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Abstract 

 

Accurate modeling of wind speed profile is crucial as the wind speed dynamics are non-deterministic, 
having chaotic behavior and highly nonlinear in nature. Therefore, obtaining mathematical model of such 

wind speed profile is rather difficult and vague. In this brief manuscript, the wind speed distribution in 

Peninsular Malaysia is modeled via the real-time wind data obtained from the Malaysian Meteorological 
Services (MMS). Artificial neural network (ANN) has been exploited to train the data such that the exact 

model of wind speed can be identified. The induced wind speed model worthwhile for control engineers to 

develop control apparatus for wind turbine systems at the selected area of studies. With the wind speed 
distribution profile, turbine output power can be analyzed and were discussed thoroughly. 
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Abstrak 

 

Pemodelan yang tepat bagi profil kelajuan angin adalah penting kerana dinamik kelajuan angin semulajadi  

adalah tidak tentu, mempunyai tingkah laku yang huru-hara dan sangat tidak linear. Oleh itu, mendapatkan 

model matematik profil kelajuan angin agak sukar dan samar-samar. Dalam manuskrip ringkas ini, 
pengagihan kelajuan angin di Semenanjung Malaysia dimodelkan melalui data angin masa sebenar yang 

diperolehi daripada Jabatan Kajicuaca Malaysia (MMS). Rangkaian neural tiruan (ANN) telah digunakan 

untuk melatih data supaya model sebenar kelajuan angin boleh dikenal pasti. Profil kelajuan angin ini 
diharap dapat digunakan oleh jurutera kawalan bagi membangunkan alat kawalan untuk sistem turbin angin 

di kawasan kajian ini dijalankan. Dengan profil kelajuan angin ini juga, kuasa keluaran turbin boleh 

dianalisis dan dibincangkan dengan teliti. 
 

Kata kunci: Kelajuan angin; rangkaian neural tiruan; kincir angin 
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1.0  INTRODUCTION 

 

Winds are movements of air masses in the atmosphere originated 

by temperature changes. The most striking characteristic of the 

wind flow is its variability. Plus, wind flow dynamics, are highly 

nonlinear, non-deterministic and have chaotic behavior. As such, 

obtaining exact wind speed model is crucial for the design engineer 

whose construct control apparatus for the wind turbine systems. 

Transition from polluted fossil energy to an environmental friendly 

wind energy has sprout the research in wind turbine systems. In the 

European countries, research and development of wind turbine 

technology is rather encouraging. However, in the  Asian 

continental, the development in wind turbine technology is rather 

slow. Few studies on evaluation of wind energy feasibility in Asian 

continental have been reported. For instance, wind turbine 

feasibility studies in Jordan [1] and Peninsular Malaysia [2], [3]. 

The knowledge of wind speed distribution profile is necessary for 

design engineers as the wind speeds render tip-speed-ratio and 

hence, determine the power coefficient of the turbine. The gust 

flow might be beyond the cut-out speed that need to be treated by 

using appropriate control approach in order to avoid damage in the 

aero-turbine part. Therefore, the wind speed distribution profiles 

are the essential part to be considered when designing a control 

scheme at the simulation stages.  

  In this manuscript, ANNs are used to model the wind speed 

profiles. ANNs are known as a powerful data modeling tool which 

able to capture and represent complex input-output relationships. 

The advantage of ANNs lies in their ability to represent both linear 

and nonlinear relationships and in their ability to learn these 

relationships directly from the data being modeled. In this 

manuscript, the purpose of ANNs is to create a wind speed model 

that correctly maps the random input to the known wind output 

obtained from wind speed distribution. The random signal is used 

as a test input as it has a flat frequency spectrum. To reach main 
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result, the accurate wind speed distribution from the MMS that has 

been published in [3] is used as the known wind speed output. In 

[3], the authors concluded that most of the regions in Peninsular 

Malaysia (i.e. Langkawi, Penang, Kuala Terengganu, Kota Bharu) 

are having limited wind energy potential except Mersing (see 

Figure 1). For the rest of this manuscript, a multilayer feed-forward 

ANN is used to model the wind speed profile. 

 

 
 

Figure 1  Wind distribution area as recorded in [3] 
 

 

  The overall structure of the study takes the form of four 

sections including this introductory section. Section 2 discuses the 

modeling of wind speed distribution profile. Section 3 discusses the 

result. Section 4 concludes the findings. 

 

 

2.0  THEORETICAL BACKGROUND OF WIND 

TURBINE 

 

Wind turbines work by converting the kinetic energy from the wind 

into rotational energy in the turbine. The rotational energy is then 

converted into electrical energy. The energy conversion depends on 

the wind speed and the swept area of the turbine. Figure 2 shows 

the swept area; that is the region where the turbine can capture the 

kinetic energy. 

 

 
 

Figure 2  Turbine swept area 
 

 

Instantaneous power produced by the wind can be denoted as: 

 

 𝑃𝑤𝑖𝑛𝑑 =
1

2
𝜌𝜋𝑅2𝜐3                                       (1) 

 

where 𝜋𝑅2 is the swept area of the turbine. 𝜌 is the air density with 

value depends of air temperature. This power is transmitted to the 

hub of the turbine in order to produce the aerodynamic power as 

expressed in shown Equation (2). 

 

𝑃𝑚 =
1

2
𝐶𝑝(𝜆, 𝛽)𝜌𝜋𝑅2𝜐3                                (2)  

 

𝛽 is the pitch angle, 𝜆 is the tip speed ratio which directly 

proportional to the wind speed 𝜐 times the angular rotor speed, and 

inversely proportional to the radius of the rotor blades, 𝑅. Whereas 

𝐶𝑝 is the power coefficient. Note that Equation (1) and Equation (2) 

are the standard power expression that can be derived from the third 

equation of motion cum Newton's Law which previously appeared 

in [4-10]. Practically, the turbine would not be able to capture 100% 

of kinetic energy from the wind. This gives a fact that the 

aerodynamic power produced by the turbine that need to be fed to 

the generator must be limited by a factor 𝐶𝑝 (one may recall 

Equation (2)). 𝐶𝑝 is provided by the turbine manufacturer via the 

look-up table [11]. However in [12-14], the empirical expression 

for 𝐶𝑝 is presented as in Equation (3). 

 

𝐶𝑝(𝜆, 𝛽) = 0.5 (116
1

𝜙
− 0.4𝜙𝛽 − 5) 𝑒

−21
1
𝜙            (3) 

 

where the function 𝜙 is given as: 

 
1

𝜙
=

1

𝜆 + 0.08𝛽
−

0.035

1 + 𝛽3
                             (4) 

 

For a regulated pitch angle at  𝛽 = 0°, one may obtain the optimum 

tip speed ratio 𝜆𝑜𝑝𝑡 = 7.953925991, and the maximum power 

coefficient 𝐶𝑝(𝑚𝑎𝑥) = 0.4109631031. This means that the turbine 

converts a maximum 41.09% of the kinetic energy into a rotational 

energy. 

  As discussed earlier, wind speed and swept area determine the 

amount of aerodynamic power generated by the turbine. The radius 

of turbine blades determines the swept area. According to [9], high 

speed turbines with two blades normally capture a maximum 40%-

50% of kinetic energy. Whereas slow speed turbines with more 

number of blades capture between 20%-40% of kinetic energy from 

the wind. For one-mass turbine structure, aerodynamic power is 

transferred directly to the generator for electricity generation. For 

two-mass turbine structure, the aerodynamic power is supplied to 

the mechanical gearing system that separating the low speed and 

the high speed subsystem in the generator. 

 

 

3.0  ANN WIND SPEED MODEL METHODOLOGY 

 

In this section, the real-time wind data obtained from the Malaysian 

Meteorological Services (MMS) in [3] is used to develop a neural 

network wind speed profile. Table 1 tabulates the useful 

nomenclature to facilitate the modeling methodologies in what 

follow.  
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Table 1  Table of nomenclature 

 

Symbols Definition 

𝑥𝑖 Inputs to the neural network neurons 

𝑤𝑖 Weights of the neurons inputs 

𝑏𝑖 Thresholds of the neuron layer  

𝜐 Wind speed (𝑚. 𝑠−1) 

𝜌 Air density (𝐾𝑔. 𝑚−3) 

𝐶𝑝(𝜆, 𝛽) Power coefficient 

𝜆 Tip speed ratio 

𝛽 Pitch angle (𝑑𝑒𝑔) 

𝑅 Blade radius (m) 

 

 

  The unit of structure of ANNs is the neuron which consists of 

a summer and an activation function. Let the inputs to the neuron 

are denoted as 𝑥1, 𝑥2, 𝑥3... 𝑥𝑛 with corresponding weights 𝑤1, 𝑤2, 

𝑤3... 𝑤𝑛. All inputs are multiplied by their corresponding weights 

and added together with the threshold term bi to form the net input 

to the neuron, as shown in Equation (5). To obtain the network 

output, the net function in Equation (5) is activated by the activation 

functions. 

 

𝑛𝑒𝑡 = ∑ 𝑥𝑖𝑤𝑖 + 𝑏𝑖

𝑛

𝑖=1

                                       (5) 

 

  Initially, 3 layers feed-forward ANN for wind speed profile is 

created. The input vector is a test input data containing a set of 

normally distributed continuous-time flat frequency spectrum 

random signal. The hidden layer consists of 10 neurons while the 

output layer consists of 1 neuron. The activation functions used in 

the hidden layer is a tan-sigmoid transfer function. For the output 

layer, a linear transfer function is used as the activation function. 

The wind speed output expression is shown in Equation (6). 

 

 

𝜐 = (
1 − 𝑒−2(∑ 𝑥𝑖𝑤1.𝑖+𝑏1.𝑖

10
𝑖=1 )

1 + 𝑒−2(∑ 𝑥𝑖𝑤1.𝑖+𝑏1.𝑖
10
𝑖=1 )

) 𝑤2.𝑖 + 𝑏2               (6) 

 

 
 
Figure 3  Architecture of 3 layers feed-forward neural network for wind 
speed model - for 10 neurons case 

 

 

  The neural network wind speed profile is shown in Figure 3. 

After the networks have been created, they are trained. All weights 

𝑤1.𝑖, 𝑤2.𝑖 and threshold terms 𝑏1.𝑖, 𝑏2 are iteratively updated to 

minimize an error function between the targeted wind speed 

distribution in [3] and the network outputs. The network is trained 

using Levenberg-Marquardt training algorithm. The best training 

performance is obtained at 5 iterations with mean square of error 

around 0.185 (see Figure 4). Table 2 tabulates the updated 𝑤1.𝑖, 

𝑤2.𝑖, 𝑏1.𝑖 and 𝑏2. 

 
Table 2  Updated weights and threshold - for 10 neurons case 

 

Hidden Layer Output Layer 

Weight 𝒘𝟏.𝒊 Threshold 𝒃𝟏.𝒊 Weight 𝒘𝟐.𝒊 Threshold 𝒃𝟐 

𝑤1.1 = -8.6865947504261527 𝑏1.1 = 20.576199199488737 𝑤2.1 = 0.72753075758510366 

𝑏2 = 

2.194518488494118 

𝑤1.2 =  8.6167321599088744 𝑏1.2 =-17.494362008666045 𝑤2.2 =-1.09006557732933800 

𝑤1.3 = -8.6320097632973969 𝑏1.3 = 14.376516846240744 𝑤2.3 =-0.21314452933412584 

𝑤1.4 = -8.6963082748051814 𝑏1.4 = 11.215377418942882 𝑤2.4 =-0.32668500695320518 

𝑤1.5 =  8.6284959720942762 𝑏1.5 =-8.1569893800281683 𝑤2.5 = 0.14699077356112150 

𝑤1.6 =-8.6191206335319350 𝑏1.6 = 5.077457884831599 𝑤2.6 =-1.18689070412913540 

𝑤1.7 = 8.5775087821821341 𝑏1.7 =-2.0830518748241462 𝑤2.7 =-0.052285317115747285 

𝑤1.8 = -8.631052936335303 𝑏1.8 =-1.1782506581797774 𝑤2.8 = 0.688942422511690470 

𝑤1.9 = 8.6250493181832297 𝑏1.9 = 4.2964594041705872 𝑤2.9 =-0.048923091134644207 

𝑤1.10 = 8.83587389976753630 𝑏1.10 =7.1616918998149126 𝑤2.10 = 0.1569205394621947000 
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Figure 4  Training performance 

 

 
 
Figure 5  Wind speed pattern for 30 neurons feed-forward ANN wind speed 

model 
 

 

4.0  RESULTS AND ANALYSIS 

 

In the neural network training, the number of neurons give 

significant effect to the correlation of wind model. Figure 5 shows 

wind speed pattern for 30 neurons feed-forward ANN wind speed 

model. The wind speed probability distribution is shown in Figure 

6. With N wind speed data, the mean speed can be computed as 

 

𝜐𝑚𝑒𝑎𝑛 =
1

𝑁
∑ 𝜐(𝑘)𝑁

𝑘=1 ≈  2.5739 𝑚𝑠−1                         (7)  

 

with a variance of 

 

 𝑉𝑎𝑟𝜐 =
1

𝑁
∑ (𝜐(𝑘) − 𝜐𝑚𝑒𝑎𝑛)2𝑁

𝐾=1 ≈ 0.0981                           (8) 

 

 
 

Figure 6  Wind speed probability distribution 

 

 

  This implies a standard deviation of the wind speed pattern of 

about 0.3131 as shown in the wind speed probability distribution in 

Figure 6. The wind speeds at Mersing seem to be around the cut-in 

speed range (around 3ms-1 as shown in the previous Figure 6). Most 

high power turbine manufacturers such as Enercon Ltd [15] and 

Wind Energy Solution Ltd. [16] apply the cut-in and cut-out speed 

about 3ms-1 and 25ms-1 respectively. To overcome the rotor inertia, 

large turbines require high wind speed to operate, and thus capture 

more kinetic energy from the wind. Typical modern wind turbines 

have a radius of 20 to 45 meters and are rated between 500 kW and 

2 MW. Thus, in this case study, small size turbine with a blade 

radius of 10 meters can be installed for a rated power about 16KW 

at 3.8ms-1 rated speed. With 41.1% of the kinetic energy being 

captured by the turbine, the cut-in speed must be 1ms-1 to operate 

the system. The aerodynamic power produced by the turbine with 

10 meters blade radius is around 5KW as depicted in Figure 8. 

 

 
 

Figure 7  Power curve 
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Figure 8  Aerodynamic power distribution 

 
 

5.0  CONCLUSIONS 
 

In this paper, wind speed distribution profile is modeled using a 

multilayer feed-forward artificial neural network. The wind speed 

profile is useful in the design and simulation phase for the 

development of wind turbine control approach such as fixed pitch / 

variable pitch - variable speed controller. However, in this case 

study, low average wind speed distribution reveal the fact that large 

size wind turbine is not suitable to be installed at the selected area 

(i.e. Mersing in Peninsular Malaysia). The developer need to 

consider some specific characteristic for installation, such as low 

power small size wind turbine with low cut-in speed. Plus, the 

system may require complex power electronic conversion system 

to step up the power to the utilities (see [17-18]).  
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