Universiti Teknologi Malaysia Institutional Repository

Similarity-based classification using specific features in intrusion detection

Zainal , A. and Maarof, M.A and Shamsuddin, S.M. (2008) Similarity-based classification using specific features in intrusion detection. In: Proceedings of the Fifth IASTED International Conference. COMMUNICATION SYSTEMS AND NETWORKS (AsiaCSN 2008), April 2 - 4, 2008, Langkawi, Malaysia.

Full text not available from this repository.


A major challenge in IDS is to discover the intrusive patterns which are normally hidden in abundant of data. Furthermore, it has many features. Some of the features are redundant and some are less significant and they contribute little to the detection process. The purpose of this study is to identify an optimum number of significant features that can represent each category; Normal, Probe, U2R, R2L and DoS. Here, we deployed hierarchical feature selection approach and used similarity-based classification (Kohonen Self-Organizing Map) to classify an input data into their respective categories. Performance was measured based on their correct classification. Empirical results suggest that there is no generic feature subset which is suitable to represent all categories. Instead, different categories are best represented using different feature subsets.

Item Type:Conference or Workshop Item (Paper)
Subjects:Q Science > QA Mathematics > QA75 Electronic computers. Computer science
Divisions:Computer Science and Information System (Formerly known)
ID Code:5600
Deposited By: PM Mazleena Salleh
Deposited On:27 May 2008 02:28
Last Modified:27 May 2008 02:28

Repository Staff Only: item control page