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Graphical abstract 
 

 

Two-Phase Flow 

Abstract 
 

A one-dimensional model which represent a system of partial 

differential equations that describe mathematically the two-phase 

flow has been considered for the gas-liquid mixture flow in a pipeline. 

The Implicit Steger -Warming flux vector splitting method is used for 

the numerical computation on air-water compressible flow problems. 

The results for pressure wave propagation, celerity or speed of sound 

and mass flow rate for different values of mass ratio were obtained. It 

was observed that the propagation of pressure along the pipeline 

and the mass flow rate there decreases along the pipe and 

maintained near a steady flow until it reaches the downstream of the 

pipe signifying the effect of gas build up during the pump control in 

pipeline.  
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1.0  INTRODUCTION  
 

In many industries, it is known that industrial liquid 

mostly water contains a small amount of free 

gaseous phase. The presence of small amount of 

free gas in the liquid reduces the pressure wave 

speed in the mixture compared to that of liquid 

only. It can be mentioned that two-phase flow 

involves fluid mixtures of different phases such as 

gas-liquid flow, gas-solid, liquid-liquid and liquid-

solid. Two-phase flow phenomena are currently 

focused on the transient flow occurring in the 

piping system in many industries. Studies on 

transient flow for the propagation of pressure 

waves in two phase flow are often considered in 

hydraulic installation systems like nuclear, 

geothermal power plants, chemical and petroleum 

industries [1]. The mathematical modelling of 

transient flow phenomenon has gained attention 

due to the occurrence of unsteadiness or effects of 

flow properties such as pressure waves in the gas 

industry. Considering the compressibility of any free 

gas on transient two-phase gas-liquid mixture flow, 

the wave propagation speed changes with 

pressure and making a system of equations 

describing the transient two-phase flow to be 

difficult. As a result, the study of two-phase 

becomes more complex than in single phase flow. 

A mathematical model for three differential 

equations written to represent the two-phase 

transient flow was developed by Martin [2, 3].  The 

finite difference Lax-Wendroff Scheme was used to 

solve the differential equations. They considered a 

greater void fraction in determining the pressure 

surges in the slug flow. Chaudry et al. [4], assumed 

the gas-liquid mixture as a pseudo-fluid for a small 

void fraction. A second order explicit finite 

difference method with a characteristics equation 

at the pipe boundary was employed to numerically 

solve the equations. Study on the propagation of 

pressure waves in two phase gas-liquid mixture flow 

was carried out by Mori et al. [5]. In their work, the 

void fraction was varied in relation to the pressure 

rise with the effect of pipe elasticity on the velocity 

propagation of the pressure waves.   
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The effect of gas mass fraction on the pressure 

evolution on homogeneous gas-liquid mixture 

transient flow has been investigated. A numerically 

solution for the transient two-phase flow using the 

method of characteristics and finite difference 

conservation method was studied by Hadj-Taieb 

and Lili [6]. In their work, the gas-fluid mass ratio was 

considered to be constant. A mathematical model 

for the transient homogeneous two phase flow by 

taking into account the pipe elasticity effect on 

pressure wave propagation using the method of 

characteristics was studied by Hadj-Taieb and Lili, 

[7]. The gas-fluid mass ratio was used and assumed 

constant on the determination of pressure surges.  

Study on the transient flow of gas-liquid mixtures 

pipelines using the method of characteristics was 

carried out to observe the influence of different 

values of gas mass fraction and Young’s modulus 

on the pressure evolution [8]. The study of transient 

phenomena in a two-phase homogeneous flow 

accounting for both geometrical parameters of the 

pipe and mass fraction of the gas in the two-phase 

mixture flow was investigated by Zohra et al. [9]. 

The method of characteristics was employed for 

the numerical solution for the governing equations. 

In most of these studies liquid flows only are often 

considered. Most methods used in the transient 

two-phase mixture flow were the characteristics 

method, Lax-Wendroff, explicit and implicit 

methods. However, the mass fraction was varied 

for elastic pipes there by the compressibility of the 

fluid were neglected. 

Although, the Godunov Type Scheme (GTS) have 

also been applied for the numerical solution of two-

phase homogeneous of air and water flow mixture 

[10, 11]. Leon et al., [12] studied the modelling of 

two-phase bubbly homogeneous air-water mixture 

using the single equivalent approximation. They 

used a second order Finite Volume (FV) shock-

capturing scheme for the numerical solution of the 

two-phase flow. 

In this paper, the finite difference techniques of 

Implicit Steger Warming flux splitting scheme was 

used for the numerical solution of the transient two-

phase mixture flow.  The mass faction for the gas-

fluid was varied with the pressure evolution for 

pipeline system.  The mass flow of the flow mixture is 

investigated with the effect of mass fraction. 

 

 

2.0  MATHEMATICAL FORMULATION 
 

Transient one-dimensional flow for the 

homogeneous gas-liquid mixture flow is considered. 

By applying the mass conservation and momentum 

law to an element of fluid between two sections of 

abscissa x and dx of the pipe, the following 

equations of continuity and motion were obtained 

[13]. 

       
   

0
A AV

t x

  
 

 
            (2.1) 
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Where   is the mixture density of the fluid, A is the 

cross section area of the pipe, V  is the velocity, P  

is the pressure,   is the friction coefficient which is 

consider to be constant, t  is the time and x  is the 

distance along the pipe. 

Equations (2.1) and (2.2) are taken to be two 

linear partial differential equations of hyperbolic in 

which the pressure P  and the velocity V are 

considered the main variables of the flow. In order 

to solve these equations numerically, it is important 

to express the density of the mixture 𝜌 according to 

the fluid pressure. The elasticity of the wall is 

assumed to have no effect and is therefore 

neglected. 

The average mixture density 𝜌 defined in terms of 

the gas mass ratio 𝜃 is expressed as [6].   
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The gas mass ratio is given as: 
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             (2.4) 

where gM  and lM are the masses of the gas and 

liquid respectively. 

Under the polytrophic law the gas density can be 

expressed as: 
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where 0k  represents the density at the initial 

conditions, kg/m3;  P0 is the permanent regime 

pressure, N/m2; k stands for gas or liquid. 

The celerity of sound speed in the fluid can be 

represented by the expression: 
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 2.6) 

 

 

3.0 NUMERICAL SCHEME 
 

The governing equations in the partial differential 

equation formed for the one dimensional model 

are solved numerically which require numerical 

scheme by the finite difference method of 

discretization approach which has been widely 

used in computational fluid dynamics (CFD) and 

has been described in several numerical textbooks 

[14, 15]. 

The transient flow problem has a particularly 

analytical solution which is obtained as follows; 

By subjecting the sound speed C, the continuity 

equation can be expressed as; 

2

1
0

P P V
V

C t x t

   
   

    
            (2.7) 

Following the characteristics theory [16], the 

following ordinary differential equations are given 

as; 
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whereby U   is the Riemann invariant defined by 

 
dP
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
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Considering equations (2.3) and (2.6), equation 

(2.10) becomes; 
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3.1 Implicit Steger-Warming Splitting Flux Vector 

Scheme 

 

The finite difference technique method (Implicit 

Steger-Warming Flux Splitting) which is used for the 

transient solution is faster than other methods. The 

process of discretising the continuous derivatives in 

the governing partial differential equations is to 

replace equations with finite difference expressions 

and rearranging the resulting algebraic equation 

into an algorithm for the dependent variables at 

each grid or mesh cell. The linearized form of the 

equations is derived to find the corresponding 

eigensystem. The eigenvalues obtained represent 

the characteristic of the hyperbolic system and 

therefore, described the direction of the 

propagation of flow. 

Equations (2.1) and (2.2) can be rewritten to a 

more compacted matrix form as; 

      
Q Q

t

E
H

x x

  
 
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                          (3.1) 

where Q is a vector of unknowns, F is a physical flux 

vector, H contains non-conservative terms that exit 

in the model given respectively as follows: 

It is also possible to transform (3.1) into the quasi-

linear form as; 

      
Q (Q)

(Q) 0
E

S
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 
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                      (3.2) 

The implicit algorithm of finite difference 

expressions for equation (3.2), for the time 

derivatives is approximated by a first order 

backward difference approximation which is given 

as; 
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Considering that, the change in flow properties for 

time step as: 

       
n+1 nQ=Q Q                 (3.4) 

Expressing the second and third term of (3.3) into 

Taylor series expansion, we obtain: 
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respectively.   

Substituting (3.4), (3.5) and (3.6) into (3.3), we get: 
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(3.7) is written in terms of Jacobian matrices A and 

B as: 
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where I is the identity matrix                                  

  Q Q
A
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Expressing (3.9) as an implicit Steger-Warming flux 

vector splitting method (SWFVSM) for the numerical 

scheme in the spatial term, we have; 

       QI t A A B t E E S
x x
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        (3.10) 

The flux vector E and the flux Jacobian Matrix A are 

splitted as E+, E- and A+, A respectively. 

Taking the backward difference approximation for 

the positive terms and a forward difference 

approximation for the negative terms, we have; 
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Rearranging the above equation in terms of the 

grid point i  for the Jacobian matrix A (or say for 

the right hand side of equation 3.11) we get; 
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The linearized equation of (3.12) is expressed as;  
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3.2 Initial Condition 

 

The flow initially is assumed to be at steady state 

condition, therefore, the initial condition (P0(x), 

V0(x)) of the fluid mixture can be obtained by 

computing the solution of the following system of 

ordinary differential equations: 
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( ) / 0d V dx    and ( , ) /dF P V dx gJ                (3.14) 

with the values for 0x   and the head loss given as

(2 )J V V Dg    

 0 0 0 0(0) (0)P P gH P   and 2

0 0(0) 4Q / ( )V D             (3.15) 

The required solution of the differential equation 
(3.14) may be obtained by the Runge-Kutta 

method [17]. The results are presented in Figure 2 

for mass ratio value 
410  . 

 

3.3 Boundary Conditions 

 

In the transient flow physical boundary conditions 

at the inlet and outlet of pipelines will be imposed 

to allow the consideration of a wide variety of field 

situations. The transient flow occurred by a rapid 

pump failure at the upstream end 0x  , meaning 

that (0, ) 0V t  . At the downstream end  x L  and 

0t  , the condition is expressed by the reservoir at 

the fixed level: 0( , ) ( )P L t P L . 

 
Figure 1 Systematic Hydraulic system 

 

 
Figure 2 Initial Steady state flow profiles at 

410   

4.0 RESULTS AND DISCUSSION 
 

The Implicit Steger-Warming flux splitting method 

has been employed to simulate the pressure wave 

propagation for a two-phase gas-liquid mixture of 

transient flow.  

In view of the hydraulic system represented by 

Figure 1, the problem is studied for a pipeline with 

the length L=20,000m, diameter D=2m, P0=105 MPa 

(initial pressure), mass flow rate Q0=730 m3/s, liquid 

density is l = 1000 kg/m3, gas density 1.29g   

kg/m3  and the friction factor 0.025   . 

The result in Figure 3 present the comparison of 

the Implicit Steger-Warming flux splitting method 

with the characteristics methods at the upstream 

end of the pipe 0x   with mass ratio 
510 . It 

can be observed that the present method show a 

good agreement with the characteristics methods 

by Hadj-Taieb and Lili [7].   

 
Figure 3 Comparison of Steger-Warming flux splitting 

method (present method) and method of characteristics 

(MOC) [7] at the upstream end of the pipe ( 0x  ) with 

mass ratio 
510  

 

 

Figure 3-7 presents the pressure wave 

propagation as a function of time at for different 

values of mass ratio as
510 , 

55.10  , 
52.510   and 

410  . Due to a sudden pump 

failure, a decreasing pressure wave was observed 

along a steady flow pressure gradient until it 

reaches the downstream end of the pipe.  
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Figure 4 Pressure wave distributions against time at the 

pipe length x L        

 
Figure 5 Pressure wave distributions against time at the 

pipe length / 2x L        

 
Figure 6 Pressure wave distributions against time at the 

pipe length / 4x L        

    

 
Figure 7 Pressure wave distributions against time at the 

pipe length 3 / 4x L        

 

 

Figure 8 represents the effect mass ratio against 

celerity as a function of time, for mass ratio 
410   

and 
410  . The upward increase in the direction 

of celerity was observed at a steady flow continues 

until it reaches the downstream end of the pipe.                             

 
Figure 8 Celerity against time for value of mass ration 

510    and 
410          

 

 

In Figure 9 the mass flow rate for values of mass 

ration of gas-liquid mixture was obtained as against 

time. It can be observed that the mass flow rate 

tends to zero at about 50s until the end of the pipe 

at a time of 1000s. This shows the effect the gas 

builds up during the pump control. 
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Figure 9 Mass flow rate against time for different mass 

ration 

 

 

5.0 CONCLUSION 
 

The one dimensional transient equation for 

homogeneous gas-liquid two phase flow in a pipe 

has been presented. The numerical scheme of 

Implicit Steger-Warming flux splitting method was 

used to solve numerically the governing equation.  

Pressure wave propagation for different values of 

mass ratio given as 
510  , 

55.10  , 
52.510   

and 
410   was analysed. The celerity wave and 

mass flow rate with the effect of mass ration was 

also investigated. The pressure wave decreases 

along the pipe due to a sudden pump failure. It 

was also observed that the mass flow rate 

decrease which shows the effect the gas build up 

during the pump control. 

 

 

References 
 

[1] Yoichi, U., Ikuo, K., Michio, M., Noritoshi, M., Toshifumi, N., 

Akio, T. 2011. Numerical Simulation Using CFD Software 

of Countercurrent Gas–Liquid Flow in a PWR Hot Leg 

Under Reflux Condensation. Nuclear Engineering and 

Design 24(1): 1643-1655. 

[2] Martin, C. S., Padmanabhan, M. and Wiggert, D. C. 

1976. Pressure Wave Propagation in Two-phase bubbly 

Air–Water Mixtures. 2nd International Conference on 

Pressure Surges, City University, London, UK. 1-16. 

[3] Martin, C. S. and Padmanabhan, M. 1979. Pressure Pulse 

Propagation in Two-Component-Slug Flow. Transactions 

of the ASME, Journal of Fluids Engineering. 101: 44-52. 

[4] Chaudhry, M. H., Bhallamudi, S. M., Martin, C. S., 

Naghash, M. 1990. Analysis of Transient in Bubbly 

Homogeneous Gas-Liquid Mixtures. ASME, Journal of 

fluids engineering. 112: 225-231. 

[5] Mori, Y., Hijikata, K. and Komine, A. 1975. Propagation of 

Pressure Waves in Two-Phase Flow. International Journal 

of Multiphase Flow. 2:139-52. 

[6] Hadj-Taieb, E., Lili, T. 1998. The Numerical Solution of the 

Transient Two-Phase Flow in a Rigid Pipelines. 

International Journal of Numerical methods of Fluid. 29: 

501-514. 

[7] Hadj-Taieb, E., Lili, T. 1998. Transient Flow of 

Homogeneous Gas-Liquid Mixtures in Pipelines. 

International Journal for Numerical Methods for Heat 

and Fluid Flow. 8: 350-368. 

[8] Elaouda., S., Hadj-Taïeba, E. 2013. Gas-liquid Transient 

Flow Analysis in Deformable Pipes. International Journal 

of Current Engineering and Technology. 3(4). 

[9] Zohra, O., Mostafa, S. G., Abderahmane, G. 2014. 

Transient Phenomena in Liquid/Gas Flow in Pipelines. 

Procedings of the International Conference on Heat 

Transfer and Fluid Flow, Prague, Czech Republic. 1-9. 

[10] Guinot, V. 2001a. Numerical Simulation of Two-Phase 

Flow in Pipes Using Godunov Method. International 

Journal Numerical Method in Engineering. 50: 1169-

1189. 

[11] Guinot, V. 2001b. The Discontinuous Profile Method for 

Simulating Two-Phase Flow in Pipes Using the Single 

Component Approximation. International Journal on 

Numerical Method of Fluids. 37: 341-359. 

[12] Leon, A., Ghidaoui, M., Schmidt, A., and Garcia, M. 

2006. An Efficient Numerical Scheme for Modelling Two-

Phase Bubbly Homogeneous Air-Water Mixtures. World 

Environmental and Water Resources Congress. 

[13] Wylie, E. B., Streeter, V. L., Suo, L. 1993. Fluid Transients in 

Systems. Prentice Hall, Englewood Cliffs, N.J.  

[14] Anderson, J. D. 1995. Computational Fluid Dynamics. 

The Basic with Application. McGraw-Hill Series. New 

York. USA. 

[15] Hoffmann, K. A. and Chaing, S. T. 2000. Computational 

Fluid Dynamics. Fourth Edition. A Publication of 

Engineering Education System TM.  

[16] Streeter, V. L., and Wylie, E. B. 1982. Hydraulic Transients. 

FEB. Press. Ann Arbor. 

[17] Stoer, J and Burlisch, R. 1983. Introduction to Numerical 

Analysis. Springer, Berlin. 

 

0 100 200 300 400 500 600 700 800 900 1000
729.92

729.93

729.94

729.95

729.96

729.97

729.98

729.99

730

730.01

time (s)

M
a
s
s
 f

lo
w

 r
a
te

 (
K

g
/s

)

 

 

=10-5

=2.510-5

=5.10-5

=10-4


