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Abstract 

 
Generally, high operational cost is associated with all water supply system. This is as a result of the 

high amount of electric energy consumption ascribed to the system due to its components. The water 

supply system of the Mara-Japan Industrial Institute (MJII), Beranang, Selangor is one of such system 
that suffers this challenge of high operational cost. In this paper we have applied the use of an Adaptive 

Weighted Sum Genetic Algorithm to optimize the system operations such that it minimizes the high 

energy consumption as well as ensuring the overall reliability of the water level in the reservoir.  The 
results obtained from the optimized model of the system show a promising and a significant reduction 

to the tune of 34.97% in the amount of energy consumed as compared with that of normal operations. 
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1.0  INTRODUCTION 

 

Water Supply system plays an important role in an urban 

infrastructure, as it is responsible for the effective supply and 

distribution of water from one point to another till it gets to the 

end users. Generally, the system design is such that it satisfies the 

end user demand requirements as well as some operational 

objectives aimed at attaining and satisfying some performance 

level in the system. As the end user demand increases the over 

complexity of the system increases making the system a complex 

one to deal with [1].  

  The conventional water supply system (WSS) is equipped 

with numerous high cost and high energy consuming components 

such as the heavy duty electric pumps, elevated tanks different 

and varying size of pipeline network and a times a treatment 

facility.  These pumps have either the same sizes or otherwise 

depending on their locations or functions within the system and 

they are used to convey water to and fro various location within 

the station and down to the end user.  

  Characteristically, the water supply system has a high 

operational cost associated with it as a result of the operations of 

the high energy consuming components in it. Specifically, these 

electric  pumps consumes significantly high amount of energy as 

a result of the nature of work they do, their power rating  and 

coupled with the electric tariff than any other component of the 

water supply system [1, 2]. According to research, these pumps 

accounts for about 43% of the entire energy of the station, which 

cumulatively results into a high amount of energy consumed. 

Furthermore,  about €700 Million is  been  expended on pumping 

activity of the water supply system in the United Kingdom , about  

30 to 50 percentage of the overall expenditure of the water supply 

system in China is paid on electric energy consumption of the 

components used for pumping of the water [3, 4].   

  Thus, in order to make the water supply system more 

economically reliable, there is a need for the optimization of the 

system in terms of reduction or minimization of the operational 

cost of the system which could be in terms of the energy cost, 

treatment and maintenance costs and still been able to satisfy the 

demand requirements of the consumers.   In the optimization of 

the system, numerous approaches have been employed such as 

pumping of less water, lowering the head against which water is 

delivered and scheduling the operations of the pump to 

concentrate more pumping activity to concentrate more during 

less expensive  tariff period. 

  Of all the aforementioned approaches, the scheduling 

operations  of the pumps has proven to be the most reliable and 

viable means of achieving a reduced operational cost without 

necessarily making changes to the system infrastructure [1]. 

Pump scheduling involves the process of selecting the right 

combination set of pumps within the system to operate at a 

specified time in order to meet the desired objective. Hence, a 

pump schedule is the set of all pump combinations chosen for all 

time intervals of within the scheduling horizon which must satisfy 

particular objective (such as energy and or maintenance cost) for 
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which it was created while fulfilling  the physical and system 

requirements [1, 4]. 

  In optimizing the pump schedule emphasizes is most often 

laid on the need to minimize the cost of the electric energy [4-6] 

alongside other objectives such as maintenance cost [4], 

maximum peak [4] and environment protection [2].  The energy 

cost composes of the demand charge (KW) which price is fixed 

over a period of time and the energy consumption charge (KW-

h) whose price varies depending on the time of the day divided 

into the peak and off-peak period. The maintenance cost is 

associated with cost of maintaining the wear and tear developed 

as result of switching the pumps on/off.  

  Various classical techniques of optimization such as linear 

programming [7, 8], non-linear programming [9, 10] and 

dynamic programming [11, 12] have been applied to the problem 

of creating optimal pump schedule for the water supply system. 

However, these techniques may not be suitable for all types of 

system and also as the complexity and constraints of the system 

increases, applying these techniques becomes challenging and 

difficult. Thus, with the advancement in computational 

intelligence specifically in the field Genetic Algorithm (GA), its 

use to solving the problem of creating optimal pump scheduling 

for the water supply system  and also resolving the challenges 

arising from the use of the classical optimization techniques as 

been on the increase. 

  In this paper, we adopt a special type of Genetic Algorithm 

based on the weighted sum approach known as the Adaptive 

Weighted Sum Genetic Algorithm (AWGA) [13] to create an 

optimal pump schedule for Mara-Japan Industrial Institute (MJII) 

Selangor water supply station aimed at minimizing the 

operational cost in terms of the energy consumption and also 

maintaining a reliable reservoir water level thus satisfying the 

system constraints. The Adaptive Weighted sum Genetic 

Algorithm (AWGA) is based on the weighted sum approach of 

the Genetic Algorithm and it is designed such that the information 

of the fitness functions is used to determine and readjust the 

weights on every generation of the Genetic Algorithm process.   

The remaining part of this work is divided into four (4) sections. 

Section II focuses on the description of the case study system and 

its modeling. The detailed description of the proposed AWGA 

technique is presented in Section 2. Section 3 discusses the results 

obtained and Section 4 concludes the paper.  

 

 

2.0  METHODOLOGY 

 

2.1  System Model 

 

MJII pumping stations consist of two pumps that work in parallel 

to deliver water into an elevated reservoir, from where it supplies 

the end user consumers by gravity. Figure 1, shows an 

approximated model of the MJII water supply system where   𝑃1 

and 𝑃2  are the two operational pumps. The pumps works operates 

based on sequential command received from control consul inside 

the control room of the station.  

  The system model is approximated such that the pump 

characteristic parameters such as the power rating and flow rates 

are assumed to be fixed over the scheduling period. While the 

reservoir is defined to have an initial level  ℎ𝑖𝑛𝑡  that corresponds 

to the start level of water in the reservoir and must be recovered 

at the end of the optimization period.  The ℎ𝑚𝑎𝑥  and  ℎ𝑚𝑖𝑛  levels 

corresponding to the maximum and minimum level respectively,  

above and below which the water level in the reservoir must not 

exceed at any point in time during the optimization period. The 

goal is to maintain the level between the minimum and maximum 

level by putting the initial level ℎ𝑖𝑛𝑡 into consideration.  

Figure 2 shows the water demand profile per hour for a day. Data 

is obtained through statistical study of the water consumption 

level of the  MJII over a period of time and the obtained average 

is as presented as the demand profile.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1  System Model 

 
Figure 2  The water demand profile 

 

 

2.1.1  Electrical Energy Cost 

 

The electrical energy cost of the water supply system is the cost 

of electric energy consumed by the operating pumps in the system 

influenced by power rating of the pumps and also electric charge 

tariff plan by the energy utility company. The consideration of the 

demand charge (KW) is ignored in this study as it does not 

significantly increases or reduces the cost of energy due to the 

fact that it is fixed over a long period. Hence only the 

consumption charge (KW-h) is considered which is based on the 

tariff plan. The electric charge tariff varies between off-peak and 

peak period based on the following structure: 
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a) Low cost: (𝐶𝑒𝑙): from 0:00 to 08:00 hour and from 

22:00 to 24:00 hour (20% Discount of Normal Electric 

tariff rate). 

b) High cost: (𝐶𝑒ℎ): from 08:00 to 22:00 hour (Normal 

Electric Tariff Rate). 

 

The mathematical expression of electric energy cost  𝐸𝑐  is 

defined by Equation (1) [13]. 

 

𝐸𝐶 = 𝐶𝑒𝑙 ∑ 𝑒(𝑝𝑗)

8

𝑗=1

+ 𝐶𝑒ℎ ∑ 𝑒(𝑝𝑗)

22

𝑗=9

+ 𝐶𝑒𝑙 ∑ 𝑒(𝑝𝑗)

24

𝑗=23

             (1) 

 

Where 

𝐶𝑒𝑙  : Off-peak tariff price 

𝐶𝑒ℎ : Peak tariff price 

𝑗 : Time interval 

𝑝𝑗: Pump combination at interval  𝑗. 

𝑒(𝑝𝑗) : Electrical energy consumed 

 

 

2.1.2  Model Constraints and Assumptions 

 

The maximum and minimum levels of the water in elevated 

reservoir are considered as the model constraints; if the level of 

the water in the elevated reservoir exceeds the maximum level 

ℎ𝑚𝑎𝑥, wastage of resources would occur. If the level of the water 

exceeds the minimum level    ℎ𝑚𝑖𝑛, it satisfies the emergency 

requirement. The minimum and maximum constraint is defined 

by Equation (2) [13]. 

 

ℎ𝑚𝑖𝑛 ≤ ℎ𝑖 ≤ ℎ𝑚𝑎𝑥                                                                         (2) 

 

where 

 

ℎ𝑖 = ℎ𝑖−1 +
[𝑄𝑖 − 𝑊𝐷𝑖]

𝑠
                                                              (3) 

 

 

ℎ𝑚𝑖𝑛 Minimum water level 

ℎ𝑚𝑎𝑥 Maximum water level 

ℎ𝑖 Level at interval 𝑖 
𝑆 Elevated reservoir surface 

𝑄𝑖 Quantity of water pumped at time interval 𝑖 
𝑊𝐷𝑖  Water demand at time interval 𝑖 
 

These are the assumptions of the model constraints to be 

considered: 

a) the amount of water source supplies enough water at 

any time and without additional costs; 

b) the maximum and minimum pressure constraints in the 

pipeline are always fulfilled, no matter what level is 

kept in the reservoir;  

c) valves in the system model  are not considered;  
 
2.2  The Adaptive Weighted Sum Genetic Algorithm 

 
Genetic Algorithms (GA) are adaptive heuristic search 

evolutionary based algorithms that uses the concept of selection 

and genetic to search for possible solutions to a problem within a 

defined criterion space. The Adaptive Weighted sum Genetic 

Algorithm (AWGA) is one of such algorithms and based on the 

weighted sum approach of the GA.  

  Basically, in the AWGA each objective function in the 

problem is allocated a weight be it a single objective or multi-

objective problems. The advantage of the AWGA lies in the 

adaptive nature of selecting its weights as compared to other types 

of weighted sum GA. The weights multipliers are selected using 

the maximum and minimum fitness values of the objective 

functions and making it liable to change on each of the GA 

iteration. By so doing no single objective function takes 

dominance over the other in their combination to form a Multi-

objective function. Thus, this makes the AWGA more robust and 

adaptive.  

  The process of Adoption of the AWGA for creating the 

optimal pump schedule for MARA-Japan Industrial Institute 

starts with initialization stage as shown in the AWGA 

implementation flowchart in Figure 3. At this stage all the 

parameters of the water supply system such as the water demand 

profile, the pump characteristics of the system, the electric tariff 

plan as well as the constraints that needs to be satisfied are 

defined. Also, those that are specified at this stage are the 

parameters of the Genetic Algorithm itself, which includes the 

number of generations, the number of chromosomes in the initial 

population, the rates of mutation, crossover and selection. 

  To generate the chromosomes, which form the initial 

population to the GA, it is required that the decision variable is 

encoded in any of the available techniques to represent the 

chromosomes of the Algorithm. The binary coding technique was 

adopted to encode the decision variable (the pump), with each 

pump represented by bit of ‘1’ pump is on or ‘0’ pump is off in a 

string of bits at each time interval. The number of bits required to 

represent a chromosome is determined by multiplying the number 

of decision variables by the total number of intervals in the 

optimization period. An optimization period of a day was chosen, 

with an interval of 1 hour resulting in a total interval of 24, hence 

the number of bits 𝑛𝑢𝑚𝑏𝑖𝑡𝑠 required to represent the 

chromosomes is given by Equation (4). 

 

𝑛𝑢𝑚𝑏𝑖𝑡𝑠 = 𝑛𝑢𝑚𝑣𝑎𝑟 𝑥 𝑛 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙                                            (4) 

 

Where 𝑛𝑣𝑎𝑟  is the number of decision variables (the pumps in 

the system), 𝑛 is the number of interval in the optimization period. 

 

This system have 2 pumps hence a string of 2𝑥24 = 48𝑏𝑖𝑡𝑠 are 

used to encode a possible solution. 

 

  In this proposed algorithm, the chromosomes are 

individually created and checked if it satisfies the constraint of 

the system, it is passed to the initial population or else it is 

rejected. This process is repeated until the required number 

chromosomes specified in the initialization stage are met.  

  The adaptive weights are formed in order to evaluate the 

fitness values from the individual objective function. The 

adaptive weight relies heavily on the fitness values of the 

chromosomes in the current generation for its determination and 

readjustment on every generation or iteration of the process. This 

methodology also ensures that no fitness function completely 

dominates or takes control of the other in their combination to 

form the total weighted sum objective function. 

  The genetic operators refer to the selection, crossover and 

mutation. The first operator to be initialized is the selection 

operation. This is carried out by selecting the best and the most 

suitable chromosomes based on their fitness values to be seeded 

to the next iteration of the genetic process and also to go into the 

crossover and mutation process. After the mutation process is 

completed, there is a high probability that some of the offspring 

produced violates the constraint.  
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Figure 3  Flowchart of the Adaptive weighted sum GA 

 

 

  A repair strategy [13] is introduced as a means of handling 

the constraint violation and its steps are as shown in Table 1. The 

Elitism is another mechanism used to ensure the safety of the best 

and most feasible solutions of a generation and they are seeded to 

the next generation. In this work the best two off springs in every 

generation of the GA is seeded to the next generation.  

 
Table 1  The repair strategy table 

__________________________________________ 
Step I: Initialize the repair counter 
Step II: Discard offspring 

Step III: Repeat the crossover process with the same parents and 

then the mutation. 
Step IV: Check the newly created offspring for the constraint 

violation 

Step V: If the constraint is satisfied move the offspring to next 

generation population Step 9. 

Step VI: If the constraint is violated, Increase the repair counters 

and go to step 3 
Step VII: If the repair counters ≥ stop condition, initiate the repair 

strategy 

Step VIII: Initiate Repair strategy 
Search for the interval with the violation 

If overflow switch OFF one or more pumps until 

constraint is satisfied 
If underflow switch ON one or more pumps until 

constraint is satisfied 

Move offspring to next Generation population 
Step IX: Next Generation population 

_______________________________________ 
 

 

 

3.0  RESULTS AND DISCUSSIONS 

 

To obtain a reliable and sustainable result using Genetic 

Algorithm, it is required that the parameters of the GA are 

properly and carefully selected. The population size is one of such 

parameters; in determining it four different population sizes were 

used to obtain the most effective as shown in Figure 3. With small 

population size (C=50) the algorithm took longer time to 

converge. The convergence time of the algorithm improves when 

population size (C) is increased from 100, 200 and 250. In it can 

be seen that the convergence of C= 200 is faster than the others. 

Hence, C=200 is selected in this study.  

 
Figure 4  Convergence with difference population size 

 

 

  The next step is to obtain the desirable required number of 

generations; this is to ensure that the GA is not terminated 

prematurely before the optimal solution is arrived at. Presented in 

Figure 4 is the performance of the AWGA when subjected to 

various generations (500, 2000 and 3000) to obtain the optimal 

generation.  

  All the tests show that the algorithm converged for 

generation 500, 2000 and 3000 are at 5th iteration, 2nd iteration 

and 6th iteration respectively. The best result obtained which gives 

the minimum electrical energy cost is when the number of 

generation is 2000. Hence it is selected for this study. 

 

 
Figure 5  Performance with 500, 2000 & 3000 generation 

 

 

  Furthermore, the remaining parameter such as the crossover 

rate and mutation rate were stochastically selected based on 

guidelines [15], for large population such 100, crossover rate, 

Pc=0.6 and mutation rate, Pm=0.001. Figures 5 and 6 show the 

results obtained when the number of generations were retained. 

Although when the value of population changed to C=200, 

Pc=0.4 and Pm=0.05, the electrical energy cost can be reduce less 

than the result are obtained when C=100. As a result the value of 

C=200 is used in this study.  
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Figure 6  The electrical energy cost for C=100 

 
Figure 7  The electrical energy cost for C=200 

 

 

  After successive 100 trials, suitable parameters were 

obtained and are as presented in Table 2. 

 
Table 2  System model parameters 

 
Parameters Description Parameters 

Maximum Height in Reservoir  𝒉𝒎𝒂𝒙 4M 

Minimum Height in Reservoir  𝒉𝒎𝒊𝒏 2m 

Initial height in reservoir, 𝒉𝒊𝒏𝒕 3m 

Off peak period tariff, 𝑪𝑳 0.2496RM 

Peak Period 𝑪𝑯 0.3120RM 

Number of chromosomes 200 

Number of generation 2000 

Mutation Probability 0.05 

Selection Technique Roulette Wheel 

Crossover Probability 0.4 

Elitism Best 2 chromosomes 

 

 

  Figure 7 shows several selected performance test of fitness 

function versus generation. From these performance tests, the 

cost of electric energy are calculated and presented in Table 3. 

The resuts show the Test 1 produces the least electric energy cost 

with percentage difference index is about 34.97%. Test 2 to Test 

5 give the same result with PDI is at 32.47%. These results show 

the consistencies of the AWGA in obtaining optimum result as 

within 3%. The goal of the optimization is to obtain an optimal 

pump schedule with reduced cost as given by Test 1. 

 
Figure 8  Total weighted fitness function versus generation 

 
Table 3  Results of tests 

 
Test Electric 

Energy Cost 

(RM) 

(Current) 

Electric Energy Cost 

(RM) 

(Proposed 

Optimization) 

Percentage 

Difference 

Index (PDI) % 

1 55.84 36.31 34.97 

2 55.84 37.71 32.47 

3 55.84 37.71 32.47 
4 55.84 37.71 32.47 

5 55.84 37.71 32.47 

6 55.84 39.1 29.98 

 

 

  The level variation in the reservoir for Test 1 is presented in 

Figure 9. The changes in water level in the reservoir remain 

between 3m and 4m and meet water demand requirement.  

 
Figure 9  The level variation in reservoir versus demand profile 

 

 

4.0  CONCLUSIONS 

 

The application of the Adaptive Weighted sum Genetic 

Algorithm (AWGA) in the optimization of the electrical energy 
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consumption as well as the level reliability of the MJII, 

Beranang’s water supply system has been presented herein. The 

algorithm has been tested using actual data sets from the supply 

system and the result obtained shows a significant and 

appreciable reduction of about 34.7% as compared to normal 

operations of the system without the application of the AWGA. 

Furthermore, the AWGA algorithm as also demonstrated a 

significant performance in attaining a reliable water level in the 

reservoir to carter for recovery of the initial water level and also 

emergency situations. However, more work is ongoing as to 

further improve on the robustness of the AWGA for application 

on the water supply system to ensure system efficiency and 

reliability during critical time such as in the dry seasons and 

periods of general water shortage.  
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