit. The radiance

on a surface can be estimated at any point from the photons closest to that point.

Photon mapping requires two passes; the first pass builds the photon map, and the

second generates an image from the photon map. Image generation is typically

performed using ray tracing from the eye. The photon map exhibits the flexibility of

Monte Carlo ray tracing methods, but avoids the grainy noise that often plagues

them. Jensen and Christensen extended the basic photon map to incorporate the

effects of participating media (Jensen and Christensen, 1998). To do so, they

introduced a volume photon map to store photons within participating media, and

derived a formula for estimating the radiance in the media using this map. Their

techniques enable simulation of multiple scattering, volume caustics (focusing of

light onto participating media caused by specular reflection or refraction), and color

transfer between surfaces and volumes of participating media.

2.7.5 Line Integral Methods

Recently, interest in simulating light scattering has grown among developers

of interactive applications. For view-dependent effects and dynamic phenomena, the

techniques described in the previous sections are not practical. While those

techniques accurately portray the effects of multiple scattering, they require a large

amount of computation. For interactive applications, simplifications must be made.

A first step in simplifying the computation is to ignore volumetric scattering

altogether. With or without scattering, visualization of the shadowing effects of

 41

absorption by the medium is desirable. This requires at least one pass through the

volume (along the direction of light propagation) to integrate the intensity of

transmitted light. Because methods that make this simplification perform the

intensity integration along lines from the light source through the volume may be

called line integral methods. Kajiya and Herzen’s original single scattering algorithm

is a line integral method. Intuitively, line integral methods are limited to single

scattering because they cannot propagate light back to points already traversed.

Dobashi et al. (2000) described a simple line integral technique for

computing the illumination of clouds using the standard blending operations

provided by computer graphics Application Programming Interface (API) such as

OpenGL (Segal and Akeley, 2001). Dobashi et al. (2000) represented clouds as

collections of large “particles” represented by textured billboards. To compute

illumination, they rendered the particles in order of increasing distance from the sun

into an initially white frame buffer. They configured OpenGL blending operations so

that each pixel covered by a particle was darkened by an amount proportional to

attenuation by the particle. After rendering a particle, they read the color of the pixel

at the center of projection of the particle from the frame buffer. They stored this

value as the intensity of incident light that reached the particle through the cloud.

Traversal of the particles in order of increasing distance from the light source

evaluates the line integral of extinction through each pixel. Because pixels are

darkened by every particle that overlaps them, this method computes accurate self-

shadowing of the cloud. After this first pass, they rendered particles from back to

front with respect to the view point, using the intensities computed in the first pass.

They configured blending to integrate absorption and single scattering along lines

through each pixel of the image, resulting in a realistic image of the clouds. Dobashi

et al. (2000) further enhanced this realism by computing the shadowing of the terrain

by the clouds and shafts of light between the clouds.

Kniss et al. (2002) presented a similar line integral approach for absorption

and multiple forward scattering in the context of direct volume rendering. They

rendered volumes of translucent media from 3D textures by rendering slices of the

volume oriented to face along the halfway vector between the light and view

directions. This “half angle slice” technique allowed them to interleave light

 42

transport integration with the display of the volume. The method traverses the

volume slices in order of increasing distance from the light source, performing

alternate display and illumination passes. Three buffers are maintained: two for the

computation of the illumination of the volume (current and next), and one (typically

the frame buffer) for display of the volume. During the display pass, the current slice

is rendered from the observer’s point of view. The slice is textured with the 3D

volume texture blended with the current illumination buffer. This results in self-

shadowing of the volume as in Dobashi et al. (2000), as well as incorporating the

scattering computed during the illumination pass as in Harris and Lastra (2001).

During the illumination pass, the slice is rendered into the next illumination buffer

from the light’s point of view, and blended with the current illumination buffer to

compute the next step in the line integral of extinction and forward in-scattering.

During this blending, the current buffer is sampled multiple times at jittered

locations, and the samples are averaged. This accomplishes a blurring of the forward-

scattered light, an ad hoc approximation of multiple scattering over a small solid

angle around the forward direction. Even though this method is ad hoc, it is

physically-based because multiple scattering in media with a high single scattering

albedo results in “blurring” of the light intensity (the light is diffused).

2.8 Virtual Environment

 Since fiction writers have already been exploring the role of computer in a

future world, and have described a synthetic 3D universe that is as believable as the

real physical universe. Such Virtual Reality (VR) systems create a ‘cyberspace’

where it is possible to interact with anything and anyone on a virtual level (Vince,

1995).

The key technologies behind such imaginative writing are real-time computer

graphics, color displays and simulation software. Computer graphics provides the

basis for creating the synthetic images, while a Head-Mounted Display (MHD)

supplies the user’s eyes with a stereoscopic view of a computer generated world.

 43

Complex software creates the Virtual Environment (VE), which could be anything

from 3D objects to abstract databases.

Virtual reality systems have two important areas: the first concerns with user

immersion, and the second relates to the degree of interaction the user has with the

virtual environment.

2.8.1 Immersion

 The sensation of being immersed within a virtual environment is greatly

influenced by the user’s integration with the synthetic images. For example, in the

case of flight simulator, the pilot and co-pilot sit inside a replica cockpit and gaze

through the window into a 200° panoramic mirror reflecting the computer-generated

graphics. This creates a realistic sensation of being in a real plane flying over some

3D landscape. Some virtual reality systems, on the other hand, provide each user

with personal view of the virtual environment using an HMD which visually isolates

them from the real world and provides the left and right eyes with two separate

images that include parallax differences, which, given the right conditions, produce a

realistic stereoscopic sensation. The user can acquire a positive sense of being

immersed in the virtual environment, which is further enhanced when touch and

sound are introduced. The immersion is further enhanced by allowing the user’s head

movements to control the gaze of direction of the synthetic images.

 Virtual reality systems can be divided into three groups: immersive, non-

immersive and hybrid. Immersive systems, replace the view of real world with

computer generated images that react to the position and orientation of the user’s

head. A non-immersive system, on the other hand, leaves the user visually aware of

the real world but able to observe the virtual world through some display device such

as graphics workstation. The user navigates the virtual world using a device such as a

space mouse. A hybrid virtual reality system permits the user to view the real world

with virtual images superimposed over this view – such systems are also known as

‘augmented reality’ systems.

 44

2.8.2 Interaction

 When visually immersed with a virtual environment, there is a natural

inquisitive temptation to reach out and touch virtual objects. Obviously this is

impossible, as there is nothing to touch. The user’s sense of immersion can be greatly

enhanced by including part of a ‘virtual body’ such as hand in the virtual

environment. The user now sees in the HMD a 3D virtual hand as part of the

stereoscopic scene. If the user also wears an interactive glove, or a similar device,

any movements their hand makes can be tracked and used to control the status of the

virtual hand. The user has now been coupled to the VE in a way that allows some

high level interaction to occur.

2.9 Summary

Brief review of modeling techniques for various natural phenomena in

computer graphics has been discussed. The various methods used by researchers to

model clouds have been presented. The methods for cloud radiometry have also been

described. The Figure 2.7 a hierarchical diagram of the modeling techniques used for

cloud modeling as described by Muhammad Azam Rana et al. (2003).

 45

Figure 2.7: Hierarchy for cloud modeling techniques

(Muhammad Azam Rana et al., 2003)

Kajiya and Herzen (1984) modeled cloud by physical model. He made use of

numerical simulation of fluid dynamics. Solution of complicated non-linear

equations is difficult and resource intensive, requiring special knowledge to set

proper boundary conditions. Neyret (1997) tried physical method for modeling

clouds by making use of qualitative simulation. The method focuses on simulating

growth of a single cluster of cloud and is not suitable for animation. Heinzlreiter et

al. (2002) uses alpha-blended billboard textures to enhance the rendering process.

The use hardware API makes real time rendering possible. The observer position

cannot be changed. Cloud model needs improvements. Gardner (1985) uses

procedural approach. He uses textured ellipsoids to simulate clouds. This model

lacks true 3D geometric model, scattering effects cannot be simulated to calculate

color of clouds. Elinas and Sturzlinger (2001) uses fractal/3D textured ellipsoid to

model clouds. His approach is similar to Gardner (1985). This model produces good

results for clouds at medium distance but may not produce good results for clouds at

shorter distance. Ebert (1997) uses metaballs with noise function to model clouds.

Metaballs and noise function are used to create animation of cloud formation. Shape

of cloud is determined in advance and then visible parts are increased gradually. To

include time as parameter, no way has been described. Stam and Fuime (1995) use

Stochastic rendering of density fields to model clouds. This method can create

realistic clouds, but it is impractical to create large-scale clouds viewed from space.

 46

Trembilski (2002) simulates clouds by isosurfaces generated by Marching Cube

algorithm. This method is developed for weather forecast. Lighting model is not true

physical; graphics hardware is used for color calculations. Harris (2002) uses

procedural approach by making use of particle system and dynamically generated

imposters. Hardware accelerated API has made possible to achieve very high frame

rates (greater than 50 fps).

CHAPTER III

PARTICLE SYSTEMS

3.1 Introduction

Particle systems differ from the other techniques in that their abstraction is in

control of the animation and specification of the object. Particle systems do use a

large database of geometric primitives to represent natural objects (“fuzzy objects”),

but the animation, location, birth, and death of the particles representing the object

are controlled algorithmically. Particle systems are most commonly used to represent

natural phenomena such as fire, water, clouds, snow, rain, grass, and trees (Reeves,

1983). A particle- system object is represented by a large collection (cloud) of very

simple geometric particles that change stochastically over time. The procedural

aspect and main power of particle systems allow the specification and control of this

extremely large cloud of geometric particles with very few parameters. Besides the

geometric particles, a particle system has controllable stochastic particle animation

procedures that govern the creation, movement, and death of the particles. These

animation procedures often include physically based forces to simulate effects such

as gravity, vorticity, conservation of momentum, and energy. Particle systems pose

special rendering problems because of the large number of primitives, but specialized

rendering techniques, including probabilistic rendering algorithms, have been

developed to render particle systems (Reeves and Blau, 1985).

A particle system is a collection of many minute particles that together

represent a fuzzy object. Over a period of time, particles are generated into a system,

 48

move and change from within the system, and die from the system. To compute each

frame in a motion sequence, new particles are generated into the system. Each new

particle is assigned its individual attributes. Any particles that have existed within the

system past their prescribed lifetime are extinguished. The remaining particles are

moved and transformed according to their dynamic attributes. And finally an image

of the living particles is rendered in a frame buffer

The particle system can be programmed to execute any set of instructions at

each step. Because it is procedural, this approach can incorporate any computational

model that describes the appearance or dynamics of the object. For example, the

motions and transformations of particles could be tied to the solution of a system of

partial differential equations, or particle attributes could be assigned on the basis of

statistical mechanics. We can, therefore, take advantage of models, which have been

developed in other scientific or engineering disciplines.

Simple stochastic processes can be used as the procedural element of each

step in the generation of a frame. To control the shape, appearance, and dynamics of

the particles within a particle system, the model designer has access to a set of

parameters. Stochastic processes that randomly select each particle's appearance and

movement are constrained by these parameters. In general, each parameter specifies

a range in which a particle's value must lie. Normally, a range is specified by

providing its mean value and maximum variance.

In modeling fuzzy objects, the particle system approach has several important

advantages over classical surface-oriented techniques.

• First, a particle (a point in three-dimensional space) is a much simpler primitive

than a polygon, the simplest of the surface representations. Therefore, in the same

amount of computation time one can process more of the basic primitives and

produce a more complex image.

• Second, the model definition is procedural and is controlled by random numbers.

Therefore, obtaining a highly detailed model does not necessarily require a great

deal of human design time as is often the case with existing surface-based

 49

systems. Because it is procedural, a particle system can adjust its level of detail to

suit a specific set of viewing parameters. As with fractal surfaces Fournier et al.

(1982), zooming in on a particle system can reveal more and more detail.

• Third, particle systems model objects that are "alive," that is, they change form

over a period of time. It is difficult to represent complex dynamics of this form

with surface-based modeling techniques.

3.2 Usage of Particles System

Dobashi et al. (2000) presented a method for simulation of clouds using

Cellular Automation. 3D grids represent the simulation space and three state

variables are assigned at each grid point. The state of each variable is either 0 or 1.

Their status at time t+1 is calculated by the status at time t using transition rules.

The method of Dobashi et al. (2000) consists of two processes, simulation

and rendering. The simulation space is divided into voxels. The voxels correspond to

cells used in the cellular automaton. At each cell, three logical variables,

vapor/humidity (hum), clouds (cld), and phase transition (or activation) factors (act)

are assigned. The state of each variable is either 0 or 1. Cloud evolution is simulated

by applying simple transition rules at each time step. The transition rules represent

formation, extinction, and advection by winds. Since the state is either 0 or 1, the

rules can be expressed by Boolean operations.

Images are generated in the rendering process by making use of the

simulation results. What we can obtained from the simulation is no more than there

are clouds (cld = 1) or, there are not-clouds (cld = 0) at each voxel. Therefore, a

density at each point is calculated by smoothing the binary distribution. The clouds

are then rendered using volume rendering techniques. The rendering process consists

of two steps. The first step calculates the intensity of light reaching the center of each

voxel. Cloud shadows are also calculated in this step. The shadows are obtained as a

texture. Then, in the second step, images are generated. Clouds are rendered by using

 50

a splatting method. To render shafts of light, consider multi spherical shells with

their center at the viewpoint are considered.. The shells are then drawn from back to

front using the hardware alpha-blending function. Shafts of light are rendered by

mapping the shadow texture on the shells.

For growth simulation, the simulation space is aligned parallel to xyz axes

and the number of cells is assumed to be nx × ny × nz. As mentioned before, three

logical variables, hum, act, and cld are assigned at each cell. The state of each

variable is either 0 or 1. hum=1 means there is enough vapor to form clouds, act=1

means the phase transition from vapor to water (clouds) is ready to occur, and cld=1

means there are clouds. In the following, B Ι A and BΥA indicate conjunction and

disjunctinon between A and B, respectively, and ¬A indicates negation of A. Their

transition rules are given as follows.

),,,(),,,()1,,,(itkjiactitkjihumitkjihum ¬=+ Ι (3.1)

),,,(),,,()1,,,(itkjiactitkjiclditkjicld Υ=+ (3.2)

),,(),,,(),,,()1,,,(kjifitkjihumitkjiactitkjiact actΙΙ¬=+ (3.3)

where fact(i,j,k) is a Boolean function and its value is calculated by the status of act

around the cell. The following function is used by taking into account the fact that

clouds grow upward and horizontally.

 (3.4)

For cloud extinction, firstly the animator specifies cloud extinction

probability, pext. Next, at each cell whose cld is 1, a random number, rnd (0 ≤ rnd ≤

1), is generated and cld is changed to 0 if rnd < pext. By changing the probability at

),2,,(

),,2,(),,2,(

),,,2(),,,2(

),1,,(),,1,(

),,,1(),1,,(

),,1,(),,,1(),,(

itkjiact
itkjiactitkjiact
itkjiactitkjiact

itkjiactitkjiact
itkjiactitkjiact

itkjiactitkjiactkjif act

−

+−

+−

−−

−+

++=

Υ

ΥΥ

ΥΥ

ΥΥ

ΥΥ

Υ

 51

each cell at different times, the animator can specify regions where cloud extinction

occurs frequently. Although this realizes the cloud extinction, there remains another

problem. Clouds are never generated after the extinction at the cell. To solve this,

vapor (hum) and phase transition factors (act) are supplied at specified time intervals.

Similar to extinction, vapor probability, phum, and phase transition probability, pact,

are used to set them randomly. That is, hum is changed to 1 if rnd < phum and act is

changed to 1 if rnd < pact. Cloud motion can be controlled by controlling the

probabilities, phum, pact, and pext at each cell at each time step. The methods described

in this section are summarized by the following three transition rules.

)),,,((),,,()1,,,(itkjiprndISitkjiclditkjicld ext>=+ Ι (3.5)

)),,,((),,,()1,,,(itkjiprndISitkjihumitkjihum hum<=+ Υ (3.6)

)),,,((),,,()1,,,(itkjiprndISitkjiactitkjiact act<=+ Υ (3.7)

where rnd is a uniform random number, IS(e) is a Boolean function that returns 1 if

the expression e is true, otherwise returns 0.

Beginning from initial random status, cloud growth is simulated by updating

the state of each variable. First, hum is initialized by using uniform random numbers

of probability phum. That is, hum is set to 1 if a random number between 0 and 1 is

less than phum, otherwise hum is set to 0. Similarly, act is set to either 0 or 1 by using

the probability pact.

For continuous density distribution, metaballs are used. Metaballs are spheres

in which a field function is defined. A metaball has two parameters, that is, density at

the center and effective radius. Metaballs are placed at each grid point and the

continuous distribution is represented as a weighted sum of the field functions.

Continuous distribution is obtained by adjusting densities at their centers and their

effective radii, based on the binary distribution.

Clouds can be observed moving in one direction, blown by winds. New

transition rules are introduced to include the wind effect. The idea is simply to shift

 52

all the variables toward the wind direction. It is assumed, for simplicity, the wind

blows toward the direction of x-axis. Other cases can be handled by rotating the

simulation space according to the wind direction. Furthermore, it is well known that

the wind velocity is different depending on the height from the ground. The wind

velocity, v(zk), is therefore specified as a function of z-coordinate of each cell (i,j,k).

To implement the wind effect in the context of the cellular automaton, the function

v(zk), is assumed to return integer value. The transition rules as follows.

hum(i-v(zk),j,k,ti), i-v(zk) >0

hum(i,j,k,ti+1) =

0, otherwise (3.8)

cld(i-v(zk),j,k,ti), i-v(zk) >0

cld(i,j,k,ti+1) =

0, otherwise (3.9)

act(i-v(zk),j,k,ti), i-v(zk) >0

act(i,j,k,ti+1) =

0, otherwise (3.10)

Rendering of clouds is based on the splatting algorithm using billboards.

Details of the splatting method are well described in (Westover, 1990; Blythe, 1999;

Meuller et. al 1999). The basic idea for applying it to cloud display is described here.

First, the sum of the scattered light reaching from the sun on the viewing ray is

calculated. The attenuated light reaching from behind the clouds is also calculated.

The light reaching the viewpoint is the sum of those two. Therefore, the color of a

voxel depends on the scattered color of the sun, the transmitted color of the sky, and

the attenuation due to cloud particles. Calculation of cloud color using splatting is as

follows. First, textures for billboards are pre-calculated. Each element of the texture

stores the attenuation ratio and cumulative density of the light passing through the

metaball. Since the attenuation is not proportional to it, the texture has to be prepared

for all meatballs when their center densities are different. However, this requires a

large amount of memory. So, the density is discretized into nq levels and nq textures

are prepared. The value used for nq is 64. The texture corresponding to the nearest

 53

density of each metaball is mapped onto the corresponding billboard. An image is

calculated in two steps using the texture-mapped billboards. In the first step, the

intensity of the light is calculated reaching from the sun at each metaball. The

shadows of the clouds are also calculated in this step. In the second step, the image

viewed from the viewpoint is generated.

The basic idea is to calculate an image viewed from the sun direction to

obtain the intensity of light reaching each metaball. First, the viewpoint is placed at

the sun position and the parallel projection is assumed. The frame buffer is initialized

as 1.0. Then the billboards are stored as a light map texture to cast shadows on the

ground. In the second step, the image is generated by using the color of the metaball

obtained in the first step. First, all the objects except clouds are rendered. Next, the

billboards are faced perpendicularly to the viewpoint and sorted in descending order

based on distances from the viewpoint. Then they are projected onto the image plane

in back-to-front order. The color in the frame buffer is blended with that of the

billboard texture. For blending process, the colors in the frame buffer are multiplied

by the attenuation ratio of the billboard texture and then the colors in the texture are

added. The same process is repeated for all metaballs.

Shafts of light are caused by particles in the atmosphere. The sunlight passing

through gaps in clouds is scattered by the particles. The scattered light, Is, reaching

the viewpoint is recognized as shafts of light. The scattering/absorption due to the

atmospheric particles must therefore be taken into account. The intensity of light

reaching the viewpoint is obtained by the following equation.

sskskIskTII
s

n

kc

s

∆∆∆∆+= ∑
=

)()()()(
0

βγβ (3.11)

where ns and s∆ are the number of sample and the sampling interval. The

attenuation, β(T), in the first term is calculated analytically by the positions of the

viewpoint and each metaball. The color of each metaball is then attenuated by

multiplying it. To calculate the second term, spherical shells are considered. Their

centers are placed at viewpoint and their radii are determined so that the intervals of

shells coincide to ∆s. The shells are approximated by a set of polygons to render

 54

them using OpenGL. Polygons outside the viewing pyramid are discarded. Next, the

intensity of the light scattered at each vertex and the attenuation ratio of the path

between the viewpoint and the vertex are calculated. Then Is(k∆s) β(k∆s) ∆s is stored

as the colors of vertices of all the polygons in the viewing pyramid. Finally, the

second term is computed by rendering the shells with OpenGL’s additive blending

function. To render the shafts of light, the colors of the polygons have to be

multiplied by attenuation ratio due to clouds, γ(s). This can be easily achieved just by

mapping the shadow texture onto the polygons using OpenGL’s texture mapping

function.

Harris (2002) presented a method for realistic real-time rendering of clouds

for flight simulators and games using particle systems. He described a cloud

illumination algorithm that approximates multiple forward scattering in a pre-process

and first order anisotropic scattering at runtime. Impostors are used to accelerate

cloud rendering by exploiting frame-to-frame coherence in an interactive flight

simulation. The method allows hundreds of clouds with hundreds of thousands of

particles to be rendered at high frame rates, and improves interaction with clouds by

reducing artifacts introduced by direct particle rendering. The following is details of

his method. Harris used Particle system, as it is simple and efficient method for

representing and rendering clouds. He assumed that a particle represents a roughly

spherical volume in which a Gaussian distribution governs the density falloff from

the center of the particle. Each particle is made up of a center, radius, density, and

color. He got good approximations of real clouds by filling space with particles of

varying size and density. The researcher rendered particles using splatting technique,

by drawing screen-oriented polygons texture-mapped with a Gaussian density

function. A particle system was selected for cloud representation, but both shading

algorithm and fast rendering system are independent of the cloud representation, and

can be used with any model composed of discrete density samples in space.

Scattering illumination models presented by Harris (2002) simulate the

emission and absorption of light by a medium as well as scattering through the

medium. Single scattering models simulate scattering through the medium in a single

direction. This direction is usually the direction leading to the point of view. Multiple

scattering models are more physically accurate, but must account for scattering in all

 55

directions (or a sampling of all directions), and therefore are much more complicated

and expensive to evaluate. In a multiple scattering simulation that samples N

directions on the sphere, each additional order of scattering that is simulated

multiplies the number of simulated paths by N. Fortunately, as demonstrated by

(Nishita et. al, 1996), the contribution of most of these paths is insignificant to cloud

rendering. Nishita et al. found that scattering illumination is dominated by the first

and second orders, and therefore they only simulated up to the 4th order. They

reduce the directions sampled in their evaluation of scattering to sub-spaces of high

contribution, which are composed mostly of directions near the direction of forward

scattering and those directed at the viewer. Harris (2002) made further simplification

and approximated multiple scattering only in the light direction – or multiple forward

scattering – and anisotropic single scattering in the eye direction. The rendering

method used by Harris (2002) is a two-pass algorithm similar to the one presented by

Dobashi et. al (2000). Harris pre-computes cloud shading in the first pass, and uses

this shading to render the clouds in the second pass.

For calculation of multiple forward scattering, the first pass of our shading

algorithm computes the amount of light incident on each particle. The simplified

equation used is as follows.

 gk-1 + Tk-1 · Ik-1, 2≤ k ≤N

Ik =

 I0, k=1 (3.12)

In addition to multiple forward scattering approximation, Harris (2002)

implements single scattering toward the viewer as in Dobashi et. al (2000). The

equation for this is as follows.

Ek = Sk +Tk · Ek-1, 1 ≤ k ≤ N (3.13)

The above equation says that the light, Ek, exiting any particle pk is equal to

the light incident on it that it does not absorb, Tk · Ek-1, plus the light that it scatters,

Sk. In the first pass the light Ik incident on each particle from the light source is

computed. In the second, the portion of this light that is scattered toward the viewer

 56

is calculated. This can be achieved by replacing Sk with ak · τk · p(ω, -l) · Ik / 4π,

where ω is the view direction, and p(ω, -l) is phase function discussed below. This

recurrence approximates single scattering toward the viewer.

The phase function, p(ω, ω’) is very important to cloud shading. Clouds

exhibit anisotropic scattering of light (including the strong forward scattering that we

assume in our multiple forward scattering approximation). The phase function

determines the distribution of scattering for a given incident light direction.

2/32

2

2

2

)cos21(
)cos1(

)1(2
)1(3),(

θ
θθ

ggg
ggp

−+
+

+
−

= (3.14)

where θ is scattering angle and g is an symmetric function which is determined by

the cloud condition and the wavelength, if g=0, this function is equivalent to

Rayleigh scattering.

The rendering presented by Harris (2002) is a two pass algorithm which is

similar to the one presented by Dobashi et. al (2000). A shading phase runs once per

scene and a rendering phase runs in real time. The key to the implementation is the

use of hardware blending and pixel read back. Blending operates by computing a

weighted average of the frame buffer contents (the destination) and an incoming

fragment (the source), and storing the result back in the frame buffer. This weighted

average can be written as.

destdestsrcsrcresult CfCfC ·· += (3.15)

If we let Cresult = Ik, fsrc = 1, Csrc = gk-1, fdest = Tk-1, and Cdest = Ik–1, then we see

that (3.15) and (3.17) are equivalent if the contents of the frame buffer before

blending represent I0. The runtime phase uses the same algorithm, with particles

sorted with respect to the viewpoint, and without reading pixels. The pre-computed

illumination of each particle Ik is used in this phase to compute scattering toward the

eye.

 57

In both passes, particles are rendered in sorted order as polygons textured

with a Gaussian “splat” texture. The polygon color is set to the scattering factor ak ·

τk · p(ω,l) ·Ik / 4π and the texture is modulated by this color. In the first pass, ω is the

light direction, and in the second pass it is the direction of the viewer. The source and

destination blending factors are set to one and one minus source alpha, respectively.

While the cloud rendering method described above provides beautiful results

and is fast for relatively simple scenes, it suffers under the weight of many complex

clouds. The games for which we developed this system dictate that we must render

complicated cloud scenes at fast interactive rates. Clouds are only one component of

a complex game environment, and therefore can only use a small percentage of a

frame time. With direct particle rendering, even a scene with ten or twenty thousand

particles is prohibitively slow on current hardware. In order to render many clouds

made up of many particles at high frame rates, Harris (2002) used dynamically

generated impostors. An impostor replaces an object in the scene with a semi-

transparent polygon texture-mapped with an image of the object it replaces. To

generate impostors, a view frustum is positioned so that its viewpoint is at the

position from which the impostor will be viewed, and it is tightly fit to the bounding

volume of the object. Then the object is rendered into an image used to texture the

impostor polygon.

3.3 Summary

 In this chapter, the basic model of particle systems has been discussed.

Various advantages of particle systems making it a good choice for simulation of

fuzzy objects as compared with other surface-based techniques has been presented.

Methods for controlling some of basic features such as particle generation, particle

attributes, particle dynamics, particle extinction, and particle rendering have been

discussed. Finally, the use of particle systems by some selected researchers in

computer graphics has been summarized.

 58

 Dobashi et. al (2000) used cellular automation (CA) to model clouds data.

The simulation space divided into small voxels and each voxel corresponds to a cell

used in the cellular automation. At each cell three logical variables are assigned.

Cloud evolution is simulated by applying transition rules to each cell at each time

step. The cloud density obtained from simulation has two values, that is, 0 or1,

whereas in the real world it is continuous from 0 to 1. So, they require calculation for

smoothing the density distribution. The whole method for simulation of cloud

evolution involves a lot of calculations and is difficult in use. In a contrast, particles

system provides a very simple way to model cloud data. Particles system may require

a little more computer space for storing particle data, but it needs fewer calculations

for modeling and rendering the particles and getting final images of the cloud shapes.

Harris (2002) used particle systems to model clouds. For rendering of clouds

he used the approach of Dobashi et. al (2000) and extended their model of single

light scattering to multiple light scattering model. In order to enhance the rendering

process, he used dynamically generated imposters. However, Harris (2002) generated

the data for cloud particles with other means such as 3D Studio Max, which is

copyright software. The main work of Harris (2002) is on rendering part of clouds.

 Virtual reality applications, such as flight simulators, have built in scene

stages that are pre-designed. Providing a randomized method along with interactive

development environment can prove more useful to these applications.

CHAPTER IV

RANDOMIZED ALGORITHM AND IMPLEMENTATION

4.1 Introduction

This chapter tends to deal with foundation of the research work. At first, it

states the proposed system overview, where it explains the modules that are going to

be established. A particle system is a collection of many minute particles that

together represent a fuzzy object. Over a period of time, particles are generated into a

system, move and change from within the system, and die from the system.

The purpose of a model of an entity is to allow people to visualize and

understand the structure or behavior of the entity (Foley et al., 1990). For clouds and

gases the model is often implemented as a density function listed below.

ρ(x), x ε R3 (4.1)

 where ρ represents density of matter,

x represents any real number,

ε means belongs to and

R3 represents volume space.

such that, for each point in space, evaluates to the amount of cloud matter that exists

at that point. Particle systems are simple and efficient method for representing

clouds. It is assumed that a particle represents a roughly spherical volume in which a

Gaussian distribution governs the density falloff from the centre of the particle. Each

 60

particle is made of a centre, radius, density and color. For a good approximation of

real clouds, cloud space is filled with particles of varying sizes and density.

Clouds can be built by filling a volume with particles or by using an editing

application that allows placing particles and build clouds interactively. The

randomized method is a good way to get quick field of clouds.

4.2 Flow Diagram of Shaping Modeling Algorithm

The following is the flow diagram of the proposed algorithm for cloud shape

modeling process.

Figure 4.1: Flow diagram of Shape Modeling Algorithm

 61

4.3 Input Data

Data required for the cloud shape modeling algorithm consists of the

attributes of the particles making clouds and coordinates of 3-D space in virtual

environment that contains particle clouds. The data inputs that are used are described

below:

4.3.1 Cloud Centre

Cloud Centre consists of coordinates in 3D space. It consists of X-

Coordinate, Y-Coordinate, Z-Coordinate values representing the centre of cloud

bounding volume.

4.3.2 Number of Particles

It represents the total number of particles that are randomly distributed in the

cloud bounding volume to make shape of a cloud. Each particle is consists of a

number of attributes such as centre, radius, density and color.

4.3.3 Radius

It represents the maximum value for radius of cloud particles. In order to get

good approximation of cloud, particles of varying sizes are used to make cloud. The

radius of each particle is randomly calculated that is les than or equal to this value.

 62

4.3.4 Data File Format

In the following, the organization of the input data files is discussed. This

data file serves as input data files for the proposed cloud shape modeling algorithm.

Table 4.1 shows the format of a data file. On the first line, it has total number of

particles in the system. On the second line, it has total number of cubes in the system.

Rest of each line contains the information about each cube such as particles in a

cube, cube dimension, cube centre and radius of particles in that cube.

Table 4.1: Format of input data file

Line Number Input Data

1

2

3

<Total Particles>

<Total cubes>

<Particles, Cube(height, width, length), Center(x,y,z), Radius>

The description of each and every piece of data and its type is as described

below:

TotalParticles:

It represents the total number of particles in the system. The integer

data type is used for this data.

TotalCubes:

It represents the total number of cubes used in the system to build the

apparent shape of the clouds. The integer data type is used for this data.

 63

Particles:

It represents the total number of particles to be distributed in a

particular cube. The integer data type is used for this data.

Length:

It represents length of a particular cube. The float data type is used for

this data.

Height:

It represents height of a particular cube. The float data type is used for

this data.

Width:

It represents width of a particular cube. The float data type is used for

this data.

X-Coordinate for Centre:

It represents X-Coordinate for the centre of a particular cube. The

float data type is used for this data.

Y-Coordinate for Centre:

It represents Y-Coordinate for the centre of a particular cube. The

float data type is used for this data.

Z-Coordinate for Centre:

It represents Z-Coordinate for the centre of a particular cube. The

float data type is used for this data.

 64

Radius:

It represents maximum value for the radius of particles in a particular

cube. The float data type is used for this data.

4.4 Data Acquisition

This research has come up with an editing application – namely cloud editor,

to allow design of the cloud shapes. The approach used allows the design of cloud

macro shapes with the help of cubes. Any number of cubes can be used to design

cloud shapes. The dimension and size of cubes can be changes by the use of various

control of the cloud editor. After finishing design, the data related to cubes such as

cube centre, cube length, cube height and cube width, maximum of value for the

radius of particles and the total number of particles to be randomly distributed in the

cubes are stored in a data file. This data file serves as input data for the proposed

cloud shape modeling algorithm.

Table 4.2 shows a sample data file that has a total of 2000 particles in the

system and the number of cubes used to model cloud shape is 3.

Table 4.2: A sample of input data file

Line Number Input Data

1

2

3

4

5

2000

3

1000, 8.0, 7.0, 3.0, 10.0, 10.0, 10.0, 2.5

600, 5.0, 3.0, 3.0, 15.0, 20.0, -20.0, 2.9

400, 6.0, 4.0, 2.0, -10.0, -5.0, -10.0, 3.0

 65

According to the Table 4.2, Line Number 1 contains the total number of

particles in the system and the value for this data is 2000. Line Number 2 contains the

total number of cubes used to model the apparent shape of the cloud. According to

data file, the number of cubes used in the system is 3. The rest of the data file, from

Line Number 3 to onward, contains the data about the cubes such as number of

particles contained in a cube, cube length, cube height, cube width and maximum

value for radius for particles in the cube. Line Number 3 shows that the number of

particles in the first cube is 1000, its length is 8.0, width is 7.0, and height is 3.0. The

value for the centre (x, y, z) of this cube is (10.0, 10.0, 10.0). The maximum length

for the particle radius is 2.5. Line Number 4 shows that the number of particles in the

second cube is 600, its length is 5.0, width is 3.0, and height is 3.0. The value for the

centre of the cube is (15.0, 20.0, -20.0). The maximum length for the particle radius

is 2.9. Similarly, Line Number 5 shows that the number of particles in the third cube

is 400, its length is 6.0, width is 4.0, and height is 2.0. The value for the centre of the

cube is (-10.0, -5.0, -10.0). The maximum length for the particle radius is 3.0.

4.5 Design of Shape Modeling Algorithm

 This section presents the general model formulation of cloud shape modeling

algorithm based on randomized method. Part of the reason that particle clouds look

any good is that it incorporates randomness in a controlled way. Most of the work

involved in achieving this is an approximation contained in noise function.

 Each particle is assumed to have a roughly spherical volume in which a

Gaussian distribution governs the density falloff from the centre of the particle. Each

particle has attributes of a centre, radius, density and color. For a good

approximation, particles of varying sizes and densities are used build a cloud space.

 66

4.5.1 Model Formulation

The model formulation for each step of the cloud shape modeling process is

presented using the following notation (Gunadi, 2003).

N = Total number of particles.

XL = Length of cloud bounding volume along x-axis.

YL = Length of cloud bounding volume along y-axis.

ZL = Length of cloud bounding volume along z-axis.

Rmax = Maximum value for radius of particles.

XC = X-coordinate for centre of cloud space.

YC = Y-coordinate for centre of cloud space.

ZC = Z-coordinate for centre of cloud space.

R(i) = Radius of particle i.

The model formulation is as follows.

Step 1:

For each particle, evaluate the location of particles in cloud bounding volume.

Let X(i), Y(i) and Z(i) represent the X-coordinate, Y-coordinate and Z-coordinate

respectively for the location of particle i. Then these values are calculated as follows:

X(i) = random(s)

Y(i) = random(s)

Z(i) = random(s) (4.2)

where i=0,1,2, …, N-1,

s is seed for random-number generator and sets starting point

for generating a series of pseudorandom numbers, and

random(s) is a function takes seed as an argument and

generates a random number.

 67

The constraints on the values are

X(i) ≤ XL, for all i

Y(i) ≤ YL, for all i

Z(i) ≤ ZL, for all i (4.3)

In order to transform X(i), Y(i) and Z(i), for all values of i, to meet above

constraints, we compute as;

X(i) = X(i) % XL

Y(i) = Y(i) % YL

Z(i) = Z(i) % ZL (4.4)

where % is the modulus operator.

To add randomness, we add phase shifts in X(i), Y(i) and Z(i). Let Px, Py and

Pz be the phase shifts, then their values are calculated according to the following

relationships (Gardner, 1985):

Px = π⁄2 Sin(0.5 Y(i))

Py = π⁄2 Sin(0.5 X(i))

Pz = π⁄2 Sin(0.5 Z(i)) (4.5)

The phase shifts produce a controlled pseudo-random effect by shifting the X

component as a function of Y and Y component as a function of X component. To

provide three dimensional variations, the phase shifts are augmented by added sine

variations with Z component (Gardner, 1985):

Px = Px + π Sin(Px * Z(i)/2)

Py = Py + π Sin(Px * Z(i)/2) (4.6)

Then the phase shift values calculated above added to X(i), Y(i) and Z(i) to

get their new values as listed below:

 68

X(i) = X(i) + Px

Y(i) = Y(i) + Py

Z(i) = Z(i) + Pz (4.7)

Finally, the values of coordinates for the location of particle that fits within

the cloud bounding volume in virtual environment with respect to cloud centre are

calculated by adding the value of cloud centre (Xc, Yc, Zc), as shown by the

equations listed below:

X(i) = Xc + X(i)/2

Y(i) = Yc + Z(i)/2

Z(i) = Zc + Z(i)/2 (4.8)

Step 2:

Calculate the radius of each particle. Each particle has a different value of

radius which is less than or equal to a preset value Rm. Let R(i) represents radius of

particle i, then the value for radius of the particle is calculated as follows:

R(i) = random(seed) (4.9)

where i = 0,1,2, …, N-1.

and random(seed) is a function takes seed as an argument and

generates a random number.

The constraints on the values are

R(i) ≤ R, for all i (4.10)

In order to transform R(i), for all values of i, to meet above constraint, we

compute as;

R(i) = R(i) % R (4.11)

 69

where % is the modulus operator.

In order to get randomness in the values of radius, some noise is added to it as

listed below:

R(i) = R(i) + π⁄2 Sin (R(i)) (4.12)

Step 3:

Add the particle to cloud and repeat the process of generating data for new

particles according to step 1 and step 2 till total number of particles (N) is reached.

4.5.2 Pseudo Code of Shaping Modeling Algorithm

The following is the pseudo code of the proposed algorithm for cloud shape

modeling process.

get no_of_clouds

for each cloud

get cloud_center

get no_of_particles

get cloud_bounding_volume

for n=1 to no_of_clouds

get center(x,y,z) of a particle

if (center lies in cloud_bounding_volume)

add particle to cloud space

else get a new particle

end if

next

next

Figure 4.2: Pseudo code for Shape Modeling Algorithm

 70

4.6 Implementation of Randomized Algorithm in Cloud Editor

The evolving structure of clouds is modeled using a two-level approach. For

controlling the general shape of clouds, cubes have been used. Various cubes can be

sized and arranged in order to create a desired shape of clouds. For low-level cloud

details particles system has been used to ill he cloud volume with particles.

In order to evaluate the shapes modeled by the proposed algorithm, we make

use of an interactive editing application – cloud macrostructure editor and use it to

design the apparent shape of clouds. The snapshot of cloud macrostructure editor is

shown in Figure 5.1 and the further details about this editor are presented in

Appendix A.

Figure 4.3: Snapshot of Cloud Macrostructure Editor

 71

To design cloud shapes, we can add cubes by pressing ‘Add Cube’ button

from the control group named as ‘Cubes’. The attached parameters with each cube

are its length, width, breadth, centre and number of particles and radius of particles.

We can use any number of cubes to design cloud apparent shape.

After finishing the design of the cloud apparent shape, the data related with

these cubes is used by the proposed algorithm and it models the microstructure of the

cloud by filling the cloud space with particles of varying sizes at random position.

In the following Figure 5.2 shows the snapshot of cloud editor showing a

number of cubes placed at different location and having different number of particles

and size of particle radius. The cube in red color is active one and its attributes such

as size, location, number of particles and size of radius can be changed by using

various controls.

 Figure 4.4: Using 17 cubes for clouds apparent shape

In the following, Table 5.1 shows the data file generated by cloud

macrostructure editor using 17 cubes as shown in Figure 5.2. The total number of

 72

particles used to model cloud in this system is 554. The details about data file are

discussed in section 4.2.4.

Table 4.3: Data file generated by snapshot of Figure 4.4

Line Number Input Data

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

554

17

200, 7.39642, 1.07048, 2.89284, -3.4, -3.3, -0.600002, 2.1

10, 1.12383, 0.893671, 0.750589, 2.8, -3.1, -0.4, 2.2

5, 1.29472, 0.981624, 1, 1.1, -3.2, 0, 2

100, 4.99599, 1.30149, 2.33467, 1.1, -0.899999, 0, 3

110, 3.02839, 1.58117, 3.05433, -3.8, -0.499999, 0, 3

10, 1, 1, 1, 2.5, 0.600001, 0, 2

8, 1, 1, 1, -0.399999, 0.800001, 0, 3

7, 1, 1, 1, 1.1, 0.500001, 0, 2.2

5, 1, 1, 1, 1.5, 1.8, 0, 2.4

8, 1, 1, 1, -2, 1.3, 0, 2.123

9, 1, 1, 1, 6.12438e-007, 2.1, 0, 2

50, 2.36429, 1.50285, 2.29693 4.6, -3, 0, 2.2345

8, 1, 1, 1, -4, 2.5, 0, 2

0, 1, 1, 1, 0.500001, 3, 0, 2.5

7, 1, 1, 1, -4, 1.3, 0, 2

7, 1, 1, 1, -2.8, 2, 0, 2

10, 1, 1, 1, -1.4, 2.6, 0, 2

In the following, Figure 4.5 shows the snapshot of cloud modeled by 554

particles according to data generated by the cloud macrostructure editor shown in

Figure 4.4. The data used by the proposed algorithm to model cloud is shown in

Table 4.3 By making use of data of Table 4.3, the cloud shape modeling algorithm

modeled cloud data. This cloud modeled data was rendered in the renderer presented

by Harris (2002), Figure 4.5 shows this rendered image.

 73

Figure 4.5: Cloud modeled with 554 particles

In the following Figure 4.6 shows another snapshot of cloud editor showing

23 cubes placed at different locations to represent apparent shape of cloud.

Figure 4.6: Using 23 cubes for clouds apparent shape

 74

In the following, Table 4.4 shows the data file generated by cloud

macrostructure editor using 23 cubes as shown in Figure 4.6. The total number of

particles used to model cloud in this system is 615.

Table 4.4: Data file generated by snapshot of Figure 4.6

Line Number Input Data

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

615

23

200, 7.39642, 1.07048, 2.89284, -3.4, -3.3, -0.600002, 2.1

10, 1.21266, 1.14308, 0.963248, 2.7, -3.1, -0.4, 2.2

5, 1.36688, 1.05379, 1.07216, 1.1, -3.2, 0, 2

100, 4.99599, 1.30149, 2.33467, 1.1, -0.899999, 0, 3

110, 3.02839, 1.58117, 3.05433, -3.8, -0.499999, 0, 3

10, 1, 1, 1, 2.5, 0.600001, 0, 2

8, 1, 1, 1, -0.399999, 0.800001, 0, 3

7, 1, 1, 1, 1.1, 0.500001, 0, 2.2

5, 1, 1, 1, 1.5, 1.8, 0, 2.4

8, 1, 1, 1, -2, 1.3, 0, 2.123

9, 1, 1, 1, 6.12438e-007, 2.1, 0, 2

50, 2.36429, 1.50285, 2.29693, 4.6, -3, 0, 2.2345

8, 1, 1, 1, -4, 2.5, 0, 2

10, 1, 1, 1, 0.500001, 3, 0, 2.5

7, 1, 1, 1, -4, 1.3, 0, 2

7, 1, 1, 1, -2.8, 2, 0, 2

10, 1, 1, 1, -1.4, 2.6, 0, 2

10, 1, 1, 1, 4.8, 1.9, 0, 2

7, 1, 1, 1, 3.2, 2, 0, 2

10, 1, 1, 1, 4, 0.600001, 0, 2.1

9, 1, 1, 1, 2.2, 2.3, 0, 2

5, 1, 1, 1, 3.9, 2.3, 0, 2.123

10, 1.62329, 1.19516, 1.31986, 4.7, -0.999999, 0, 3

Similarly, the following Figure 4.7 shows the snapshot of cloud modeled by

615 particles according to data generated by the cloud macrostructure editor shown

 75

in Figure 4.7. The data used by the proposed algorithm to model cloud is also shown

in Table 4.4. The image shown in Figure 4.7 was also rendered by the renderer

presented by Harris (2002).

Figure 4.7: Cloud modeled with 615 particles

4.7 Summary

A cloud shape modeling algorithm is proposed to address the problem in the

area of cloud shape modeling. By proper selection of cube sizes and position, number

of particles in cubes, and particles radius, the proposed algorithm is able to model

almost all types of cloud shapes. The randomized method is used to model the

algorithm.

As the Virtual Reality application have level of details and these details need

be designed by the designers. The proposed framework includes an interactive

editing application – cloud macrostructure editor (Muhammad Azam Rana et al.,

2004), which allows designers to model the details of cloud scene interactively and

 76

in a very easy manner. Cloud macrostructure editor can easily be used to design the

details of each stage and generate data files for each stage. Then the proposed

algorithms can be used to model the cloud scenes by using the data for each stage.

 However, the proposed algorithm cannot model cloud dynamics. To make the

problem simple, only static clouds have been addressed in this research. The target of

this research is to model clouds for Virtual Environments such as flight simulators

and games etc. and this application do not need much about cloud dynamics. Future

research may address this problem and extend the proposed algorithm to incorporate

cloud dynamics.

CHAPTER V

TESTING AND RESULTS

5.1 Introduction

As is true for any object or phenomenon, there are multiple ways to model

clouds. An explicit representation of every water droplet in a cloud requires far too

much computation and storage, so most of the researchers have used much coarser

models. In general, the most common methods that have been used to model and

render clouds are particle systems, metaballs, voxel volumes, procedural noise, and

textured solids.

 Particle systems model objects as a collection of particles – simple primitives

that can be represented by a single 3D position and a small number of attributes such

as radius, color, and texture etc.

 Particles can be created by hand using a modeling tool, procedurally

generated or created with some contribution of the two. Particles have the advantage

that they usually require only very simple and inexpensive code to maintain and

render. Because a particle implicitly represents a spherical volume, a cloud built with

particles usually requires much less storage than a similarly detailed cloud

represented with other methods. This advantage may diminish as detail increases,

because many tiny particles are needed to achieve high details.

 78

This chapter discusses the evaluation of the proposed algorithm, test for

efficiency of randomized algorithm and summarizes rendering performance test

results of the research. A number of interesting issues are presented. The discussion

of the proposed algorithm is also presented.

5.2 Efficiency of the Randomized Algorithm

We have performed test for efficiency of the randomized algorithm. For this

purpose, process time taken by the algorithm to model the cloud data has been

calculated for a number of particles. The machine used for this purpose is Intel

Pentium® IV 3.2 GHz having 1 GB RAM. Figure 5.1 through Figure 5.3 show the

graphs for these tests. Figure 5.1 shows resulting graph for a Pentium® IV 3.2 GHz

Processor having 1 GB RAM. Figure 5.2 shows resulting graph for a Pentium® IV

2.0 GHz Processor having 248 MB RAM. Figure 5.3 shows resulting graph for a

Pentium® III 797 MHz Processor having 128 MB RAM. It is obvious that as the

number of particles is increased, the process time taken by the algorithm to model

cloud data is almost increasing linearly.

0

10
20

30
40

50

60
70

80
90

100

1000 10000 20000 30000 40000 50000

Number of particles

Ti
m

e
(m

Se
c)

Figure 5.1: Test result for efficiency of the algorithm

 79

0

20

40

60

80

100

120

140

160

180

200

1000 10000 20000 30000 40000 50000

Number of Particles

Ti
m

e
(m

Se
c)

Figure 5.2: Test result for efficiency of the algorithm

0

50

100

150

200

250

300

350

400

1000 10000 20000 30000 40000 50000

Number of Particles

Ti
m

e
(m

Se
c)

Figure 5.3: Test result for efficiency of the algorithm

 80

5.3 Rendering Performance Tests

 We have implemented our cloud shape modeling system using OpenGL. The

rendering of the clouds has been done using the method described by Harris and

Lastra (2001), Harris (2002) and Harris et al. (2003).

 We have performed several performance tests for rendered images of clouds

modeled by our proposed randomized cloud shape modeling algorithm. Our first test

machine was Pentium® IV processor; the details of this system - System1 are listed in

the following Table 5.1.

Table 5.1: Specifications of Test System – System1

Processor Intel Pentium IV 3.2 GHz

System RAM 1 GB

Graphics Card nVADIA GeForce FX 5950 Ultra

RAM on GPU 256 MB

In this test, we created the data for cloud particles using our proposed

randomized algorithm, distributed the cloud particles randomly in the cloud

bounding volume and then rendered the resulting cloud images. Figure 5.2 shows the

results of the performance test for a resolution of 800×600, 960×600 and 1024×876.

The tests have been performed for a maximum number of 50000 particles. The chart

in Figure 5.2 shows the graphs for these test results.

 81

0

20

40

60

80

100

120

140

500 10000 20000 30000 40000 50000

Number of Particles

Fr
am

e
Ra

te
 (f

ra
m

es
/s

ec
on

d)

800×600
960×600
1024×768

Figure 5.4: Performance Test results for System1

Figure 5.4 shows the test results for the system having Intel Pentium IV 3.2

GHz, 1GB RAM and AGP as nVADIA GeForce FX 5950 Ultra. It is observed that

for a less number of particles such as 500 particles, the frame is more than 120

frames per second whereas for a large number of particles we have frames rate

around 20 frames per second. It has been observed that a small piece of cloud can be

modeled by using a number of particles around 500 to 1000. This shows that even for

scenes consisting of several thousands particles we can achieve interactive frame

rates and the proposed method is applicable to design cloud shapes interactively.

In order to further test performance of proposed algorithm, a number of

performance tests were conducted on other machines having different specifications

and with a different variety of AGP card. The specification of these test machines are

listed in the following tables from Table 5.2 to Table 5.5. These systems have been

labeled as System2, System3, System4 and System5.

 82

Table 5.2: Specifications of Test System – System2

Processor Intel Pentium IV 1.5 GHz

System RAM 384 MB

Graphics Card ATI Radeon 9600 XT

RAM on GPU 128 MB

Table 5.3: Specifications of Test System – System3

Processor Intel Pentium IV 1.4 GHz

System RAM 256 MB

Graphics Card nVADIA GeForce FX 5200

RAM on GPU 128 MB

Table 5.4: Specifications of Test System – System4

Processor Intel Pentium IV 2.8 GHz

System RAM 512 MB

Graphics Card nVADIA GeForce FX 5200

RAM on GPU 128 MB

Table 5.5: Specifications of Test System – System5

Processor AMD Athlon™ X 1600 + 1.4 GHz

System RAM 256 MB

Graphics Card nVADIA GeForce MX

RAM on GPU 64 MB

Figure 5.5 shows the results of the performance test for System2 for a

resolution of 800×600 and 1024×876. The hardware on this system only supported

these two mentioned resolution modes and the other resolution modes were not

available for testing.

 83

0

20

40

60

80

100

120

140

160

180

500 10000 20000 30000 40000 50000

Number of Particles

Fr
am

es
 p

er
 se

co
nd

 (F
PS

)

800×600

1024×768

Figure 5.5: Performance Test results for System2

 Figure 5.5 shows the test results for a test system having processor as

Pentium IV 1.5 GHz, 384 MB RAM and AGP card as ATI Radeon 9600 XT. As

shown in the graph, for less number of particles, the frame rate is very good.

Between 500 particles and 10000 particles, the frame rate drops quickly and then it

drops down linearly. The AGP card used in this system is ATI Radeon 9600 XT.

This type of behavior looks due to limitation of computational power of AGP card.

For higher number of particles, the frame rate drops below 20 frames per second, but

even then this is quite reasonable to design clouds interactively on low power PCs.

Figure 5.6 shows the results of the performance test for System3 for a

resolution of 800×600, 1024×876, 1088x612 and 1152x864.

 84

0

10

20

30

40

50

60

500 10000 20000 30000 40000 50000

Number of Particles

Fr
am

e
ra

te
 (f

ra
m

es
/se

c)

800×600
1024×768
1088×612
1152×864

Figure 5.6: Performance Test results for System3

Figure 5.6 shows the test results for a test system having processor as

Pentium IV 1.4 GHz, 256 MB RAM and AGP card as nVADIA GeForce FX 5200.

As shown in the graph, for less number of particles, the frame rate is closer to 50

frames per second. For higher number of particles, the frame rate drops closer to 10

frames per second. In the series of tests, this is the low power machine and looks

reasonable to design cloud images interactively using the proposed interactive

environment proposed by this research.

Figure 5.7 shows the results of the performance test for System4 for a

resolution of 800×600 and 1024×876. The hardware on this system only supported

these two mentioned resolution modes and the other resolution modes were not

available for testing.

 85

0

20

40

60

80

100

120

140

500 10000 20000 30000 40000 50000

Number of Particles

Fr
am

e
ra

te
 (f

ra
m

es
/s

ec
)

800×600

1024×768

Figure 5.7: Performance Test results for System4

Figure 5.7 shows the test results for a test system having processor as

Pentium IV 2.8 GHz, 512 MB RAM and AGP card as nVADIA GeForce FX 5200.

As shown in the graph, for less number of particles, the frame rate is closer to 120

frames per second. For higher number of particles, the frame rate drops closer to 20

frames per second. As seen on the graph, the difference in the frame rate for the two

mentioned resolution is very close and is insignificant.

Figure 5.8 shows the results of the performance test for System5 for a

resolution of 800×600, 1024×876 and 1152×864.

 86

0

10

20

30

40

50

60

70

500 10000 20000 30000 40000 50000

No of Particles

Fr
am

e
ra

te
 (f

ra
m

es
/s

ec
)

800×600

1024×768

1152×864

Figure 5.8: Performance Test results for System5

Figure 5.8 shows the test results for a test system having processor as AMD

Athlon™ X 1600 + 1.4 GHz, 256 MB RAM and AGP card as nVADIA GeForce

MX. As shown in the graph, for less number of particles, the frame rate is closer to

120 frames per second. For higher number of particles, the frame rate drops closer to

10 frames per second. As seen on the graph, the difference in the frame rate for les

number of particles is considerable but this difference is insignificant for higher

number of particles in the system.

In the following, figures 5.9 through 5.11 show the comparison of rendering

performance test for 800×600, 1024×768 and 1152×864 resolutions.

 87

0

20

40

60

80

100

120

140

160

180

500 10000 20000 30000 40000 50000

Number of Particles

Fr
am

e
ra

te
 (f

ra
m

es
/s

ec
)

System1
System2
System3
System4
System5

Figure 5.9: Comparison of Performance Test for 800×600 resolution

0

20

40

60

80

100

120

140

160

180

500 10000 20000 30000 40000 50000
Number of Particles

Fr
am

e
ra

te
 (f

ra
m

es
/s

ec
)

System1

System2

System3

System4

System5

Figure 5.10: Comparison of Performance Test for 1024×768 resolution

 88

0

5

10

15

20

25

30

35

40

45

50

500 10000 20000 30000 40000 50000

Number of particles

Fr
am

e
ra

te
 (f

ra
m

es
/s

ec
)

System3
System5

Figure 5.11: Comparison of Performance Test for 1152×864 resolution

Figure 5.9 and figure 5.10 show comparison of frame rate per second for all

systems for the resolution of 800×600 and 1024×768 respectively. For the number of

particles up to 10000, the frame rate is more than required for real time rendering.

For particles more than 20000, the frame rate is close to real time. For the System1

and System4, frame rate is close to real time even for 50,000 particles. System2,

System3 and System5 have slightly less frame rate than required for real time as the

number of particles increases from 20000; it is due the les power of Graphical

Processing Units (GPU). The frame rate greater than real time shows that the

modeled clouds can be used in a virtual environment (VE), as clouds are one small

part of a VE and should get less time for their processing. Figure 5.11 shows

comparison of frame rate at 1152×864 for System3 and System5 only, as the GPUs

on other test machines don’t support these resolution modes. The frame rate is

dropped as the resolution is increased as expected. From above figures, we can

deduce that the resolution mode of 600×800 is most sited for the efficient rendering

of the clouds.

 89

5.4 Summary

This chapter presents performance test results and discuses these results

produced by the research that models the shape of clouds by proposed randomized

algorithm. Specification of the test machines and the charts of these performance

tests have been presented and discussed.

 The efficiency of the randomized particles algorithm has been performed.

The time taken for particles up to 1000 particles is about 1millisecond. Even for

50000 particles, the time taken by the algorithm is around 90 milliseconds. For

modeling a reasonable good scene of clouds, a number of particles around 10000 to

20000 is enough, which shows that algorithm can model cloud data very quickly

from stage to stage as needed by the VE applications, without interrupting the user.

 The tests for the performance of the proposed cloud shape modeling

algorithm are run on various low cost PCs having a variety of processors such as

Intel Pentium IV having CPUs varying from 1.4 GHz to 3.2 GHz and of from

different and an AMD Athlon 1.4 GHz processor. These test machines have different

ordinary Accelerated Graphics Port (AGP) cards. The complete specifications of

these test machines are listed in Chapter V. As shown in Figure 5.2 - 5.9, for less

number of particles the achieved frame rates are more than hundred frames per

second. This frame rate is more than required for real time application. The reason is

as we are testing clouds only, whereas in a VE clouds are just a small part and should

demand a less processing time. This shows the suitability of the modeled clouds for

VE. Even for larger number of particles, the frame rates are in the range of 20-10

frames per second which looks reasonable for synthesizing cloud shapes

interactively. This shows that the cloud shape modeling framework proposed by this

research is reasonable good for synthesizing cloud shapes interactively for virtual

reality applications on low-cost PCs.

 The performance testing also shows that as we increase the resolution of the

display, the rending time for the scenes is increased and 600×800 is the most suitable

resolution for getting fast rendered cloud images.

CHAPTER VI

DISCUSSION AND CONCLUSIONS

6.1 Introduction

This chapter discusses and concludes the work introduced in this research,

and recommends the future work. The topics discussed include Discussion,

Conclusion of the introduced work, recommendation for the future work and

Summary.

6.2 Discussion

This study describes a system for real-time simulation of cloud shapes

suitable for interactive Virtual Environments (VE) applications such as flight

simulators and games. These applications require realism, but cannot afford to

sacrifice speed to achieve it. Controlling shapes of clouds is a difficult task as they

are amorphous objects. Clouds can be built by filling a volume by particles or by

using an editing application that allows users to place particles, have control over

number of particles, and have control over size that can build clouds interactively.

The randomized method is a good way to get a quick field of clouds. A

combination of randomized method and an editing application serves a good choice

for designing cloud for Virtual Reality (VR) applications as they have a range of

 91

designed levels and need more control over details of scenes. Providing editing

applications for such Virtual reality applications can produce beautiful cloud shapes

tailored to the need of the Virtual Environment (VE). The resulting images of clouds

shapes, modeled by the proposed algorithm have been demonstrated. It shows these

images are promising, easy to design using the proposed framework and almost any

type of clouds can be modeled. The proposed framework and algorithm are

developed with these requirements in mind.

Thus, this research has demonstrated that realistic cloud shapes can be simulated

and rendered in real time using efficient algorithms implemented entirely on

programmable graphics processors. To the knowledge, this work is the first in

Computer Graphics to model cloud shapes with particle systems based on

randomized method.

6.3 Conclusions

 This chapter discusses and concludes the study of the research. Contributions

made by this study are described. Finally, limitations of this work and suggestions

for future work have also been discussed.

 The focus of this study is modeling of realistic clouds virtual applications

such as games and flight simulators. These applications demand realism regarding

presence of clouds and are not mostly concerned with movement of clouds and

changes in their shapes under the influence of atmosphere. So, this research focuses

on modeling of static clouds only and cloud dynamics are not studied for simplicity.

 This research proposes a two-level approach for modeling cloud shapes. In

the second level, cloud shape modeling algorithm is developed. This algorithm is

based on randomized method and particles system is used to model cloud data. The

data generated by cloud macrostructure editor is used by the proposed cloud shape

modeling algorithm for modeling cloud shapes. Choosing proper size of cubes,

 92

number of particles and size of particles, interesting shapes of clouds can be

synthesized by the proposed framework.

In the second level, an interactive editing application – cloud

macrostructure editor has been proposed which helps in designing cloud apparent

shape by making use of cubes. This interactive environment enables full control over

size and location of cubes in three-dimensional space, number of particles in a cube

and size of particles. Using cubes of varying sizes, placing them at appropriate

places, distributing proper number of particles and adjusting size of particles, the

resulting data about cloud apparent shape is then saved in data file.

 Virtual reality applications have pre-designed levels of details. The two-level

design approach used in this algorithm has proved successful to interactively design

cloud shapes for each stage and then save data about these details in separate files for

each level.

6.4 Limitations and Future Work

In this section, the major limitations of this work are listed. Most of these

limitations are addresses with the ideas of future works and suggest several

directions for future explorations including visual improvements for clouds, creative

controls, new directions and applications for general-purpose computation on

Graphics Processing Units (GPU).

 The most obvious direction for the future is to continue to improve the quality

and realism of clouds. A number of limitations and problems with this current work

provide goals for future work.

a) The most limitation of proposed cloud shape modeling algorithms is the

number of different clouds it can support. It is not currently possible to

simulate multiple cloud clusters. Future work can address this issue by

dividing cloud particles into a cluster of small clouds and then render only

 93

those clouds that come along the view direction. This will increase the

performance of rendering process.

b) The most important limitation is the scale and detail that can be supported.

Currently, it is not possible to simulate a sky full of clouds due to large

processing requirements. For flight simulators, clouds must extend as far as

possible as the user desires to fly. The basic reason for scale and detail

limitation is that volumetric data requires immense computation and storage

resources. Fortunately, Graphics Processing Units are rapidly increasing both

of these resources. This will help, but it will not solve the problem of

populating the skies with dynamic clouds. More creative techniques will be

required.

c) A possible method of creating higher detail at lower cost is to use procedural

noise techniques. Much work has been done in the past on generating clouds

using noise (Lewis, 1989; Ebert, 1997; Ebert et al., 2002; Schpok et al.,

2003). Recently, Perlin and Neyret (2001) made the observation that while

noise is a very useful primitive for creating texture detail, it does not work

well for describing flowing detail. It lacks “swirling” and advection behavior.

To overcome this, they presented a few simple extensions to Perlin (1985)

Noise that make the noise appear to flow more realistically (Perlin and

Neyret, 2001). Very recently, Neyret (2003) has also presented a method for

overcoming problems of basic advection of textures to add detail to flows. An

interesting avenue of research would be to combine techniques for advecting

procedural noise with physical cloud simulation.

d) Current model assumes that clouds exist alone. In order to represent affect of

terrain (such as tall mountains) on the clouds, arbitrary bounding conditions

would need to be evaluated. Such boundaries can be implemented as

described in (Griebel et al., 1998).

 94

e) General-purpose computation on GPUs is an interesting area of research.

GPUs will see increasing use in computer games for procedural texturing and

physically-based simulation. Also, the low cost, high speed, and parallelism

of GPUs makes them ideal in many ways for scientific computing. Imagine

giant clusters of PCs with powerful GPUs crunching through massive

physical and numerical simulations.

 95

REFERENCES

Bhate, N. and Tokuta, A. (1992). Photorealistic Volume Rendering of Media with

Directional Scattering. In Proceedings of the 3rd Eurographics Workshop on

Rendering. 1992.

Bier, E. A., and Kenneth, R. S. Jr. (1986). Two-Part Texture Mappings. IEEE

Computer Graphics and Applications Vol. 6, No. 9, September 1986:40-53.

Blasi, P., Le, S. B. and Schlick, C. (1993). A Rendering Algorithm for Discrete

Volume Density Objects. In Proceedings of Eurographics 1993:201–210.

Blinn, J. F. (1982). Light Reflection Functions for Simulation of Clouds and Dusty

Surfaces. Proceedings of SIGGRAPH '82. In Computer Graphics. Volume 16,

No. 3. July 1982:21-29.

Blinn, J. F. (1982a). A Generalization of Algebraic Surface Drawing. In Proceedings

of SIGGRAPH. 1982:273–274.

Blinn, J. F. (1982b). Light Reflection Functions for Simulation of Clouds and Dusty

Surfaces. In Proceedings of SIGGRAPH 1982, Computer Graphics. 1982:21–29.

Blinn, J. F. (1978). Simulation of Wrinkled Surface. Proceedings of SIGGRAPH'78

(Atlanta, Goergia, August 23-25, 1978). In Computer Graphics. August

1978:286-292.

Blinn, J. F., Newell and Martin (1976). Texture and Reflection in Computer

Generated Images. Communications of the ACM 19, 1976:542-547.

 96

Blythe, D. (1999). Advanced Graphics Programming Techniques Using OpenGL.

Course Note #29. SIGGRAPH.

Burt, P. J., Adelson and Edward, H. (1983).A Multiresolution Spline With

Application to Image Mosaics. ACM Transactions on Graphics Vol. 2, No. 4,

October. 1983:217-236.

Cabral B., Olano, M. and Nemec, P. (1999). Reflection Space Image Based

Rendering. Proc. of SIGGRAPH. 1999:165-170.

Cabral, B., Cam, N., and Foran, J. (1994). Accelerated Volume Rendering and

Tomographic Reconstruction Using Texture Mapping Hardware. In Proceedings

of the 1994 Symposium on Volume Visualization. 1994:91–98.

Christian, J (2000). The Representation of Cloud Cover in Atmospheric General

Circulation Models. Ludwig-Maximilians-University:Munchen: Ph.D. Thesis.

Cook, R. (1984). Shade Trees. Proceedings of SIGGRAPH'84 (Minneapolis,

Minnesota, July 23-27, 1984. In Computer Graphics. Vol. 18, No. 3, July

1984:223-231.

Demko, S., Hodges, L. and Naylor, B. (1985). Construction of Fractal Objects with

Iterated Function Systems. Proceedings of SIGGRAPH'85, San Francisc,

California, July 22-26, 1985. In Computer Graphics. Vol. 19, No. 3, July

1985:271-278.

Dobashi, Y., Kaneda, K., Yamashita, H., Okita, T. and Nishita, T. (2000). A Simple,

Efficient Method for Realistic Animation of Clouds. In Proceedings of the 27th

Annual Conference on Computer Graphics and Interactive Techniques. ACM

Press. 2000: 19-28.

Dobashi, Y., Nishita, T., Yamashita, H. and Okita, T. (1999). Using Metaballs to

Modeling and Animate Clouds from Satellite Images. The Visual Computer. Vol.

15, No. 9: 1999: 471-482.

 97

Dobashi, Y., Nishita, T. and Okita, T. (1998). Animation of Clouds Using Cellular

Automaton. Proceedings of Computer Graphics and Imaging. 1998:251-256

Ebert, D. S., Musgrave, F. K., Peachey, D., Perlin, K. and Worley S. (2002).

Texturing & Modeling: A Procedural Approach. Third Edition. Morgan

Kaufman.

Ebert, D. S., Musgrave, F.K., Peachey, P., Perlin, K. and Worley S. (1998).

Texturing and Modeling: A Procedural Approach. Academic Press, Cambridge.

1998. ISBN 0-12-228730-4.

Ebert, D. S. (1997). Volumetric Modeling with Implicit Functions: a Cloud is Born.

Visual Proceedings of SIGGRAPH. 1997. Los Angeles, California 147.

Ebert, D. S. (1996). Solid Spaces: A Unified Approach to Describing object

Attributes. The Ohio State University: PhD thesis.

Ebert, D. S. and Parent, R.E. (1990). Rendering and Animation of Gaseous

Phenomena by Combining Fast Volume and Scanline A-Buffer Techniques.

Computer Graphics Vol. 24,No. 4. August 1990:357–366.

Elinas, P. and Sturzlinger, W. (2001). Real-Time Rendering of 3D Clouds. The

Journal of Graphics Tools. Vol. 5, No. 4, 2001:33–45.

FlightGear (2003). FlightGear Flight Simulator. http://www.flightgear.org/.

Foley, J. D., van Dam, A., Feiner, S. K., and Hughes, J. F. (1990). Computer

Graphics. Principles and Practice. Second edition. Addison

Forsey, D. and Bartels, R. (1988). Hierarchical B-Spline Refinement. Proceedings of

SIGGRAPH'88. Atlanta, Georgia, August 1-5, 1988. In Comuter Graphics. Vol.

22, No. 3, August 1988:205-202.

Fournier, A. and Reeves, W. (1986). A Simple Model for Ocean Waves. Proceedings

of SIGGRAPH'86, Dallas, Texas, August 18-22, 1986. In Computer Graphics.

Vol. 20, No. 4, August 1986:75-84.

 98

Fournier, A., Fussel, D. and Carpenter, L. (1982). Computer Rendering of Stochastic

Models. Communications of the ACM. Vol. 25, Issue 6. June 1982:371-384.

Gardener, G.Y. (1985). Visual Simulation of Clouds. ACM SIGGRAPH Computer

Graphics. Vol.19 No.3. July 1985: 297-303.

Griebel, M., Dornseifer, T., and Neunhoeffer, T. (1998). Numerical Simulation in

Fluid Dynamics: A Practical Introduction. SIAM Monographs on Mathematical

Modeling and Computation. Society for Industrial and Applied Mathematics,

Philadelphia.

Gunadi, W. N. (2003). Modified Sweep Algorithm with Fuzzy-Based Parameters for

Public Bus Route Selection. Universiti Teknologi Malaysia: Ph.D. Thesis.

Gustav Taxén (1999). Cloud Modeling for Computer Graphics. Royal Institute of

Technology, Stockholm, Sweden: Master Thesis.

Haltiner, G. J. (1959). On the Theory of Convective Currents. Tellus. Vol. 11.

Harris, M. J. (2003). Real-Time Cloud Simulation and Rendering. University of

North Carolina, Chapel Hill: Ph.D. Thesis.

Harris, M. J., Willium, V. B. III, Thorsten, S. and Anselmo, L. (2003). Simulation of

Cloud Dynamics on Graphics Hardware. SIGGRAPH/Eurographics Workshop

on Graphics Hardware. 2003.

Harris, M. J. (2002). Real-Time Cloud Rendering for Games. Proceedings of Game

Developers Conference 2002. March 2002.

Harris, M. J., Coombe, G., Scheuermann, T. and Lastra, A. (2002). Physically-based

Visual Simulation on Graphics Hardware. In Proceedings of the ACM

SIGGRAPH/EUROGRAPHICS conference on Graphics hardware. 2002:109–

118.

Harris, M. J. and Lastra, A. (2001). Real-Time Cloud Rendering. EUROGRAPHICS.

2001, Volume 20, Number 3, 2001:76-84.

 99

Heckbert and Paul, S. (1986). Survey of Texture Mapping. IEEE Computer Graphics

and Applications 6, 11 November 986:56-67.

Heidrich, W. and Seidel, H. P. (1999). Realistic, Hardware-Accelerated Shading and

Lighting. Proc. of SIGGRAPH’99. 1999:171-178.

Heinzlreiter, P., Kurka, G., and Volkert, J. (2002). Real-time Visualization of

Clouds. International Conference in Central Europe on Computer Graphics,

Visualization and Computer Vision'2002.

Howard, L. (1804). On the Modifications of Clouds. J. London:Taylor.

Jensen, H. W. and Christensen P. H. (1998). Ecient Simulation of Light Transport in

Scenes with Participating Media Using Photon Maps. In Proceedings of

SIGGRAPH. 1998:311–320.

Jensen, H. W. (1996). Global Illumination Using Photon Maps. In Proceedings of the

Eurographics Workshop on Rendering. 1996:21–30.

Kajiya, J. T. and Herzen, B. P. V. (1984). Ray Tracing Volume Densities. Computer

Graphics (Proceedings of SIGGRAPH). ACM Press. Vol. 18, No. 3. 1984:165–

174.

Kass, M. and Miller, G. (1990). Rapid, Stable Fluid Dynamics for Computer

Graphics. Proceedings of SIGGRAPH'90, Dallas, Texas, August 6-10, 1990. In

Computer Graphics. Vol. 24, No. 4, August 1990:49-58.

Klassen, R. V. (1987). Modeling the Effect of the Atmosphere on Light. ACM

Transaction on Graphics. Vol. 6, No. 3, July 1987:215-237.

Kniss, J., Premoze, S., Hansen, C., and Ebert, D. S. (2002). Interactive Translucent

Volume Rendering and Procedural Modeling. In Proceedings of IEEE

Visualization. 2002: 109–116.

Levoy, M. (1988). Display of Surfaces From Volume Data. IEEE Computer

Graphics & Applications. Vol. 8, No. 3, 1988:29–37.

 100

Lewis, J. P. (1989). Algorithms for Solid Noise Synthesis. In Proceedings of

SIGGRAPH. 1989: 263–270.

Magnenat-Thalmann, N. and Thalmann, D. (1985). Computer Animation Theory and

Practice. Springer Verlag. Tokyo, Japan, 1985.

Mandelbrot, B. (1982). The Fractal Geometry of Nature. San Francisco, California:

Freeman.

Max, N. (1994). Efficient Light Propagation for Multiple Anisotropic Volume

Scattering. In Proceedings of the 5th Eurographics Workshop on Rendering.

June 1994:87-104.

Max, N. (1986). Light Diffusion Through Clouds and Haze. Computer Vision,

Graphics, and Image Processing. Vol. 33, 1986:280-292.

Max, N. (1981).Vectorized Procedural Models for Natural Terrain: Waves and

Islands in the Sunset. Proceedings of SIGGRAPH'81. In Computer Graphics.

Vol. 15, No. 3, August 1981:317-324.

Meuller, K., Shareef, N., Huang, J. and Crawfis, R. (1999). Hight-Quality Splatting

on Rectilinear Grids with Efficient Culling of Occluded Voxels. IEEE Trans. on

Visualization and Computer Graphics. Vol. 5, No. 2, 1999:116-134.

Mikhail, O. (1997). An Investigation of Ice Production Mechanism Using a 3-D

Cloud Model With Explicit Microphysics. University of Oklahoma: Ph.D. Thesis.

Miller, G. (1986). The Definition and Rendering of Terrain Maps. Proceedings of

SIGGRAPH'86. In Computer Graphics. Vol. 20, No.4, August 1986:39-48.

Miyazaki, R., Yoshida, S., Dobashi, Y. and Nishita, T. (2001). A Method for

Modeling Clouds Based on Atmospheric Fluid Dynamics. Proceedings of

Pacific Graphics 2001. IEEE Computer Society Press. 2001: 363-372.

 101

Muhammad Azam Rana, Mohd Shahrizal Sunar, Mohd Norikhwan Nor Hayat,

Sarudin Kari and Abdullah Bade (2004). Framework for Real Time Cloud

Rendering. International conference on Computer Graphics, Imaging and

Visualization (CGIV04). In Proceeding of IEEE Computer Society Press.

Penang, Malaysia. 26–29 July, 2004.

Muhammad Azam Rana, Mohd Shahrizal Sunar, Sarudin Kari, Siti Mariyam

Shamsuddin (2003). A Survey of Cloud Modeling Techniques. GMAG03.

London, july 16-18, 2003.

Musgrave, F. K. (1990). A Note on Ray Tracing Mirages. IEEE Computer Graphics

Applications. 1990:10–12

Musgrave, F. K., Kolb, C. E. and Mace, R. S. (1989).The Synthesis and Rendering of

Eroded Fractal Terrains. Proceedings of SIGGRAPH'89. In Computer Graphics.

Vol. 23, No. 3, July 1989:41-50

Nagel, K. and Raschke, E. (1992). Self-Organizing Criticality in Cloud Formation?

Physica A. 182:519–531.

Neyret, F. (2003). Advected Textures. Eurographics/SIGGRAPH Symposium on

Computer Animation.

Neyret, F. (1997). Qualitative Simulation of Convective Cloud Formation and

Evolution. International Workshop on Computer Animation and Simulation.

Eurographics.

Nishita, T. and Dobashi, Y. (2001). Modeling and Rendering of Various Natural

Phenomena Consisting of Particles. Proceedings of Computer Graphics

International. 2001: 149-156

Nishita, T., Dobashi, Y. and Nakamae, E. (1996). Display of Clouds Taking into

Account Multiple Anisotropic Scattering and Sky Light. Proceedings of

SIGGRAPH. New Orleans, Los Angelus. 1996: 379–386.

 102

Nishita, T., Miyawaki, Y. and Nakamae, E. (1987).A Shading Model for

Atmospheric Scattering Considering Luminous Intensity Distribution of Light

Sources. Proceedings of SIGGRAPH'87. In Computer Graphics. Vol. 21, No. 4,

July 1987:303-310.

Ofek, E. and Rappoport, A. (1998). Interactive Reflections on Curved Objects. Proc.

of SIGGRAPH’98. 1998:333-342.

Overby, D., Melek, Z. and Keyser, J. (2002). Interactive Physically-Based Cloud

Simulation. Proceedings of Pacific Graphics. 2002: 469-470.

Patmore, C. (1993). Simulated Multiple Scattering for Cloud Rendering. In

Graphics, Design and Visualization, Proceedings of the IFIP

TC5/WG5.2/WG5.10 CSI International Conference on Computer Graphics.

1993:29–40.

Peachey, D. (1986). Modeling Waves and Surf. Proceedings of SIGGRAPH'86

Dallas, Texas, August 18-22, 1986. In Computer Graphics. Vol. 20, No. 4,

August 1986:65-74.

Peachey and Darwyn (1985). Solid Texturing of Complex Surfaces. Proceedings of

SIGGRAPH'85, San Francisco, California, July 22-26, 1985:279-286.

Perlin, K. and Neyret, F. (2001). Flow Noise. In SIGGRAPH 2001 Technical

Sketches and Applications.

Perlin, K. and Hoffert, E. (1989). Hypertexture. Proceedings of SIGGRAPH'89,

Boston, Massachusetts, July 31- August 4, 1989. In Computer Graphics. Vol. 23,

No. 3, July 1989:253-262.

Perlin, K. (1985). An Image Synthesizer. Proceedings of SIGGRAPH'85, San

Francisco, California, July 22-26, 1985. In Computer Graphics. Vol. 19, No. 3,

July 1985:287-296.

 103

Prusinkiewicz, P., Lindemeyer, A. and Hanan, J. (1988). Developmental Models of

Herbaceous Plants for Computer Imagery Purposes. Proceedings of

SIGGRAPH'88, Atlanta, georgia, August 1-5, 1988. In Computer Graphics. Vol.

22, No. 3, August 1988:141-190.

Reeves, W. and Blau, R. (1985). Approximate and Probabilistic Algorithms for

Shading and Rendering Structured Particle Sytems. Proceedings of

SIGGRAPH'85, San Francisco, California, July 22-26, 1985. In Computer

Graphics. Vol. 19, No. 3, July 1985:313-322.

Reeves, W. (1983). Particle Systems - A Technique for Modeling a Class of Fuzzy

Objects. Computer Graphics. Vol. 17, No. 3. July 1983:359-375.

Reynolds, C., Flocks, H. and Schools (1987). A Distributed Behavioral Model.

Proceedings of SIGGRAPH'97, Anaheim, California, July 27-31. In Computer

Graphics. Vol. 21, No. 4, July 1987:25-34.

Rogers, R. R. and David, F. (1985). Procedural Elements for Computer Graphics.

New York: McGraw-Hill Book Company.

Rushmeier, H. E. and Torrance, K. E. (1987). The Zonal Method for Calculating

Light Intensities in the Presence of a Participating Medium. In Proceedings of

SIGGRAPH. 1987:293–302.

Sakas, G. (1993) Modeling and Animating Turbulent Gaseous Phenomena Using

Spectral Synthesis. Visual Computer. Vol. 9. 1993:200–212.

Samek, M., Slean, C. and Weghorst, H. (1986). Texture Mapping and Distortion in

Digital Graphics. The Visual Computer. Vol. 2, No. 9. 1986:313-320.

Schpok, J., Simons, J., Ebert, D. S. and Hansen C. (2003). A Real-Time Cloud

Modeling, Rendering, and Animation System. Eurographics/SIGGRAPH

Symposium on Computer Animation. The Eurographics Association. 2003:160–

166.

 104

Segal, M. and Akeley, K. (2001). The OpenGL Graphics System: A Specification

(Version 1.3). http://www.opengl.org.

Sims, K. (1990). Particle Animation and Rendering Using Data Parallel

Computation. Proceedings of SIGGRAPH'90, Dallas, Texas, August 6-10, 1990.

In Computer Graphics. Vol. 24, No. 4, August 1990:405-413.

Srivastava, R. C. (1967). A Study of the Effect of Precipitation on Cumulus

Dynamics. Journal of the Atmospheric Sciences. Vol. 24. 1967:36-45.

Stam, J. (1999). Stable Fluids. Computer Graphics (Proceedings of SIGGRAPH

1999). ACM Press. 1999: 121-128.

Stam, J. (1995). Multiple Scattering as a Diffusion Process. In Proceedings of the 6th

Eurographics Workshop on Rendering. 1995:41–50.

Stam, J. and Fiume, E. (1995a). Dipicting Fire and Other Gaseous Phenomena Using

Diffusion Processes, Proc. of SIGGRAPH'95, 1995, 129-136.

Stam, J. and Fiume, E. (1993). Turbulent Wind Fields for Gaseous Phenomena.

Proceedings of SIGGRAPH. Anaheim, California. 1993:369–376.

Stam, J. and Fiume, E. (1991). A Multiple-Scale Stochastic Modeling Primitive.

Proceedings of Graphics Interface. Calgary, Alberta. 1991: 24–31.

Steiner, J. T. (1973). A Three-Dimensional Model of Cumulus Cloud Development.

Journal of the Atmospheric Sciences. Vol. 30. 1973:414-435.

Takeda, T. (1971). Numerical Simulation of a Precipitating Convective Cloud: the

Formation of a “Long-Lasting” Cloud. Journal of Atmospheric Science. Vol. 28,

1971:350–376.

Trembilski, A. (2002). Surface-Based Efficient Cloud Visualisation For Animation

Applications. Proceedings WSCG 2002.

 105

T'so P. and Barsky, B. (1987). Modeling and Rendering Waves: Wave-Tracing

Using Beta-Splines and Reflective and Refractive Texture Mapping. ACM

Transaction on Graphics. Vol. 6, No. 3, July 1987:191-214.

Vince, J. (1995). VirtualRreality Systems. Singapore:Addison-Wesley.

Voss, R. F. (1983). Fourier Synthesis of Gaussian Fractals: 1/f Noises, Landscapes,

and Flakes. In SIGGRAPH: Tutorial on State of the Art Image Synthesis. ACM,

SIGGRAPH. Vol. 10. 1983.

Westover, L. (1990). Footprint Evaluation for Volume Rendering. SIGGRAPH.

1990:367-376.

Willis, P. J. (1987). Visual Simulation of Atmospheric Haze. Computer Graphics

Forum. Vol. 6, 1987:35-42.

Wilson, O., Van Gelder, A. and Wilhelms, J. (1994). Direct volume rendering via 3D

textures. Technical Report. UCSC-CRL-94-19. University of California at Santa

Cruz.

APPENDIX A

 106

CLOUD MACROSTRUCTURE EDITOR

In order to design cloud shapes easily, an interactive cloud editor – cloud

macrostructure editor has been developed. GLUI controls have been used to

develop intuitive and easy to use user interface for this editor. The main window is

used for visually placing cubes forming the shape of clouds. The other two

accompanying sub-windows hold the various function controls for performing

various task related to create cloud shapes.

Followings are the features of cloud editor:

1. GLUI controls have been used to develop this editor.

2. The main window is used for visually placing cubes forming the shape of

clouds.

3. The other two accompanying sub-windows hold the various function controls

for performing various task related to create cloud shapes.

4. The user interface is very intuitive and easy to use.

5. Any novice user can easily use it to define high-level appearance of clouds.

The controls have been grouped into four general groups;

1. Viewing parameters.

2. Global rendering parameters.

3. Cloud media shape controls.

4. File manipulation controls.

Figure A1 shows the snapshot of cloud editor.

 107

 Figure A1: Snapshot of Cloud Editor

As shown in Figure A1, when the modeling system selected in cloud editor is

Texture, then the following groups of control are provided to work with clouds:

 Files.

 Cubes.

 Texture Option.

 Scale.

 Move.

 View

When the option selected is Particle System then the following groups of control

are provided to work with clouds (see Figure A2):

 Files.

 Cubes.

 Particle Option.

 Scale.

 108

 Move.

 View

 Figure A2: Snapshot of Cloud Editor using Particle System

To design cloud shapes, the designer can add cubes by pressing ‘Add Cube’

button from the control group named as ‘Cubes’. He can also delete any specific

cube or all cubes at once by using ‘Delete’ or ‘Delete All’ buttons.

Figure A3 shows the snapshot of cloud editor showing cubes. The cube in red

color is active and its attributes such as size and location can be changed by using

various controls.

After adding cubes to model cloud shapes, selecting textures with each cube,

selecting number billboards for each cube, and etc, the designer can preview the

clouds in the same window.

 109

 Figure A3: Cloud Editor in action – Adding cubes to shape clouds

In the following, Figure A4 shows the snapshot of cloud editor showing

textured clouds by using three cubes as shown in Figure3 above.

 Figure A4: Cloud Editor showing textured clouds

 110

In order to model clouds for particles system, Figure A5 and Figure A6 show

arrangement of various cubes having varying sizes and randomly placed at different

locations in 3-D space.

 Figure A5: Designing cloud shape for particles system

 Figure A6: Designing cloud shape for particles system

 111

Figure A7 and Figure A8 below show clouds modeled according to shapes

designed by cloud editor as listed in Figure A5 and Figure A6, using particles

system. The designer can add any number of cubes to model the exact shape of

clouds he wants to create.

 Figure A7: Cloud modeled with 554 particles

 Figure A8: Cloud modeled with 615 particles

