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ABSTRACT 

 
 
The atmosphere in low latitude regions is of particular interest to GPS researchers 

because the propagation of GPS signals becomes significantly delayed compared with 

other regions of the world. Hence this limits GPS positioning accuracy in equatorial 

regions. Although the atmospheric delay can be modelled, a residual component will 

still remain. Reducing, or mitigating the effect of residual atmospheric delay is of great 

interest, and remains a challenge, especially in equatorial regions.  

 

Analysis of relative positioning accuracy of GPS baselines has confirmed that the 

residual atmospheric delay is distance-dependent, even in low latitude areas. Residual 

ionospheric delay is the largest component in terms of both absolute magnitude and 

variability. However it can be largely eliminated by forming the ionosphere-free 

combination of measurements made on two frequencies. The residual tropospheric 

delay is smaller in magnitude but rather problematic due to strong spatio-temporal 

variations of its wet component. Introducing additional troposphere “scale factors” in 

the least squares estimation of relative position can reduce the effect of the residual.  

 

In a local GPS network, the distance-dependent errors can be spatially modelled by 

network-based positioning. The network-based technique generates a network 

“correction” for user positioning. The strategy is to partition this network correction into 

dispersive and non-dispersive components. The latter can be smoothed in order to 

enhance the ionosphere-free combination, and can be of benefit to ambiguity resolution. 

After this step, both the dispersive and non-dispersive correction components can be 

used in the final positioning step. Additional investigations are conducted for stochastic 

modelling of network-based positioning. Based on the least squares residuals, the 

variance-covariance estimation technique can be adapted to static network-based 

positioning. Moreover, a two-step procedure can be employed to deal with the temporal 

correlation in the measurements.  
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                                                                                                                                Abstract 
 

Test results on GPS networks in low latitude and mid-latitude areas have demonstrated 

that the proposed network-based positioning strategy works reasonably well in resolving 

the ambiguities, assisting the ambiguity validation process and in computing the user’s 

position. Furthermore, test results of stochastic modelling in various GPS networks 

suggests that there are improvements in validating the ambiguity resolution results and 

handling the temporal correlation, although the positioning result do not differ 

compared to using the simple stochastic model typically used in standard baseline 

processing. 
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Chapter 1 

INTRODUCTION   

 
 

1.0 Low Latitude Atmosphere – Research Plan 
 

The Area 

The ‘low latitude’ region can be defined as the area between the Earth’s Tropic of 

Cancer (23.5°N) and Tropic of Capricorn (23.5°S), containing the Equatorial zone (see 

Figure 1.1). The low latitude region is also known as the equatorial region since the 

atmospheric conditions are similar to those of the equatorial zone – largely a region 

without distinctive seasons of the year. This region experiences tropical and sub-tropical 

climate, is in many ways unique for researchers interested in the Earth’s climate and 

space weather. 

 

Figure 1.1 The Earth’s imaginary lines (map sourced from: http://www.worldatlas.com). 

 

In the low latitude region the elevation angle to the Sun remains relatively high. The 

area is therefore exposed to intense sunlight all year round, with the temperature ranging 

from 20°C to 35°C (except in the desert areas). As a general rule, the warmer the air, the 

more water vapour it can hold. As the air rises due to temperature difference, 

condensation occurs and the vapour forms droplets and clouds, to ultimately produce 

http://www.worldatlas.com/
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rain. The low latitude region, especially around the Equator, therefore often gets heavy 

rainfall. The minimum annual precipitation is normally around 2,000mm and the 

relative humidity frequently exceeds 70%.  

 

The Rationale 

Abundant water and sunlight help trees produce plentiful oxygen that is vital for life on 

Earth. Many have claimed the tropical rainforests in low latitude region are essentially 

the Earth’s ‘lungs’. However, there is not much scientific evidence to support this claim 

(Broecker, 2006). Figure 1.2 shows typical scenery in the unique rainforest of Malaysia 

- one of the oldest tropical rainforests in the world. 

 

 

Figure 1.2 Scenery of the protected Tropical Rainforest in Malaysia. Top: The largest (16.75 

metre in diameter), the tallest (65 metre) and the oldest (1300years) ‘Cengal’ trees in 

Terengganu; Middle: The world’s longest canopy walk (500m) located in National Rainforest 

Park, built 40-50 metres above the ground; Bottom: The ‘humid’ tropical rainforest in Pahang. 

(sourced from: http://www.forestry.gov.my and http://www.journeymalaysia.com).   

 

The Earth’s weather and climate is heavily influenced by the amount of water vapour 

and other greenhouse gases in the lower part of the (neutral) atmosphere known as the 

 2
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troposphere. An increase of temperature leads to increased evaporation. The troposphere 

can sustain large volumes of water vapour, which in turn traps radiant energy. This 

trapped radiation causes temperatures to increase and hence to create more warming. 

This is known as the Greenhouse Effect. (The Greenhouse Effect is a natural process of 

the Earth however human activity contributes to this effect as well). 

 

In 2005, the World Meteorological Organisation and Global Atmospheric Watch 

(WMO-GAW), a United Nations (UN) organisation, released a report on global 

greenhouse gases, notably carbon dioxide (CO2) and nitrous oxide (N2O) (Ref: 

http://www.wmo.int/web/arep/gaw/ghg/ghg-bulletin-en-11-06.pdf). This report 

confirmed that greenhouse gases have reached new highs, with CO2 at 379.1 parts per 

million (ppm) and N2O at 319.2 parts per billion (ppb) - these values being higher than 

those in pre-industrial times. Moreover, WMO-GAW has indicated that from 1990 to 

2005 the atmospheric radiation forced by all long-lived greenhouse gases increased by 

21.5%. In fact, this is the most worrying fact for many scientists, who have debated 

global warming, climate changes and increased greenhouse gas emissions for over a 

decade (see www.davidsuzuki.org).  

 

On the other hand, without water vapour and the other greenhouse gases planet Earth 

would be much colder. Since the atmosphere in the low latitude region contains large 

amounts of water vapour it contributes to many meteorological phenomena, such as 

tropical storms, and the El Niño and La Niña (in the Equatorial Pacific). Therefore 

serious attention has been focussed on this area. Recently the WMO has established the 

Tropical Meteorological Research Programme (WMO-TMRP) with the objective to 

improve our understanding of the physical processes of tropical systems. 

 

In the atmosphere zone above the troposphere, the layer containing free electrons is 

known as the ionosphere. Here the solar radiation (predominantly ultra-violet radiation) 

causes ionisation. The ionosphere is important for studying the space weather which is 

mostly affected by solar phenomena such as solar flares, coronal holes, and coronal 

mass ejections which cause strong geomagnetic storms on Earth (Coster et al., 2003). 

The highest total electron content (TEC) values, the strongest large-scale gradients of 

TEC and the greatest ionospheric disturbances are typically observed at about 30° on 

 3
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either side of the Earth’s magnetic equator (Wanninger, 1993). Figure 1.3 is a plot of the 

global TEC value during the latest ‘solar maximum’ year in 2002. In the low latitude 

region, the ionospheric scintillations generally occur during the period of very high 

solar activity, causing significant problems for radio astronomers. Ionospheric 

scintillations can cause unpredictable changes in the amplitude and phase of the radio 

signals that pass through the ionospheric layer. Even during a ‘solar minimum’ period, 

the low latitude region still has significantly larger TEC values compared to other 

regions.   

 

 

Figure 1.3 High TEC values in the low latitude region. “The Global Ionospheric Map 
(GIM) is generated at the Jet Propulsion Laboratory, California Institute of Technology, 
using GPS data collected from the global network of the International GPS Service for 

Geodynamics (Ref.: http://iono.jpl.nasa.gov/index.html)”. 
 

Satellite Positioning Problems 

Currently, the United States Global Positioning System (GPS) is the only global 

satellite-based radio positioning (and timing) system with a full constellation, ensuring 

at least four (usually more) satellites are visible above the local horizon anywhere on 

Earth, at any time of the day. The satellites are used for positioning activities in static or 

kinematic mode, in (near) real-time or post-mission mode, to address a whole range of 

applications including military and security use, surveying and mapping, earth sciences, 

land and maritime transportation, aviation, agriculture, tsunami alert, wildlife 

monitoring, recreational activities, and many more. There is also a growing interest in 

 4
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the study of the interaction between the GPS signals and the atmosphere for Earth 

weather and climate and space weather research. 

 

One of the major concerns for GPS users in the low latitude region is the effect of 

Earth’s atmosphere on positioning. This is because of atmospheric propagation delay on 

the GPS signals due to the ionospheric and the tropospheric layers. In the worse case 

scenario, strong ionospheric scintillation can cause GPS receivers to lose lock, or 

receivers are not able to maintain lock for prolonged periods of time (Wanninger, 1993; 

Leick, 2004). Moreover, the large amount of water vapour also affects the propagation 

of GPS signals through the troposphere. In GPS surveying and other high accuracy 

positioning applications, ‘double-differencing’ is the preferred technique to cancel out 

the effect of the atmospheric delay and other spatially correlated errors. This 

differencing technique is less effective in low latitude areas since the residual 

atmospheric delay could complicate the positioning process.   

 

The Challenge  

Since the conditions in the atmosphere vary both spatially and temporally, it is 

important to analyse the quality of positioning results in many places and at different 

times. In low latitude regions the atmosphere is very active and still little understood 

from a GPS point of view. Hence understanding the complex physical and chemical 

processes of the Earth’s atmosphere could be improved by intensive research in the low 

latitude region, providing a challenge for both atmospheric studies and precise 

positioning activities. 
 

 

1.1 Motivation for Research 
 

1.1.1 The Continuously Operating Reference Stations  

 

Over the last decade GPS Continuously Operating Reference Stations (CORS) have 

been deployed around the world to support high accuracy positioning applications. 

CORS may be operated as an individual station, typically as the base station for GPS 

baseline surveying. However, in most cases nowadays, CORS are operated as a 

 5
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permanent network, providing opportunities to enhance the functionality of these 

reference stations in many aspects of operations (see Marel, 1998). A good example is 

the global network of the International GNSS Service (IGS) and their products (IGS, 

2005). Figure 1.4 shows the location of many of the reference stations that make up the 

IGS network. Note that there are comparatively few IGS stations in the low latitude 

region. Recently the establishment of a few CORS in the Equatorial region has offered 

the opportunity to research the atmospheric effects on GPS in this area. These CORS 

are typically part of independent regional GPS networks with baseline lengths up to 

hundreds of kilometres. Combined with the IGS stations, the regional network can 

supply valuable GPS data to be analysed, and therefore contribute to greater 

understanding of the behaviour of the low latitude atmosphere.        

 

 
Figure 1.4 The IGS tracking stations (sourced from: 

http://igscb.jpl.nasa.gov/network/netindex.html). 

 

1.1.2 The Local CORS & Network-Based Positioning  

 

The shortcoming of IGS and regional networks is that their coverage is not dense 

enough to be sensitive to small-scale errors, and therefore they do not meet the 

requirements for GPS surveying in the area. At present, many countries have developed 

their own local GPS networks that extend over tens of kilometres. Carrier phase-based 

positioning by combining and interpolating (or extrapolating) measurements from a 

local network of reference stations is often referred to as “network-based positioning”. 
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Figure 1.5 illustrates the benefits of using the network-based positioning approach. 

Network 
Multiple 

Single 

 
Figure 1.5 From single to multiple reference stations and from single-base to network-

based positioning. 

 

The single-base reference station approach provides a coverage of 10km or less for 

carrier phase-based positioning – related to the effectiveness of cancelling the spatially 

correlated errors using double-differencing techniques - in particular the atmospheric 

delay and GPS satellite orbital errors are distance-dependent (i.e. increase with the 

baseline length) (Beutler et al., 1988; Georgidaou & Kleusberg, 1988). Although a 

priori models and data differencing mitigate the errors, the residuals still distance-

dependent. On the other hand, multiple reference stations cover a larger area because 

network-based positioning can model, to a greater or lesser extent, the distance-

dependent residual errors.  

 

The concept of carrier phase-based network-based positioning is very similar to so-

called ‘wide area’ differential GPS (WADGPS), in a sense that both techniques generate 

‘network corrections’ to a user’s measurements. WADGPS provides regional coverage 

by utilising pseudorange code-based corrections to deliver the metre-level relative 

accuracy. On the other hand, the network-based positioning is an efficient way of 

improving long-range ambiguity resolution (AR), when reference station separations are 

many tens of kilometres, which is a key step for centimetre-level positioning (Han & 

Rizos, 1996a; Racquet, 1998; Wanninger, 1995; Wübenna et al., 1996). Network-based 

positioning may be implemented in static, rapid-static and kinematic positioning modes, 

and in (near) real-time or post mission operational modes.  

 

Although research on network-based positioning algorithms has been underway over the 
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last decade, and some commercially available network processing products, there is still 

room for improvements. One can partition the ‘network corrections’ into dispersive 

(ionosphere-related) and non-dispersive (troposphere- and orbit-related) components 

according to their dependency on the GPS signal frequencies. The dispersive and non-

dispersive correction components exhibit different variations. By understanding the 

behaviour of distance-dependent errors (e.g. from residuals analysis), appropriate 

modelling can improve the quality of the corrections. Moreover, dispersive and/or non-

dispersive corrections can be applied to various GPS measurement combinations, and 

hence benefit the user processing in many ways. This option is not available if ‘lumped’ 

(i.e. combined dispersive + non-dispersive) corrections are used.         

 

Unlike the case of the functional model for network-based positioning, research on the 

associated stochastic models is still in its infancy. Even for the single-base reference 

positioning technique discussions in the research literature on the stochastic properties 

of GPS measurements are comparatively limited. Such stochastic models could be 

adopted, as a starting point, to aid in understanding the stochastic properties of network-

based positioning. It is also desirable to find out whether applying such sophisticated 

stochastic models does improve the positioning process, and the quality of the results of 

network-based positioning.   

 

 

1.2 Research Statements & Objectives 
 

Atmospheric delay is very important accuracy limiting factor in GPS carrier phase-

based positioning and low latitude areas are regions of strong atmospheric conditions. 

Atmospheric delay is a distance-dependent error in differential carrier phase-based 

positioning. Although it can be reduced somewhat by applying an a priori model, there 

remain considerable distance-dependent residual errors. Distance-dependent residual 

errors can be spatially modelled by carrier phase network-based positioning 

techniques.   

 

The objectives of this research are therefore:  

• To analyse the distance-dependent residual errors on GPS baselines in low 
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latitude regions,  

• To investigate the residual tropospheric delay on GPS baselines in low latitude 

regions, 

• To develop a processing strategy for network-based positioning that can account 

for the distance-dependent residual errors, and 

• To investigate the stochastic modelling for static network-based positioning. 

 

The analysis of distance-dependent residual errors is essential in a sense that it provides 

the general background to the whole study. Since the distance-dependent residual errors 

vary spatially and temporally, they have been intensively studied by many investigators 

(Alves et al., 2006; Chen, 2001; Dai, 2002; Vollath et al., 2003; Wanninger, 1993; 

Wübenna et al., 1996). Moreover, the analysis will provide the basic knowledge for 

subsequent attempts to model the distance-dependent residual errors. The analysis for 

the effect of distance-dependent residual errors on GPS baselines was first conducted 

with some theoretical experiments. Next, the analysis of time-series of double-

differenced residuals on three baselines in a low latitude region was conducted.  

 

The investigation into the effects of regional tropospheric delay on GPS baselines was 

conducted using a network of CORS in South-East Asia. Since these CORS produce 

dual-frequency measurements, the linear combination of L1 and L2 can produce the 

‘Ionosphere-Free’ (IF) observables. By using the precise GPS orbits during processing, 

the residuals of the IF combination are assumed to be dominated by the tropospheric 

delay. The investigation includes a performance analysis of a priori troposphere models 

and the effect of residual tropospheric delay on GPS station coordinates during the 

monsoon and inter-monsoon seasons. Additionally, the estimation of troposphere zenith 

path delay (ZPD) is conducted using the regional and local GPS network during the 

monsoon period.  

 

A processing strategy for network-based positioning is proposed that uses the IF 

measurement combination and an existing network-based algorithm known as Linear 

Combination Method (LCM). The ‘smooth’ non-dispersive network correction is used 

to improve the residuals of the IF combination, and therefore indirect ambiguity for 

GPS L1 and/or L2 measurements can be resolved via various inter-frequency 

combinations such as the widelane and the narrowlane observables. Once the indirect 
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L1 ambiguity is resolved it can be removed from the original (double-differenced) L1 

measurements. Finally, the dispersive and non-dispersive corrections can be applied in 

the positioning step. Data from CORS networks in mid-latitude and low-latitude areas 

were tested. The proposed processing strategy was tested in post-mission mode, but 

could be considered a ‘simulated’ real-time kinematic (RTK) mode. 

 

The investigation into stochastic modelling for static network-based positioning was 

conducted by the variance-covariance estimation technique known as Minimum Norm 

Quadratic Unbiased Estimation (MINQUE). MINQUE uses the least squares residuals 

as the indicator with the assumption that it contains sufficient information to reflect the 

presence of the (residual) biases and measurement noises. In addition, the stochastic 

model can be applied in a two-stage process to transform the measurements into a set of 

new observables which should be free of temporal correlation. Tests were conducted 

using various GPS CORS networks.  

 

 

1.3 The Research Scope 
 

The experiments in this research were conducted using data from several CORS 

networks. The main reason for using such a data source is to assume that the station-

dependent errors, such as hardware-related errors, multipath, and measurement noises, 

are at a minimum. This assumption is reasonable because CORS usually have a good 

positioning environment, geodetic-quality receivers are used, the antennas are robust 

against multipath, and an open sky view is guaranteed.  

 

Although the main focus is the low latitude region, GPS data from mid-latitude sites 

were also tested.  

  

Since the tests of network-based positioning are conducted in a simulated RTK mode, 

problems could occur if the user receiver does not remain stationery for a sufficient 

period of time for initialising the RTK process. The main reason is that the assumption 

of minimal station-dependent errors is no longer true. The station-dependent errors 

influence AR, even though distance-dependent errors can be reduced by the network-
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based positioning technique.  

 

 

1.4 Contributions of the Research 

 
The contributions of this research can be summarised as follows: 

 

1) Analysis of distance-dependent residual errors in a low-latitude region has been 

carried out. 

 

2) A comprehensive analysis of the regional tropospheric delay has been carried 

out in the South-East Asia area. 

 

3) A new processing strategy for user network-based positioning has been 

developed based on the residuals after the IF measurements and network-based 

algorithm are applied. 

 

4) A ‘realistic’ stochastic model has been adapted to the static network-based 

positioning. 

      

 

1.5 Outline of Thesis 
 

This chapter provides a background on the low latitude atmosphere, and argues why the 

Equatorial area should be a focus for Earth’s atmospheric study in order to enhance the 

GPS positioning quality. Motivation, objectives, and the contributing factors for this 

research work are outlined. 

 

Chapter 2 reviews some of the important concepts and topics that are frequently 

referred to and discussed in this research. There are four major issues: 1) background 

information about the GPS signals and mathematical modelling of the satellite-receiver 

ranges, 2) GPS signal propagation through the atmosphere, and its effect in general, and 

appropriate mathematical models to deal with it, 3) techniques of GPS positioning, and 
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4) details about relevant processing aspects of relative GPS positioning. 

 

Chapter 3 discusses the effect and the residual analysis of distance-dependent errors on 

GPS baselines, and introduces the concept of long range AR. The basis for long range 

AR is explained via various GPS artificial measurements.  

 

Chapter 4 presents some case studies of the effect of regional tropospheric delay in the 

South-East Asia area on GPS positioning. The performance of a priori tropospheric 

models and the precision of station coordinates are addressed using GPS data collected 

during monsoon and inter-monsoon seasons. Issues such as the estimation of ZPD using 

regional and ‘local’ GPS CORS network data during the monsoon season are discussed 

as well.  

 

Chapter 5 presents background to network-based positioning, and the conventional 

network-based algorithm that is used in the study, followed by a new proposal for a 

network-based processing strategy. Tests were conducted for two CORS networks, one 

located in a mid-latitude region and the other in a low latitude region. 

 

Chapter 6 presents background to the quality indicators that are often used in the 

‘realistic’ stochastic model. The mathematical background of variance-covariance 

estimation by MINQUE is highlighted and adapted to the network-based positioning 

technique. The extension of the conventional stochastic model into a two-stage process 

is discussed in order to permit the handling of the temporal correlation of GPS 

measurements.  

 

Chapter 7 summarises the research findings, draws some conclusions, and suggests 

recommendations for future research. 
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