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Abstract 

  
Coupled fibers are successfully fabricated by injecting hydrogen flow at 1bar and heating torch flame 

in the range of 800-1350C. During the fusion process some optical parameters are not clear due to vary. 
For empirical and theoretical calculation, coupling coefficient and refractive index have been estimated 

from experimental result of coupling ratio distribution from 1% until 75%. The change in structural 

and geometrical of fibers affects normalized frequency even for single mode fiber. Coupling ratio as 
the function of coupling coefficient and separation of fiber axis also changes the normalized frequency 

at coupling region. The normalized frequency is derived from the radius, the wavelength and the 
refractive index parameters.  Parametric variations are performed on the left and right hand side of the 

coupling region. At the center of the coupling region, coupling length splits the power to another fiber 

where the normalized frequency is assumed to be constant.  A partial power is modeled and derived 
using normalized frequency (V), normalized lateral phase constant (u), and normalized lateral 

attenuation constant, (w) through the second form of modified Bessel function of the l order, which 

obeys the normal mode, LP01 and normalized propagation constant (b). Total power is maintained 
constant in order to comply with the energy conservation law. The partial power gradient affected by V, 

u and w are integrated along z direction coupling region. The model is solved over the pulling length in 

the range of 7500-9500μm for 1-D where the radial and angle directions were ignored for a scalar 
magnitude. The core radius of fiber significantly affects normalized frequency and power partially at 

coupling region rather than wavelength and refractive index of core and cladding.  This model can be 

compared to application of power transmission and reflection of coupled fibers in industrial application.  
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1.    Introduction 

 
   Although the coupling ratio research has shown good progress in the experimental and 

theoretical calculation; coupled waveguide fibers still have power reflection and power 

losses due to effects of fabrication. Coupling fiber fabrications do not only consider a 

source and waveguide but also involve some parametric function that emerges along the 

process when information transfer to fibers occurs 1. This resulted in a complicated 

problem, particularly at the junction as the electric field and power are affected by the 

waveguide, the structure and the geometry of the fiber itself. Nowadays, developments of 
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those are investigated to obtain good resolutions in transmitting power after passing the 

junction.  Coupled fiber using some junctions at near field distances has more effect of 

reflection to communication. The loss of transmission power is significant especially in 

delivering the power ratio. One of the main phenomena occurring to the optical couplers, 

as coupling of mode in space 2 which contributes to power propagation along the coupled 

fiber is coupling coefficient. Coupling coefficient can be expressed as an effective power 

range that transmits from one fiber to another 3. The separation between the two fibers is 

significant in coupling coefficient as it determines the effective power transmission from 

one fiber.  

 
A fusion process changed the structures and geometries of coupled fibers at the 

coupling region. These changes are complicated as the refractive indices and fiber 

geometries are made uncertain due to the coupling ratio effect 4. However, they tend to 

decrease along the fibers from one edge to the center of the coupling region and again 

increase to the other. It also occurs to the wave and power propagation partially at the 

propagation direction but total power obeys law of energy conservation. Power 

transmission depends on a distribution of coupling ratio having a fractional power which 

mainly occurs at the coupling region. The coupling region itself has three regions based on 

the core and cladding geometry which is situated at the left, center and right. At the center 

of the coupling region, is where the main coupling occurs as the power propagation splits 

from one core to another through the cladding.  

 
The waveguide carrying electric field is a single mode fiber (SMF) which is coupled 

by two fibers with the same geometry 1X2 splitting one source to become two 

transmission lines as Y junction. The structure is assumed to be homogeneous, isotropic 

materials and with very small gradient of refractive index along the propagation. The 

fibers are approximately heated with a slightly unstable torch within a temperature range 

of 800-1350C. A laser diode source λ =1310nm is used to guide a complete power transfer 

in a distance of z. The coupling ratio set cannot determine that the cladding diameter is 

constant even though the LP01 diameter position has been achieved. It is of course, the 

decrease of the refractive index at the junction fibers is due to effects of fiber structure and 

geometry by pulling them at a coupling region, while the 2 cores distance is closer than 

the radius of those two claddings 5. The SMF-28e® core after fusion is reduced from 

80.5% to 94% 6. A half distance of pulling length of fiber coupler increases significantly 

over the coupling ratio. The coupling length increases over coupling ratio due to the 

longer time taken at the coupling region by a few ms to reach a complete coupling power.  

 
In obtaining a good coupling ratio, the experimental result should meet the power 

transmits at the coupling region with a larger coupling length than the coupling. In the 

range of 0.6-0.9/mm 6 the coupling coefficient exists along it as the coupling ratio 

increases. It is assumed that the power transmission and coupling occurs during the fusion 

and fluctuating some parameters such as twisting fibers, fibers heating, and refractive 

index changes 6,7 which cannot be controlled easily in measurement. It was experimentally 
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measured to be in the range of 0.9-0.6/mm. This corresponds to the determination of 

refractive index by the empirical equation of the core and cladding which is n1=1.4640-

1.4623 and n2=1.4577-1.4556 respectively for coupling ratio of 1-75% 6. The separation of 

fibers between the two cores was obtained at a mean value of 10-10.86μm 6. It may be 

expressed that the empirical calculation to reach the coupling ratio can be detected and 

imposed by power.  

 
The power propagates along SMF-28e®. It guides only one mode which can be seen 

from the normalized frequency. Normalized frequency depends on the core radius, 

wavelength, and the core and cladding refractive index. To investigate the coupling region 

in the range of coupling ratio, the power is simply derived and modeled. The power 

change and its dependence on normalized frequency parameters were studied. This paper 

describes power gradient as computed from coupling coefficient range and coupling 

region data which is experimentally obtained from the coupling ratio distribution.  

 
2.    Partial Power Gradient 

 
SMF has dominant mode, LP01 with V=2.405. When coupled fibers are being fused 

and pulled, the value changes depending on the wavelength source and material of fibers. 

At coupling region the changes of some optical parameters are due to the structural and 

geometrical properties of the fibers. Fiber sizes are decreased and increased at the left and 

right coupling region. At the center of the coupling region they are assumed to be constant. 

Consider the pulling length of fibers is as follows, 

 
PL= PL1 + PL2 + PL3, 

 
where PL1 = PL3 and PL2=CL (CL is coupling length). 

Power propagation (P) along coupling region can be reflected and transmitted as a 

normalized frequency; where total power input and output must however be conservative. 

Total scalar power can be defined as follows 8: 

 

 

P = C π a2 (V2/u2) [                              ]                                      (2.1) 

 
where C is constant, a is core radius, u is normalized lateral phase constant, w is the 

normalized lateral attenuation constant, K is the second kind of modified Bessel function 

of order l. For a k range species of coupling region, total power can be written as a sum of 

partial power, 
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kP is a gradient function of  P =  P(a,V,u,w), resulting in a 

set of equation in z direction, 
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For simplicity, the first, second and third term of the Eq.(2.2) be respectively noted as 

the following,  
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kP = {[A] x [B]} – [C]              (2.3)

                     
Firstly,  consider {[A] x [B]}  as a function of u, V, and a, where  

 
u2   ≡ (k2n1

2 -  βlm
2)a2 

w2  ≡ (βlm
2 - k2n2

2)a2;   β1= kn1 ; β2= kn2           (2.4) 

V    = (u2 + w2)1/2 = (2πa/λ) (n1
2 – n2

2)1/2 

 
where l and m are the number of mode, β is the propagation constant and k is the wave 

number. The left hand side of Eq.(2.4) have parametric values dependent on the values of  

u=u(a,k,n1,βlm), w=w(a,k,n2,βlm), and V=V(a,n1,n2,λ) 8. The value of βlm is calculated from 

the normalized propagation constant b, which is equal to (β2
lm- β2)/ (β1- β2). Since w is a 

part of K function, then it can be derived by the K function itself. Evaluating these 

functions separately over z direction we find, 

  
 u =[(ak2n1

2da/dz + ka2n1
2dk/dz + n1k2a2 dn1/dz) – (aβlm

2da/dz + βlm a2dβlm/dz)] /(u) 

 

 βlm =[ β2(dβ2/dz) +  blm( β1 dβ1/dz  -  β2 dβ2/dz)] / (βlm) 

 

 V = 2{(π/λ)(n1
2– n2

2)1/2da/dz + πa(n1
2–n2

2)1/2[d(1/λ)/dz] dλ/dz            (2.5) 

          + (2πa/λ) [½ (n1
2 –n2

2)-1/2] (n1dn1/dz - n2 dn2/dz)} 

 
where dblm/dz is expected to be zero, and thus can be ignored. The first and second terms 

of Eq.(2.3) can be rewritten by combining Eq.(2.5) as follows: 
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and, let K function be derived by the first order resulting in, 

 
[C] =  C π a2 (V2/u2)  
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Eq.(2.6) and (2.7) are then combined to have a solution of Eq.(2.3). In order to obtain a 

complete solution, the second kind of modified Bessel function of order l is substituted by 

a recurrence relation for a given function as  

 

)x(K)x(K
x

n
)x('K nnn 1  

 

Then it is finally given by,      
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The Eq.(2.8) can be computed by setting a number of known parameters and 

evaluated within the boundary conditions of coupling region as set in Eq.(2.3). Since the 

total power obeys the conservation law, then  P=0, it can also be applied for each  k  

region,    
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kP  =   {C π a2 (V2/u2) [                                ]} 

 
The subscript of k is (+), (0) or (-) and then  P|+ corresponds to positive gradient 

where the radius of fibers is decreased and negative gradient when the radius of fibers is 

increased at P|-  and PL2, it is assumed that P|0 ≈ 0. For a simplified partial power 

model where the fibers are imposed by setting a temperature and the change of fiber 

properties as homogenous, then at PL1 it is considered that the value of a linearly changes 

as same as n1 and n2 towards the temperature. Meanwhile, the wavelength linearly 

depends upon n1 and n2. These parameter changes are the same at PL3 but with the 

opposite sign. Therefore, the total power is constant, but the partial power is not zero. It 

can be written as the following, 

 
                                          P|+  ≠ 0,   P|-  ≠ 0,  but  for  P|0  ≈  0    

                         

For the range of coupling region where P will be calculated, and to correct 
dz

dP
 for effect 

of change in fibers geometry, Eq.(2.8) can be derived and fix to be a constant value.  

 

Suppose total and derivation of P can be rewritten by  
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Where total  P is not constant, hence 

 

P

1

dz

dP
 =  

z
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where z is the direction. Multiplying both sides with Pk and 
P

1
for normalization of P, 

the Eq.(2.9) becomes 
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In order to keep total P constant, we combine the two terms of Eq.(2.9) and (2.10) for Pk 

obtaining, 
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This formula expresses that during the power propagation at the coupling region, the total 

 P is constant even though Pk change.  For illustration, this model can then be depicted in 

Figure 1.  

 
 
                Torch Flame 

 

 

          
                                                                                        Pa 

 

 

 

          
                                                                                        Pb 

 
              Po     P1     P|+= P1+(dP1 /dz) z    P|0=P2     P|-=P2+(dP2 /dz)z      P1                          z 

 
         Core      Cladding                        PL1              PL2                 PL3 

      

 
Figure 1.  SMF-28e® coupler fiber is heated by H2 gas at the temperature of 800-1350C. The core and cladding 

reduce 75-90% in size after fusion. Total pulling of fibers to the left and right side is in the range of 7500-

9500μm with velocity ≈100μm/s. Pulling is stopped subject to the coupling ratio achieving a setting value.  

 
3.    Integration of Power and Discussion  

 
The values of P partially change at the coupling region are integrated over z direction 

of core radius and a half pulling length.  It is run in Ode45 Matlab platform with a set of 
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input data for refractive index of core and cladding, wave length and initial P. For the 

given values of Eq.(2.4), it shows that at PL1 , the result is as follows: 

 
( a)|+      =  1044.3864  to 796.8127 x 10-6, 

( λ)|+n1   = -0.0006542  to -0.0010101 x 10-9,  

( λ)|+n2   = -0.0008376  to -0.0012823 x 10-9,                      

(n1)|+     =  1.05 to 1.65 x 10-6,   

(n2)|+     =  1.35 to 2.05 x 10-6,                                                        (2.12) 

da/dz  =  7.9681 to 9.0039 x 10-4, dk/dz = 2.3952 to 3.6983,  

                             dn1/dz =  1.05 to 1.65 x 10-6,        dn2/dz = 1.35 to 2.05 x10-6 

                             dβ1/dz =  8.5516 to 13.3419,        dβ2/dz = 9.9779 to 15.2409,   

                            dβlm/dz =  9.2064 to 14.2137,  

                                   u = 322.5195 to 364.4422, 

          V = 475.5291 to 537.3407  

 
These parametric values are result out of the coupling ratio in the range of 1 to 75%. 

It has a function of coupling coefficient and produces the parametric values gradients 

existing in that number range. The value of λo/λ=n moves to decrease along PL1 until it 

meets the coupling length and inversely increases along PL3. The Eq.(2.11) is similar to 

PL3 but the gradient is in the opposite sign.  

 
The graph of P at PL1, as calculated from Eq.(2.11) is the power gradient at the first 

and end of the coupling region as depicted in Figure 2.  

 

 
                      Figure 2. P along coupling region;P =1.18 at first of PL1 and 1.26 at end of PL1   
                      at coupling region z = 3.75x10-3m 



10 

 

Comparing the two curves, it shows that the change of partial P is less than that 

shown at the end of PL1. It shows that end of PL1 has decreased smoothly due to the fact 

of pulling length and heating of fibers at end of PL1. It also meant that the higher gradient 

to reach coupling length results in the more reflection of power to the source fiber and 

crosstalk fiber due to the refractive indices gradient and more loss of power from the core 

to the cladding and to the edge cladding due to the radius gradient.  This result has the 

same values for PL3 but in the negative gradient.  

 
If we assume that partial P is not linear or rather is exponentially decreasing or 

increasing. If it is affected by the function factor P=P(1+e-α) then the radius geometry is 

not proportional to the speed of pulling length and if by the function factor P=P(1-e-α) 

then it means that the fibers are not precisely heated at the center of fibers and the gradient 

of refractive indices will be close to factor 10-3. However, these reasons are negligible, 

since the mechanical process of the fabrication is fixed and the radius change is much 

more significant than the other parameters.  

 
       Table 1. Calculation of partial P in each term of Eq.(2.8) 

 

No. Calculation Result Term 

1 (0.2857 – 0.0546i) to (0.3229 – 0.006171i) I 

2 (0.9899 + 0.5456i)  II 

3 (-7.3511 x 10-4 + 1.45057 x 10-4i)  III 

4 (0.1154 – 0.1875i)  IV,VII 

5 (-0.3056-0.2007i)  V,VII 

6 (0.0177 + 0.6021i)  VI 

7 (0.1154 – 0.1876i)  V,VI,VII 

8 (-0.2169 + 0.4334i)   VIII 

9 (0.3126 + 0.10181i) to (0.3533 + 0.1150i) I and II 

10 (-1.847 x10-5 – 4.0113 x 10-5i)  III to VIII 

11 (0.3126 + 0.1018i) to (0.3533 + 0.1150i) I to VIII 

 
Based on Table I, the results are significantly affected by multiplication of term I and 

II by factor of 10-1 rather than multiplication of term III until term VIII. Before being 

derived, term II is comparable towards term I in contributing the power. In fact, the order 

of l deserves to balance of term I, but term III is too high factor by the order of 10-4, then 

the effect of power gradient is seemingly contributed by term I. The main influence of 

term III is the value of core radius by factor of a2 which similarly occurs in term I. 

However, since term I is a summation operation then it disappears. Therefore, partialP is 

reduced by the value of a and P is otherwise increased by K function of l order in term II. 

In other word, in summation operation, K function is dominant but in reduction operation, 

the value of a is significant. The partial power gradient at PL1 and PL3 make parametric 
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changes to reduce or to add power significantly along coupling region. This calculation 

can also be seen in Figure 3.   

 
As shown by the straight lines in Figure 3, when power gradient is integrated, it 

describes the first PL1 as higher than that of end PL1. The left coupling region is set at z=0  

and lets the power curves move from P input to the output at 3.75 x 10-3mm. This 

phenomena expresses the change of each parameter of P is set nearly linear although the 

actual changes are not obvious. One of the parametric values of P is evaluated linearly 

assumption and gives a significant dependence in changing to both gradient and integral of 

P is radius of core by order 10-3. Refractive indices and wavelength do not necessarily 

have linear impact since refractive indices and wavelength difference are by the order of 

10-6 and 10-9 respectively. Therefore the linear effect is maintained to retain the mode at 

LP01. P input value changes at coupling length position from 1 mW to 0.31mW for one 

core and 0.62mW for two cores. Implicitly it explains that the partial power transmission 

will reduce along the coupling region as the result of refractive indices, core geometry and 

separation of fiber axis between the cores. This partial power results seem to be very 

significant, but actually it decreases or increases partially from one core source radiates to 

its cladding and also to another core and cladding when coupled. 

 
 

 
Figure 3 (a) 

 
 

 
 

 

 
 

 

Power of two cores 



12 

 

 
 
 

 

                                                                                     1mW       z 
                   

                                             1 cladding 

                   
          

             dP/dz                              1 cladding 

  
                                          

                                      0.62mW (2 cores) 

                                                             
 

                                 

               0.31mW (1core) 
                                                           Coupling length 

    

Figure 3 (b) 
Figure 3. P integration over coupling region (power source of one core); 3(a)  

           and Illustration of Power propagation; 3(b) 

 
Table 2 describes the details of parametric value changes along the coupling region. A 

validation of code results is maintained by initial and final P, while at the coupling region 

(excluding coupling length) it is assumed to change linearly.  

 
Table 2. Power parameters of coupled SMF-28e®       

Parameter  at first of PL1  at end of PL1 
 at  
PL2 

 at first of PL3   at end of PL3 

z  0                                 3.75x10-3                     5.42x10-3                           7.5x10-3mm  

λ 0 to 4.5x10-9   (+) 0 to 7x10-9      (+) 0 0 to -7x10-9     (-) 0 to -4.5x10-9    (-) 

a 0 to 1.5           (+) 0 to 2              (+) 0 0 to -2             (-) 0 to -1.5          (-) 

n1,n2 0 to -2.55x10-7 (-) 0 to -3.48x10-7(-) 0 0 to  3.48x10-7(+) 0 to  2.55x10-7(+) 

βlm 0 to 0.035       (+) 0 to 0.054       (+) 0 0 to 0.054       (-) 0 to 0.035       (-) 

u 0 to 1.2           (+) 0 to 1.38         (+) 0 0 to 1.38          (-) 0 to 1.2           (-) 

V 0 to 1.8           (+) 0 to 2              (+) 0 0 to -2             (-) 0 to -1.8          (-) 

Initial SMF-28e®      V= V1 = 2.4506; n1=1.4677 and n2=1.4624;                    and  a= 4.1 x 10-6m 

The initial core and cladding diameter are respectively 8.2μm and 125μm  
C = 6.4032x106 – 1.2245x106i, P=1mW;      Pcladding/Ptotal = 0.1702,                          Pcore/Ptotal = 0.8298,     

After Fusion     V= V2 = 0.9761- 0.3353;      n1=1.4623-1.4640; n2=1.4556-1.4577; and a= 0.5 to 1.5 x 10-6m 

(V, V1 and V2 values are calculated from refractive indices known. The symbol of (+) and (-) indicates positive 
and negative gradient respectively and deal with along each z direction 0 to 3.75 x 10-3mm). 

 

 

 

Power (mW) 
Power in (1mW) Power out 

From first of PL1 to end of PL3 
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4.    Conclusion  

 
Coupling ratio range of 1 to 75% with the range of coupling coefficient at 0.6-0.9/mm 

successfully developed partial power gradient and its integration along the coupling region. 

Normalized frequency and power gradient give significant parametric changes over power 

transmission into fiber at coupling region from the power source of one core. The core 

radius is much more affected to P rather than the refractive indices and wavelength 

although they change linearly.  
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