

77:9 (2015) 149-163 | www.jurnalteknologi.utm.my | eISSN 2180–3722 |

Jurnal

Teknologi

Full Paper

IMPROVING THE RELIABILITY AND VALIDITY OF TEST DATA

ADEQUACY IN PROGRAMMING ASSESSMENTS

Rohaida Romlia*, Shahida Sulaimanb, Kamal Zuhairi Zamlic

aSchool of Computing(SOC), College of Arts and Sciences,

Universiti Utara Malaysia, 06010 UUM Sintok, Kedah,

Malaysia
bFaculty of Computing, Universiti Teknologi Malaysia, 81310

UTM Johor Bahru, Johor, Malaysia
cFaculty of Computer System and Engineering, Universiti

Malaysia Pahang, Lebuhraya Tun Razak, 26300 Gambang,

Kuantan, Pahang, Malaysia

Article history

Received

2 February 2015

Received in revised form

8 October 2015

Accepted

12 October 2015

*Corresponding author

aida@uum.edu.my

Graphical abstract

Abstract

Automatic Programming Assessment (or APA) has recently become a notable method in

assisting educators of programming courses to automatically assess and grade students’

programming exercises as its counterpart; the typical manual tasks are prone to errors and

lead to inconsistency. Practically, this method also provides an alternative means of

reducing the educators’ workload effectively. By default, test data generation process

plays an important role to perform a dynamic testing on students’ programs. Dynamic

testing involves the execution of a program against different inputs or test data and the

comparison of the results with the expected output, which must conform to the program

specifications. In the software testing field, there have been diverse automated methods

for test data generation. Unfortunately, APA rarely adopts these methods. Limited studies

have attempted to integrate APA and test data generation to include more useful

features and to provide a precise and thorough quality program testing. Thus, we propose

a framework of test data generation known as FaSt-Gen covering both the functional and

structural testing of a program for APA. Functional testing is a testing that relies on specified

functional requirements and focuses the output generated in response to the selected test

data and execution, Meanwhile, structural testing looks at the specific program logic to

verify how it works. Overall, FaSt-Gen contributes as a means to educators of programming

courses to furnish an adequate set of test data to assess students’ programming solutions

regardless of having the optimal expertise in the particular knowledge of test cases design.

FaSt-Gen integrates the positive and negative testing criteria or so-called reliable and valid

test adequacy criteria to derive desired test data and test set schema. As for the functional

testing, the integration of specification-derived test and simplified boundary value analysis

techniques covering both the criteria. Path coverage criterion guides the test data

selection for structural testing. The findings from the conducted controlled experiment and

comparative study evaluation show that FaSt-Gen improves the reliability and validity of

test data adequacy in programming assessments.

Keywords: Automatic Programming Assessment (APA), test data generation, functional

testing, structural testing, test data adequacy, positive testing, negative testing

Abstrak

Kebelakangan ini, Penaksiran Pengaturcaraan Automatik (atau APA) umumnya dikenali

sebagai suatu kaedah dalam membantu para pengajar kursus pengaturcaraan untuk

melaksanakan penaksiran dan penggredan latihan-latihan pengaturcaraan pelajar

secara automatik sebagai alternatif kepada: tugas-tugas penaksiran secara manual yang

secara tipikalnya cenderung kepada penghasilan ralat dan ketidakseragaman

penaksiran. Secara praktikal, kaedah ini juga adalah suatu alternatif yang efektif kepada

Input +
Control

Structure
Specificat

ions

Input +
Control

Structure
Specificat

ions

negative testing
criterion

Input

Specifications

Testing
Criteria

Specification-
based

Coverage

Testing
Criteria

Path
Coverage

Structural Test Data Generation

Functional Test Data Generation

Lecturer Student

Test Data + Test Set

Test set generator
(semi-automated)

F
e
e
d
b
a
c
k

Automatic
Programming
Assessment

Candidates’
Programs

positive
testing

criteria

Solution Model +
Programming

Exercise

Control
structure
specifications
+ input
specifications

positive
testing
criteria negative testing criterion

Test case

weighting

Test case
weighting

Test set
generator

Schema of Test
Set

Schema of
Test Set

150 Rohaida Romli, Shahida Sulaiman & Kamal Zuhairi Zamli / Jurnal Teknologi (Sciences & Engineering) 77:9 (2015) 149-163

1.0 INTRODUCTION

Computer programming is prominently known as a

complex intellectual activity and the core skill for the

first year students pursuing a degree in Information

Technology (IT) [1] as well as to other related

disciplines such as Computer Science, Software

Engineering and Engineering. Thus, any computer

courses that have been offered in particular are

deeply practical courses with the goal to develop

students’ understanding of the programming

principles. To achieve that, a lot of programming

exercises are given to students as hands-on or take-

home assignments to ensure students’ are consistent

with the effectiveness on principles and concepts of

programming in their learning process. In huge class

sizes in Computer Science or IT programme, where

there might be hundreds of students in a single course

[2], the practice of programming exercises

assessment leads to extensive workload to lecturers or

instructors particularly if it has to be carried out

manually. Apparently, manual assessment such as

marking printed solutions by hand, which is time-

consuming and requires much effort and attention is

prone to error (s) at any levels of assessment [3]. It also

may allow unintended biases and different standard

of marking schemes. Furthermore, the feedback

provided to students through marking is generally
imited, and often late and outdated, particularly with

the topic dealt in the assignment [4]. Thus, Automatic

Programming Assessment (APA) has become an

important method for grading students' exercises and

giving feedback to them [5]. Practically, APA offers

important benefits in terms of immediate feedback,

objectivity and consistency of the evaluation as well

as a substantial time saving in the evaluation of the

assignments [6] without the need to reduce exercises

[7]. Besides, it improves the consistency, accuracy

and efficiency of the assessment [8].

To date, a number of automatic tools to cover both

static and dynamic assessments for APA, which are

called Automated Programming Assessment Systems

(APAS) have been developed and tested for

decades. The existing APAs include Assyst [8], BOSS

[9], GAME [10], TRAKLA2 [11], PASS [12], ELP [1],

CourseMaster [13], WeBWorK-JAG [14], SAC [15], Oto

[16], ICAS [17], PETCHA [18], eGrader [19], and

Bottlenose [20]. These systems provide advantages

not only to lecturers, but might also play an important

role in students’ learning outcomes [21].

Typically, dynamic correctness assessment of

students’ programs involves the process of program

quality testing through the execution of program with

a range of test data and monitoring it conformance

pengurangan beban tugas para pengajar. Secara asasnya, proses penjanaan data ujian

memainkan peranan yang penting untuk melaksanakan pengujian dinamik terhadap

aturcara pelajar. Pengujian dinamik melibatkan pelaksanaan suatu aturcara terhadap

kepelbagaian input atau data ujian dan perbandingan antara perolehan dan output

jangkaan perlu memenuhi spesifikasi aturcara. Terdapat pelbagai kaedah untuk

mengautomasikan data ujian khususnya dalam bidang pengujian perisian.

Walaubagaimanapun, kajian APA sedia ada jarang mengapliksikan kaedah ini. Didapati

terdapat beberapa kajian yang amat terhad telah cuba mengintegrasikan APA dan

penjanaan data ujian untuk menyediakan ciri-ciri kebergunaan yang lebih baik dan kualiti

pengujian aturcara yang lebih jitu dan terperinci. Oleh itu, kami mencadangkan rangka

kerja penjanaan data ujian yang dikenali sebagai FaSt-Gen untuk merangkumi kedua-dua

pengujian aturcara fungsian dan berstruktur untuk APA. Pengujian fungsian adalah suatu

pengujian yang bergantung kepada keperluan fungsian yang telah dikenalpasti dan

memfokus kepada output yang dijana terhadap data ujian dan perlaksanaan yang telah

dipilih. Manakala, pengujian berstruktur melihat kepada logik aturcara yang spesifik untuk

menentusahkan bagaimana aturcara tersebut berfungsi. Secara keseluruhannya, FaSt-

Gen menyumbang suatu kaedah kepada para pengajar kursus pengaturcaraan untuk

menyediakan set data ujian yang berkecukupan untuk melaksanakan APA tanpa

memerlukan kepakaran yang optimal dalam pengetahuan reka bentuk kes-kes ujian. FaSt-

Gen mengintegrasikan kriteria pengujian positif dan negatif (atau kriteria kecukupan ujian

boleh-dipercayai dan sahih) untuk menjana data ujian dan skema set ujian. Untuk

pengujian fungsian, integrasi teknik specification-derived test dan simplified boundary

value analysis merangkumi kedua-dua kriteria tersebut. Manakala, path coverage

criterion memacu pemilihan data ujian untuk pengujian struktur. Dapatan daripada

eksperimen yang telah dilaksanakan di kalangan pengajar menunjukkan bahawa FaSt-

Gen berjaya memperbaiki kriteria kebolehpercayaan dan kesahihan kecukupan data

ujian dalam penaksiran pengaturcaraan..

Kata kunci: Penaksiran pengaturcaraan automatik (APA), penjanaan data ujian,

pengujian fungsian, pengujian struktur, kecukupan data ujian, pengujian positif, pengujian

negatif

© 2015 Penerbit UTM Press. All rights reserved

151 Rohaida Romli, Shahida Sulaiman & Kamal Zuhairi Zamli / Jurnal Teknologi (Sciences & Engineering) 77:9 (2015) 149-163

through the comparison between the outputs

produced and the expected ones [22]. Correctness is

one of the quality attributes that can be defined as

the degree to which the program performs it

intended functions [23]. Since proving programs

correctness is impractical in the practice of

programming courses, running them with test data

can allow some estimates of correctness to be made

[24]. Generally, a program is considered correct if it

consistently produces the right output [25]. Test data

is defined as the inputs that have been devised to

test the software [26]. The values must collectively

satisfy some test data selection criteria or so-called

test adequacy criteria [27]. According to Jackson

[28], the process of applying the program to a

number of sets of test data poses a few problems

including the difficulty in devising a fullproof

approach to judging whether the outputs produced

by the program are correct; and possibly in some

circumstances any two solutions will generate

precisely the same output. Hence, the selection of a

representative of test data should be carefully

derived to perform accurate and efficient

assessments. In addition, the criteria of selecting the

test data should guarantee that it is able to conform

to good test coverage of the solution model

specification (or an assignment specifications) as well

as to students’ programs. Its main purpose is to avoid

misleading feedback that can possibly cause

misconception to the interpretation of the final

assessment result.

In software testing research, various studies propose

automated methods for test data generation [29-39].

Despite the potentials of the proposed methods in

providing the most efficient way to generate test

data for large-scale projects, researches in APA

seldom adopt these methods. It appears that most of

the studies in APA usefully execute tests and evaluate

test results automatically, much of which have not

sufficiently and systematically automate the

generation of test. To date, very limited studies have

attempted to incorporate both automation of test

data generation and programming assessment (see

Section 2). We intend to enhance the previous studies

as the methods proposed are merely applied as a

simple technique to generate test data, or the

techniques require high technical skill to code

particular run tests that limit its use for advanced

users, or they derive test data based on only the

functional or structural aspects of a program

separately. Therefore, it motivates us to propose a

framework of test data generation to derive and

generate an adequate set of test data to perform the

dynamic functional and structural testing of a

program executed for APA or FaSt-Gen.

This paper consists of five consecutive sections after

the Introduction. Section 2 reviews on studies that

have attempted to incorporate both automation on

test data generation and programming assessment.

In the following section, it demonstrates how the test

set allocates an adequate set of test data based on

sample of programming exercises to map between

FaSt-Gen and APA. Section 4 briefly lays out the

overall design of FaSt-Gen in relation to APA. Section

5 reveals the analysis and findings from the

conducted controlled experiment and comparative

study to evaluate the completeness coverage of

FaSt-Gen in term of reliability and validity test data

adequacy. Finally, Section 6 concludes the paper.

2.0 RELATED WORK

To date, integration of automation of both test data

generation and programming assessments has been

at its initial stage. Some limited studies such as Guo et

al. [40] and Cheng et al. [41] have attempted to

automate the part of generating test data in APA.

Each study seems to utilise an external tool that is

either a product of past research within the same

institution or a commercialized product that incurs

cost. On the other hand, the studies by Jones [42]

and Isong [43] employ certain systematic techniques

of designing test cases. However, they still use manual

way of deriving test data and generate the test data

in a data file to be accessed by students. Besides, a

number of studies [4][44][45][14][15][46][16][47]

utilised JUnit framework to derive test set. The

framework requires high technical skill that it requires

rubric in mind, thus, it is not suitable for novices.

Thus far there have been five studies that mainly

focus on integrating test data generation and APA

that exclude the use of particular lecturers’

knowledge in test cases design. The studies are

among those that are relevant to the focus of this

study. The study by Malmi et al. [11] introduced a tool

known as TRAKLA2 that is comprised of a framework

to support randomized input values to assess students’

programming assignments. However, randomized

input is commonly arguable since it does not

guarantee correctness of the program. Furthermore,

the range of behaviours covered for large programs is

often smaller in comparison to all possible behaviours

of the program.

Shukur et al. [48] has proposed a schema to

generate test data and test weight for marking

students’ program. It utilizes a boundary value analysis

technique to generate test data. The proposed

schema, however could not function well if there is a

significant increase in the number of input variables.

Such circumstances lead to a large combination of

test data. Besides, this work merely applied functional

based test data generation technique in deriving the

desired test data.

Ihantola [49] worked on a study to propose a novel

idea of extracting test schemas and test data. The

technique of symbolic execution in Java PathFinder

(JPF) software model checker was used in deriving

the test data. The proposed technique not only

produces a test set, but also a set of test patterns.

Although the results of the study were reasonable and

well applied in other contexts than automatic

assessment of programming exercises, this work was

just the first step to bring formally justified test data

152 Rohaida Romli, Shahida Sulaiman & Kamal Zuhairi Zamli / Jurnal Teknologi (Sciences & Engineering) 77:9 (2015) 149-163

generation and education closer to each other. In

fact, the study only proposed a structural based test

data generation technique.

A study by Tilmann et al. [50] focuses more on an

interactive-gaming-based teaching and learning for

introductory to advanced programming or software

engineering courses. However, integrating test data

generation and APA have become part of the

proposed work. This study utilized Pex [51] to generate

the desired test data to analyze white-box testing on

students’ assignment. This tool employed the

technique of dynamic symbolic execution that is

similar to what has been proposed by Ihantola [49].

Thus, this study also focuses the structural based test

data generation technique.

A study by Hakulinen and Malmi [52] has yet

appeared to be the latest work. This study utilises

Quick Response (QR) code in automated assessment

of program correctness and has been supported by a

technique of randomized input to generate the

required test data. The assessment takes images as

input and produces a valid QR code as output when

solved correctly. The proposed method provides

automated assessment by taking advantage of

mobile devices and support for multiple programming

languages. The same as the work proposed by Malmi

et al. [11], the random technique is someway not

reliable.

Table 1 summarises the trend of the work described.

It shows that none of the studies have proposed both

functional and structural based test data generation

techniques for assessing students’ programming

exercises. Since the study on APA mainly aims at

producing more accurate markers, an integration of

both the techniques appears to be a better solution.

It is because both the aspects of functional and

structural coverage of a program code are

considered as quality factors in marking students’

programs. In addition, all the past studies have merely

used the techniques that do not fully cover the

criteria of reliability and validity of test data

adequacy (or the positive and negative testing

criteria) to achieve a criterion that is so-called

‘complete’ test criterion. These criteria ensure

programming assessments can be accomplished

more efficiently as the derived test data do cover the

adequate tests that adhere to the given

programming exercise specifications and error-prone

point coverage.

Complementing existing work and improving the

state-of-the-art in APA, it can be deduced that test

data generation plays an important part especially

for dynamic testing. A systematic way to

automatically derive and generate an adequate set

of test data for APA would generally give useful

benefit to lecturers of programming courses. Besides,

the effort to improve the shortcomings can enhance

the features of APA especially for the part of

feedbacks received by students’ as the final

assessment result. Furthermore, sufficient feedback is

an integral part in APA to allow students develop their

programming skill through learning from unexpected

mistakes made by them. It can also improve the

means of assessing the quality of students’ programs

as more accurate.
Table 1 Research trends of the integration of automatic test

data generation and programming assessment

Note: St is Static, Dy is Dynamic, BBT is Black-box Testing,

WBT is White-box Testing, TDG is Test Data Generation, and

NA is Not Available

Therefore, this study proposes a test data

generation framework (or FaSt-Gen) to derive and

generate test set and test data that satisfy the above

mentioned features. The framework is expected to

improve and enhance the features of APAs in giving

useful and sufficient feedback to students’ work.

Furthermore, it could also serve lecturers with a

mechanism in which they can furnish an adequate

set of test data to be used in assessing students’

programs regardless of having the optimal expertise

in the particular knowledge of test cases.

3.0 FaSt-Gen AND AUTOMATIC
PROGRAMMING ASSESSMENT

FaSt-Gen is a framework to derive a schema of test

set that includes an adequate set of test data to

perform APA. The framework comprises two parts,

which are functional and structural test data

generations. Both of them represent the parts that

provide test data to implement functional and

structural testing respectively as aspects of program

quality judged in assessing students’ programs. Design

of FaSt-Gen is supported by the result of the literature

surveys in our previous work [53] and findings of the

conducted preliminary study [54]. In overall, the

framework of criteria chosen for FaSt-Gen is shown in

Figure 1.

Based on Figure 1, the criteria that contribute to

FaSt-Gen are based on three viewpoints [22].

Firstly,“Does the technique require the examining of

the internal working?”. If the technique does examine

the internal workings such as statements, module

Author

(s)/year

Testing

category
Method Versatile

feature

Quality

factor

TDG

technique
BBT WBT St Dy

Malmi et

al. [11]

✓

✓ ✓
Correctness Random

Shukur et

al. [48]

✓

✓ ✓

Correctness

Boundary

value

analysis

Ihantola

[49]
 ✓

✓

NA Correctness

Symbolic

execution

with Java

PathFinder

Tilmann et

al. [50]
 ✓

✓

✓ Correctness

Dynamic

symbolic

execution

with Pex

Hakulinen

and Malmi

[52]

✓ ✓ ✓ Correctness Random

153 Rohaida Romli, Shahida Sulaiman & Kamal Zuhairi Zamli / Jurnal Teknologi (Sciences & Engineering) 77:9 (2015) 149-163

variables and others, it falls under white box testing.

Otherwise, the technique falls under black-box testing

[55]. FaSt-Gen embeds both techniques.

Secondly, “How does the technique select the test

data?”. The selection of test data depends on the

functional (the test data is derived based on the

program specifications) or the structural (that

depends on the paths of the program or path

coverage) of the program. Commonly, for

programming exercises the program specifications

refer to a list of specification statements that comprise

of conditions and/or operations that a program

intends to accomplish or satisfy respectively.

Thirdly, “What type of test data does the technique

generate?”. In this study, we select test data

according to a certain adopted criteria. The adopted

criteria rely on the evaluation criteria that suit the

predetermined classification techniques. It involves

the issues:

(i) “When should testing stop?”. Since this study

concerns the way of assessing the adequacy of

dynamic testing, it depends on the test

adequacy criterion [56]. Goodenough and

Gerhard [27] defined the concept of an ideal

test criterion, which is based on the assumption

that the purpose of testing is to determine

whether the Software Under Test (SUT) contains

any errors.

(ii) “How testing criterion is selected?”. For the

functional test data generation, to compliment

the positive testing in deriving test data, we also

embed the negative testing which concerns

certain error-prone points to provide an ideal test

adequacy criterion. For structural test data

generation, a path coverage adequacy

criterion is chosen as its thoroughness score is 4

out of 5 and it can achieve 100% path coverage

[57]. Instead of considering all finite paths from

start to end (positive testing), we includes testing

for the specific location of errors which might

break the path property (negative testing) similar

to functional test data generation.

(iii) “How to design the test set?”. The design of a

test set is directly influenced by the chosen

adequacy criterion. In designing test cases,

apart from inclusion to valid (true) and invalid

(false) path conditions, this study also embeds an

illegal path condition to cover positive and

negative testing criteria. This study proposes an

integration of specification-derived test and

simplified boundary value analysis to cover the

adequacy criteria for functional testing. Due to

the fact that, programming exercises have

always been driven by the statements of

specification hence the most appropriate

technique to design the test set is the

specification-derived test. In order to ensure it

incorporates the negative testing criteria, we

integrate the boundary value analysis technique.

For the structural test data generation, test cases

are derived in such a way that every path is

executed at least once as path coverage

ensures coverage of all the paths from start to

end. In order to obtain a limited number of paths

to be covered, this study employs boundary-

interior path testing technique [58]. Figure 2

presents the overall view of FaSt-Gen in APA.

Figure 2 shows that both functional and structural

test data generations produce a schema of test set

separately. The schemas comprise of test data to test

students’ programs in terms of the correctness of

program logic behaviour and its implementation

respectively. These test data will be used to verify the

correctness level of a program under testing in APA. A

lecturer is responsible to prepare programming

exercises with their solution models. The students play

their roles in preparing and submitting programming

solution to each programming exercise. They will be

notified with feedback as the final assessment results.

Both of the functional and structural test data

generation will result in a schema of test set, which

includes the adequate test data based on an

integration of positive and negative testing criteria

and weight values derived from weighted scoring

scheme [59].

154 Rohaida Romli, Shahida Sulaiman & Kamal Zuhairi Zamli / Jurnal Teknologi (Sciences & Engineering) 77:9 (2015) 149-163

Figure 1 The framework of criteria chosen for FaSt-Gen (adapted from Chu [22])

Figure 2 Overall view of FaSt-Gen in APA

Input + Control
Structure

Specifications

Input + Control
Structure

Specifications

Test set generator

Input Specifications

negative testing criterion

Testing Criteria
Specification-based

Coverage

Testing Criteria
Path Coverage

Structural Test Data Generation

Functional Test Data Generation

Lecturer Student

Test Data + Test
Set

Test set generator (semi-
automated)

F
e
e
d
b
a
c

k

Automatic
Programming
Assessment

Candidates’
Programs

positive testing criteria
Schema of Test Set

Solution Model +
Programming

Exercise

Control structure
specifications + input
specifications

positive testing criteria

negative testing criterion

Schema of Test Set

Test case weighting

Test case weighting

155 Rohaida Romli, Shahida Sulaiman & Kamal Zuhairi Zamli / Jurnal Teknologi (Sciences & Engineering) 77:9 (2015) 149-163

4.0 FaSt-Gen: EXAMPLES OF DERIVED TEST
SET

In order to map between FaSt-Gen and APA, we

include two samples of programming exercises (see

Figure 3 and Figure 4). Figure 3 depicts an example of

a programming exercise with its specifications and

Table 2 tabulates its generated test set (focuses on

the functional test data generation). Our previous

work [60] has detailed out the design of the functional

test data generation. From the table, the total

number of test cases is sixteen because both input

variables num1 and num2 influence output variable

sum (testCase(num1) testCase(num2) = 4 × 4 = 16).

Here, we elaborate the test cases of TC1 and TC2 to

describe the meaning of the test set as a whole. TC1

refers to a test case that exercises at the boundaries

of valid input partition (Vb) of num1 and num2 with

their respective values, which are -1 and 4. The values

of num1 and num2 are valid as long as they are

integer numbers and in between the range of [-10,

10]. If the solution to the programming exercise is

running against these values, it produces the output

Sum = 3, which satisfies the given specification (the

value of sum is an integer). The test case of TC2 will

exercise at the boundary of valid input partition (Vb)

of num1 and in between the upper and lower

boundaries-left of valid input partition (Vulb-left) of

num2. Their respective values are -14928 and 4.

Assume that Vulb-left of num2 refers to the valid value

of num2 (in this case is in between the range of [-

10,000, -20,000],). If a student’s programming solution

is executing against the input values, its expected

output value is Sum=-14924, which does satisfy the

functional specification.

Question:

Write a program that reads two integer numbers, num1 and

num2 and prints the total of sum of the numbers.

Functional specification:

Input – Two integer numbers, num1 and num2

Output – Sum (sum = num1 + num2), which is an integer

number

Functional process:

- If the inputs are integer numbers, then the total of sum

produced as the output is also an integer number.

- Format of program input and output are as follows:

 Input:

 2

 - 5

 Output:

 Sum = -3

Figure 3 Sample programming exercise and its specifications

for numeric global

For the structural test data generation, Figure 4

depicts the sample of programming exercise and its

functional specifications, and Figure 5 is its respective

flow-graph representation. Table 3 shows the derived

test set, which includes test cases that cover valid,

invalid and illegal path conditions. The detailed

design of the structural test data generation can be

found from our previous work [61].

Based on Figure 5, the program produces two

linearly independent paths which are; Path1 b, a1,

a2, e and Path2 b, a1, a3, e. For this study, these

paths cover the valid path conditions and they are

compulsory to be exercised because they are

commonly a part of program specifications in APA.

The same applies to the path that does not fulfil either

Path1 or Path2 that is the path of b, a1, e, which

cover invalid path conditions. Both valid and invalid

path conditions fall into positive testing criterion.

Table 2 Generated schema of test set for the sample

programming exercise in Figure 3

Test

Case

(TC)

Input Output Test Case Description

num1 num2

TC 1 -1 4 Sum=3 Vb of num1 and num2

TC 2 -14928 4 Sum=-14924 Vb of num1 and Vulb-left

of num2

TC 3 11529 4 Sum=11533 Vb of num1 and Vulb-

right of num2

TC 4 -1 -18620 Sum=-18621 Vb of num1 and IL of

num2

TC 5 -14928 -18620 Sum=-33548 Vulb-left of num1 and Vb

of num2

TC 6 11529 -18620 Sum=-7091 Vulb-left of num1 and

Vulb-left of num2

TC 7 -14928 -18620 Sum=-7091 Vulb-left of num1 and

Vulb-right of num2

TC 8 hmm -18620 Null/Error Vulb-left of num1 and IL

of num2

TC 9 -1 10020 Sum=10019 Vulb-right of num1 and

Vb of num2

TC 10 -14928 10020 Sum=-4908 Vulb-right of num1 and

Vulb-left of num2

TC 11 11529 10020 Sum=21549 Vulb-right of num1 and

Vulb-right of num2

TC 12 hmm 10020 Null/Error Vulb-right of num1 and IL

of num2

TC 13 -1 izp Null/Error IL of num1 and Vb of

num2

TC 14 -14928 izp Null/Error IL of num1 and Vulb-left

of num2

TC 15 izp 11529 Null/Error IL of num1 and Vulb-right

of num2

TC 16 izp hmm Null/Error IL of num1 and IL of

num2

Based on Table 3, the test cases of TC1, TC2 and

TC3 represent positive testing criteria (or test data

adequacy-reliability) and the test case of TC4 covers

negative testing criteria (or test data adequacy-

validity). Specifically, TC1 and TC2 cover the valid

path conditions and TC3 covers the invalid path

condition. As the parameter of age is an integer data

type, a String value is used to cover the illegal path

condition. This condition results the program under

testing to return an exception error, which determines

156 Rohaida Romli, Shahida Sulaiman & Kamal Zuhairi Zamli / Jurnal Teknologi (Sciences & Engineering) 77:9 (2015) 149-163

it is the point where an error occurs due to the input-

mismatch exception. Considering the flow graph in

Figure 5, the illegal path condition can take part as

long as the test datum to represent the parameter of

age is a non-integer data type. Although a number of

test cases can cover such path conditions, this study

merely selects one value of test datum to represent a

single type of exception error. It is mainly to reduce

the overall number of test cases generated especially

in the case of the number of input

variable/parameter increased significantly. It is

adequate in APA since it covers the negative testing

criteria.

Figure 4 Sample of programming exercise and its functional

specifications

Figure 5 Flow graph that represents the fragment of code

shown in Figure 4

Based on Table 3, the test cases of TC1, TC2 and

TC3 represent positive testing criteria (or test data

adequacy-reliability) and the test case of TC4 covers

negative testing criteria (or test data adequacy-

validity). Specifically, TC1 and TC2 cover the valid

path conditions and TC3 covers the invalid path

condition. As the parameter of age is an integer data

type, a String value is used to cover the illegal path

condition. This condition results the program under

testing to return an exception error, which determines

it is the point where an error occurs due to the input-

mismatch exception. Considering the flow graph in

Figure 5, the illegal path condition can take part as

long as the test datum to represent the parameter of

age is a non-integer data type. Although a number of

test cases can cover such path conditions, this study

merely selects one value of test datum to represent a

single type of exception error. It is mainly to reduce

the overall number of test cases generated especially

in the case of the number of input

variable/parameter increased significantly. It is

adequate in APA since it covers the negative testing

criteria.

Table 3 Schema of test set for the fragment of code in Figure

4

5.0 ANALYSIS AND RESULTS

In order to measure the completeness coverage of

the test data adequacy of FaSt-Gen in terms of the

selected criteria that are reliability and validity test

data adequacy, we conducted a controlled

experiment that employs the one-group pretest-

posttest design [62]. This study also conducted a

comparative study evaluation to contribute to the

means of measuring the completeness coverage of

the criteria of test data adequacy of FaSt-Gen

inclusion to the findings from the controlled

experiment (see Section 5.3).

Figure 6 depicts the design of the experiment.

Based on the figure, symbol X represents the exposure

of the group to the treatment of interest

(independent variable), while O refers to the

measurement of dependent variable. The pre-test

experiment intends to measure the degree of the

completeness coverage of the criteria of test data

adequacy (reliability and validity) for Current Method

Test

Case

(TC)

Input Test Case

Description

Path

Covered

Path Condition
age

TC 1 18 Exercise the

branch of

age>0 &&

age<21

b, a1,

a2, e

Valid branch of

age>0 && age<21

TC 2 45 Exercise the

branch of

age>21

b, a1,

a3, e

Valid branch of

age>21

TC 3 -4 null b, a1, e Invalid branches

of age>0 &&

age<21and

invalid age>21

TC 4 “abc” Error and the

program

terminate

None Illegal path Begin

End

b

a1

a3 a2

Display “Youth is a wonderful
thing. Enjoy.”

e

age>0 && age<21 age>=21

Display “Age is a state of
mind.” Enjoy.”

Set parameter
(age)

Question:

Write a program that reads an age of a person, which is

an integer, and prints the status of the age that is based

on the following:

 age status

 0 ≤ age ≥ 21 “Youth is a wonderful thing. Enjoy”

 age > 2 “Age is a state of mind. Enjoy”

Functional specification:

Input – an age, which is an integer value

Output – status of the age, which is a String

Functional Process:

- If the age is an integer and it fulfils one of the listed

condition (0 ≤ age ≥ 21 or age > 21), the program shall

return the corresponding status of the age as the program

output.

- If the age value is less than zero or a character, the

program returns a null value.

- If the age value is a String, the program returns an

exception error message.

157 Rohaida Romli, Shahida Sulaiman & Kamal Zuhairi Zamli / Jurnal Teknologi (Sciences & Engineering) 77:9 (2015) 149-163

in preparing a set of test data to perform the

dynamic testing in programming assessment. The

Current Method refers to the means of preparing test

data based on the individual user’s knowledge in a

certain test case design.

Figure 6 Design of the controlled experiment (adapted from

[62])

This experiment used three samples of

programming exercises as assignments in the scenario

setting that each subject should follow. The exercises

cover the three main control structures in Java

programming, which are sequential, selection and

repetition (loop). They are the most important

concepts of programming that every student taking

elementary of programming course should master.

The subjects of the controlled experiment were

lecturers who have been teaching the elementary

programming course in one of the public universities

in Malaysia. There were twelve (12) subjects who at

least have been teaching the programming course

for one semester. Due to the logistic constraints such

as the difficulty to access subjects of the experiment

who were located across different geographies and

the needs to have a tightly control setting, only one

university was selected to conduct the experiment.

Besides, the syllabi of elementary programming

courses are almost similar across universities in terms of

the topics covered. Thus, it is impractical to conduct

a series of experiments among lecturers of

elementary programming course at different higher

learning institutions.

We used a set of pre-test and post-test questions

that consisted of the same content. This section only

focuses the analysis and findings of items in Section A

of the questions. All items in Section A are close-

ended. We included both the criteria of positive and

negative testing. We conducted hypothesis testing by

running Wilcoxon signed-rank test to test the

formulated hypothesis as follows:

(i) Hypothesis I:

Hypothesis Ho: FaSt-Gen (Y) tends to be smaller

than the Current Method (X) in terms of the

completeness coverage of the criteria of test data

reliability in programming assessment, or U+ = #(Y

< X)

Hypothesis H1: FaSt-Gen (Y) tends to be larger

than the Current Method (X) in terms of the

completeness coverage of the criteria of test data

reliability in programming assessment, or U- = #(Y >

X)

(ii) Hypothesis II:

 Hypothesis Ho: FaSt-Gen (Y) tends to be smaller

than the Current Method (X) in terms of the

completeness coverage of the criteria of test data

validity in programming assessment, or U+ = #(Y <

X)

Hypothesis H1: FaSt-Gen (Y) tends to be larger

than the Current Method (X) in terms of the

completeness coverage of the criteria of test data

validity in programming assessment, or U- = #(Y >

X)

Hypothesis I tests the variable of reliability for the

functional and structural test data generation. The

same applies to Hypothesis II, which is with regard to

the variable of validity. The following sub-sections

reveal the analysis and findings for both hypothesis

testing.

5.1 Hypothesis Testing I

Table 4 gives the means and standard deviations of

the scores obtained under the criteria of test data

reliability of Current Method (X) and the criteria of test

data reliability of FaSt-Gen (Y). X refers to the mean of

deriving test data based on the lecturer’s knowledge

in a certain test cases design. It is shown that the

score obtained by Y (mean = 3.00) is larger than X

(mean = 1.9167). However, X showed greater

variability of scores (s.d. = 0.26827) as compared to Y

(s.d. = 0). The mean and standard deviation do not

show any statistical difference between the two

samples. The standard deviation of the score

obtained under the criteria of test data reliability of Y

is zero because Y appears to cover the criteria of

reliable test data adequacy in all the three samples

of programming exercises used in the experiment. As

Y is realized as a tool and all subjects referred to the

same statements of specifications, the same outputs

were produced.

Table 5 provides information about the rank scores.

It notifies the number of negative ranks and the

number of positive ranks. From the figure, it shows that

for all subjects, their score on Y was greater than X.

There were no tied ranks because no subject scored

the same for both Y and X. The footnotes below the

ranks table shows how the positive and negative

ranks relate.

The Wilcoxon test (see Table 6) evaluated the

difference between medians for the score of Y and X

concern, is significant z = -3.165, p < (0.002/2)=0.001.

The findings indicate significant differential concern

for Y versus X, with the higher coverage of the criteria

of reliability test data in Y. The mean rank of Y is 6.5,

while the mean rank of X is 0.0. Thus, this finding

indicates that there was enough evidence to reject

H0 (p > .025).

 O X O
 (Pre-test) (Treatment) (Post-test)

The criteria of reliability FaSt-Gen The criteria of reliability
and validity to measure the (FaSt-generator) and validity to measure
completeness coverage of the completeness
test data adequacy of coverage of test data
functional and structural adequacy of functional
TDG in programming and structural TDG in
assessment (Current Method) programming
 assessment

158 Rohaida Romli, Shahida Sulaiman & Kamal Zuhairi Zamli / Jurnal Teknologi (Sciences & Engineering) 77:9 (2015) 149-163

Table 4 Means and standard deviations of the scores

obtained under the criteria of test data reliability of X and Y

 N Mean Std.

Deviatio

n

Minimum Maximum

Test Data

Reliability

(X)

12 1.9167 .26827 1.75 2.50

Test Data

Reliability

(Y)

12 3.0000 .00000 3.00 3.00

Table 5 Table of rank scores between the criteria of test data

reliability of X and Y

Table 6 Table of test statistics for the criteria of reliability test

data adequacy

5.2 Hypothesis Testing II

Table 7 gives the mean and standard deviation of the

scores obtained under the criteria of test data validity

of Current Method (X) and the criteria of test data

validity of FaSt-Gen (Y). It is shown that the score

obtained by Y (mean = 3.00) is larger than X (mean =

1.7083). However, X showed greater variability of

scores (s.d. = 0.49810) compared to Y (s.d. = 0).

Means and standard deviations do not show any

statistical difference between the two samples. The

standard deviation of the score obtained under the

criteria of test data validity of Y is also zero due to the

same reason as explained for Hypothesis Testing I.

Table 8 provides the information on the rank scores

and the findings, which appear exactly the same as

the testing for Hypothesis I. The Wilcoxon test (see

Table 9) evaluated the difference between medians

for the score of Y and X concerns, is significant z = -

3.108, p < (0.002/2)=0.001. The findings indicate

significant differential concern for Y versus X, with the

higher coverage of the criteria of validity test data in

Y. The mean rank of Y is 6.5, while the mean rank of X

is 0.0. Thus, this finding indicates that there was

enough evidence to reject H0 (p > .025).

Table 7 Means and standard deviations of the scores

obtained under the criteria of test data validity of X and Y

 N Mean Std.

Deviatio

n

Minimum Maximu

m

Test Data

Validity (X)
12 1.7083 .49810 1.00 2.50

Test Data

Validity (Y)
12 3.0000 .00000 3.00 3.00

Table 8 Table of rank scores between the criteria of test data

validity of X and Y

Table 9 Table of test statistics for the criteria of validity test

data adequacy

Based on the findings of the testing of Hypothesis I

and Hypothesis II, it can be concluded that FaSt-Gen

significantly improves the criteria of reliable and valid

test data adequacy in programming assessment as

compared to what is employed in the current

practise of programming assessment. Therefore, it

proves that FaSt-Gen is able to furnish an adequate

set of test data to execute functional and structural

testing of a program for APA.

5.3 Qualitative Evaluation (Comparative Study)

This study also conducted a comparative study

evaluation to support the results of the controlled

experiment discussed in Section 5.1 and 5.2. It is to

compare in terms of the coverage of test data and

test cases between FaSt-Gen and the techniques

that were proposed by Shukur et al. [48], Ihantola

[49], and Tillmann et al. [50]. These studies are among

the relevant benchmarks available to be compared

 N Mean

Rank

Sum of

Ranks

Test Data

Reliability (Y) –

Test Data

Reliability (X)

Negativ

e Ranks
0a .00 .00

Positive

Ranks
12b 6.50 78.00

Ties 0c

Total 12

a. Test Data Reliability (Y) < Test Data Reliability (X)

b. Test Data Reliability (Y) > Test Data Reliability (X)

c. Test Data Reliability (Y) = Test Data Reliability (X)

 Test Data Reliability (Y) – Test Data

Reliability (X)

Z -3.165b

Asymp. Sig. (2-tailed) .002

a. Wilcoxon Signed Ranks Test

b. Based on negative ranks.

 N Mean

Rank

Sum of

Ranks

Test Data

Validity (Y) –

Test Data

Validity (X)

Negativ

e Ranks
0a .00 .00

Positive

Ranks
12b 6.50 78.00

Ties 0c

Total 12

a. Test Data Validity (Y) < Test Data Validity (X)

b. Test Data Validity (Y) > Test Data Validity (X)

c. Test Data Validity (Y) = Test Data Validity (X)

 Test Data Validity (Y) – Test Data Validity

(X)

Z -3.108b

Asymp. Sig. (2-

tailed)
.002

a. Wilcoxon Signed Ranks Test

b. Based on negative ranks.

159 Rohaida Romli, Shahida Sulaiman & Kamal Zuhairi Zamli / Jurnal Teknologi (Sciences & Engineering) 77:9 (2015) 149-163

with FaSt-Gen. The analysis of the comparative study

will be shown and discussed separately based on the

testing techniques considered (functional and

structural testing). Two samples of programming

exercises were used to analyse the functional and

structural testing separately.

If it is with regard to the functional testing (Case 1),

the analysis is between FaSt-Gen and the technique

proposed by Shukur et al. [48]. Otherwise, this study

compared FaSt-Gen and the technique proposed by

Ihantola [49] and Tillmann et al. [50] if it puts emphasis

on the structural testing (Case 2). The following sub-

sections present separately the two cases of the

comparative study and the one with regard to the

measurement of correctness quality of students’

programs in APA.

5.3.1 Test Data Adequacy Criteria of Functional

Testing–Case 1

Case 1 is an analysis of comparative study between

the technique proposed by Shukur et al. [48] and

FaSt-Gen. Figure 7 depicts the sample of

programming exercise used in the analysis of Case 1.

Table 10 tabulates the result of analysis of Case 1.

Question:

Write a program that reads an integer positive number,

num1 and returns a square root of the number.

Functional specification:

Input – an integer positive number, num1

Output – squareRoot, which is an integer number

Functional process:

- If the input is an integer number and greater than 0, then

the positive square root of the input shall be returned.

- When given an input of less than 0, the program will return

an error message “the value should be greater than zero”.

- Format of program input and output as follows:

 Input:

 4

 Output:

 2

Figure 7 Sample programming exercise used in analysis of

Case 1

As shown in the table, the work proposed by Shukur

et al. [48] produces more in the number of test cases

compared to FaSt-Gen, in terms of the test data

adequacy (reliable and valid). The study appears to

not include the full coverage of valid test adequacy

criteria (negative testing). Even though BVA

technique does cover negative testing criteria [63],

the study seems to exclude the test data that lead

the program under testing to return an error of

exception. In addition, in terms of the range of values

generated to represent test data, they do not cover

a wide range of values and seem likely among the

static values. However, FaSt-Gen covers a rather wide

range of values depending on the maximum and

minimum data type ranges of input variables

involved. Thus, from this result, it can be concluded

that FaSt-Gen furnishes a more adequate set of test

data compared to the technique proposed by Shukur

et al. [48].

5.3.2 Test Data Adequacy Criteria of Structural

Testing–Case 2

Case 2 is an analysis between the technique

proposed by Ihantola [49], and Tillmann et al. [50]

and FaSt-Gen. This study used the sample

programming exercise as shown in Figure 8 for the

analysis in terms of test data adequacy for structural

testing. As it is about structural testing, the program to

be used in testing should employ any non- sequential

control structures, such as selection or repetition. In

this analysis, the research in this thesis used a sample

programming exercise that applies the concept of

selection.

Table 10 Analysis result of Case 1

 Approach or

 technique

Comparison

criteria

The work

proposed by

Shukur et al.

[48]

FaSt-Gen

The total number of

test cases generated

Five (5) Four (4)

Technique to derive

test data

BVA Specification

derived test +

simplified version

of BVA

Test data coverage

(individual input

variable/parameter)

- Test datum at

the boundary

of input

domain, 0

- Test datum

just less than 0

(-α), -1

- Test datum

just greater

than 0 (+α),

+1.

- Test datum of

the most

negative

integer

number (-∞), -

10

- Test datum of

the most

positive

integer

number (+∞),

+10

- Test datum at the

boundary of

valid input

partition, a

random value

between [0,10]

- Test datum

between the

upper and lower

boundaries of

valid input

partition, a

random value

between [10,000,

20,000]

- Test datum

between the

upper and lower

boundaries of

invalid input

partition, a

random value

between [0, -

20,000]

- Test datum at an

error prone point

(illegal)

The range of values

among test data

Among the

small values of

integer

numbers

A different

variety of integer

values within the

range of values

of integer data

type

160 Rohaida Romli, Shahida Sulaiman & Kamal Zuhairi Zamli / Jurnal Teknologi (Sciences & Engineering) 77:9 (2015) 149-163

Table 11 shows the result of analysis of Case 2. It shows

that, in terms of the number of test cases covered,

FaSt-Gen is leading the work by Ihantola [49] and

Tillmann et al. [50] with having extra one test case.

Focusing the test data coverage, FaSt-Gen covers all

the branches (positive testing criteria) as in the work

by Ihantola. However, our approach has an inclusion

of test datum to cover the illegal path condition

(negative testing criteria). This concludes that FaSt-

Gen outperforms the technique proposed by Ihantola

[49] and Tillmann et al. [50] in terms of test data

adequacy criteria for structural testing. If considering

the means of generating test data, the work by

Ihantola [49] can make full automation to it. In our

study, it needs a partial human involvement to assign

the data to fit the respective test cases generated

(automated generation).

Question:

Write a program that reads a value of integer representing

personAge. Then, the program should be able to print a

message of votingStatus that defines whether or not that

person is eligible for voting. The value of personAge should

be in the range of 1 to 200. It is given:

personAge votingStatus

1 – 20 “you are not eligible for voting”

≥ 21 “you are eligible for voting”

Functional specification:

Input – personAge is an integer

Output – votingStatus, which is a String

Functional process:

- If the input value of personAge is in the range of 1 to 200,

then the program will return a message of votingStatus “you

are not eligible for voting” or “you are eligible for voting”

which is a String.

- If the value is not in the given range, then the program shall

return a message “the input is out of the range”.

- Format of program input and output are as follows:

 Input:

 24

 Output:

 You are eligible for voting

Figure 8 Sample programming exercise used in analysis of

Case 2

6.0 CONCLUSION AND FUTURE WORK

This paper has presented a framework of test data

generation particularly to execute the functional and

structural testing of a program in APA that is called

FaSt-Gen. In order to furnish an adequate set of test

data to conform to specifications of a solution model

as well as to include certain extend of error-prone

points coverage, FaSt-Gen embeds the positive and

negative testing criteria. This framework is expected

to assist the lecturers of the elementary programming

course to furnish an adequate set of test data to

assess the quality of correctness of students’

programming exercises both in terms of the dynamic

functional and structural testing. It also provides a

systematic and consistent way of deriving test data

among different individual lecturers regardless of

necessarily having an optimal expertise in the

knowledge of test cases design. In addition, this

feature benefits the lecturers in terms of reducing the

course workloads. These include the time spent for

marking programming exercises and avoiding them

to consider the critical aspects of designing the

suitable test cases to judge the correctness quality of

students’ programs.

The examples included in this paper show that the

derived test set and test data do fulfill the criteria of

an ideal test criterion that is both reliable and valid

[27]. Also, based on the findings collected from the

conducted experiment and comparative study

evaluation as discussed earlier, it can be deduced

that FaSt-Gen significantly improves the criteria of

reliability and validity test data adequacy compared

to as employed in the current practise of

programming assessment. Thus, it can be said FaSt-

Gen is able to furnish an adequate set of test data as

it covers what have been applied is the practice of

programming assessments.

Table 11 Analysis result of Case 2

Approach or

technique

Comparison

criteria

The work

proposed

by

Ihantola

[49]

The work

proposed by
Tillmann et al.

[50]

FaSt-Gen

The total

number of

test cases

covered

Four (4) Four (4) Five (5)

Technique

to derive

test data

Symbolic

execution

with Java

Pathfinder

(path

coverage)

Dynamic

symbolic

execution with

Pex (path

coverage)

based on

parameterized

unit testing

Path

coverage

based on

control flow

analysis

(integrate

positive and

negative

testing

criteria +

boundary-

interior path

testing)

Test data

coverage

- Test datum

at the

branch of 0

≤

personAge

≤ 20.

- Test datum

at the

branch of

personAge

< 0.

- Test datum

at the

branch of

20 <

personAge

≤ 200.

- Test datum

at the

- Test datum at

the branch of

0 ≤

personAge ≤

20.

- Test datum at

the branch of

personAge <

0.

- Test datum at

the branch of

20 <

personAge ≤

200.

- Test datum at

the branch of

personAge >

200.

- Test datum

at valid

branch of

0 ≤

personAge

≤ 20

- Test datum

at valid

branch of

20 <

personAge

≤ 200

- Test datum

at invalid

branch of 0

≤ personAge

≤ 20

- Test datum

at invalid

161 Rohaida Romli, Shahida Sulaiman & Kamal Zuhairi Zamli / Jurnal Teknologi (Sciences & Engineering) 77:9 (2015) 149-163

branch of

personAge

> 200.

branch of 20

<

personAge

≤ 200

- Test datum

to cover

illegal path

condition.

Values of

test data

The values

are

randomly

generated

based on

the path

condition

of certain

branch is

true.

The values are

generated

through input

parameter

based on the

path condition

of certain

branch is true.

Need a

human

involvement

(lecturer) to

assign test

data values

to each of

the

respective

test case

generated.

As for the future work, in order to realize the

approach so that it can be generalized and

applicable in the context of software testing research

area (particularly for a large scale of testing), an

application of any meta-heuristic algorithm or a

hybrid among of them possibly becomes a better

solution. In our previous work [53], it shows that meta-

heuristic algorithms [64] have become the popular

approach applied since early 2000. The main reason

is definitely due to the most optimum set of test data

as one of the way to ensure the testing process can

be undertaken efficiently as one of the main issues

and challenges in the area of automated test data

generation is the exposure to the NP-hard or non-

deterministic polynomial hard problem (the time

complexity of O(nn)). Other latest meta-heuristic

algorithms such as Harmony Search, and/or Fire-fly

could become a promising alternative as well.

In terms of the final output of the assessment, the

proposed framework does not provide explicitly the

description on the suggestions of what are necessary

to be taken by students to improve their programs if

their programs are fully or partially incorrect. This

additional feature able to assist students to learn from

their mistakes to produce a better quality solution to

programming exercises. Possibly, one of the resolution

strategies is by integrating the data mining concepts

focusing the classification methods (intelligent or non-

intelligent methods). The set of rules (or training data)

might refer to the collections of possible expected

outputs (correct and incorrect outputs) from testing.

Meanwhile, the possible decisions to the rules could

be the descriptions to the produced outputs and the

suggestions to improve the tested program especially

for the incorrect outputs (invalid or error of output).

To wrap-up, the proposed FaSt-Gen is expected to

be able to furnish the adequate set of test data to be

used to perform the dynamic functional and

structural testing of a program executed for APA. This

study also anticipates the growing of this kind of tool

to support both lecturers and students in managing

programming assessments particularly in the context

of Malaysia as nowadays only a very small universities

have made used of it.

Acknowledgement

The authors acknowledge Fundamental Research

Grant Scheme (FGRS) under the Ministry of Education,

Cost Centre 4F263 that partially supports this work.

References

[1] Truong, N., P. Bancroft, and P. Roe. 2005. Learning to

Program Through the Web. ACM SIGCSE Bulletin. 37(3): 9-

13.

[2] Shaffer, S. C. 2005. Ludwig: An Online Programming

Tutoring and Assessment System. ACM SIGCSE Bulletin.

37(2): 56-60.

[3] Jackson, D. 1996. A Software System for Grading Student

Computer Programs. Computers and Education. 27(3):

171-180.

[4] Tremblay, G. and E. Labonte. 2003. Semi-Automatic

Marking of Java Programs using Junit. In Proceeding of

International Conference on Education and Information

Systems: Technologies and Applications (EISTA ’03). 42-47.

[5] Saikkonen, R., L. Malmi, and A. Korhonen. 2001. Fully

Automatic Assessment of Programming Exercises. ACM

SIGCSE Bulletin. 33 (3): 133-136

[6] Aleman, J. L. F. 2011. Automated Assessment in

Programming Tools Course. IEEE Transactions on Education.

54(4): 576-581.

[7] Ihantola, P., T. Ahoniemi, and V. Karavirt. 2010. Review of

Recent Systems for Automatic Assessment of Programming

Assignments. In Proceedings of the 10th Koli Calling

International Conference on Computing Education

Research (Koli Calling ’10). 86-93.

[8] Jackson, D. and M. Usher. 1997. Grading Student Programs

using ASSYST. In Proceedings of the 28th SIGCSE Technical

Symposium on Computer Science Education. 35-339.

[9] Luck, M. and M. S. Joy. 1999. Secure On-line Submission

System. Journal of Software–Practise and Experience.

29(8): 721-740.

[10] Blumenstein, M., S. Green, A. Nguyen and V.

Muthukkumarasamy. 2004. GAME: A Generic Automated

Marking Environment for Programming Assessment. In

Proceedings of the International Conference on

Information Technology: Coding and Computing

(ITCC’04). 2: 212-216.

[11] Malmi, L., V. Karavirta, A. Korhonen, J. Nikander, O.

Seppala and P. Silvasti. 2004. Visual Algorithm Simulation

Exercise System with Automatic Assessment: TRAKLA2.

Informatics in Education. 3(2): 267-288.

[12] Choy, M., U. Nazir, C. K. Poon and Y. T. Yu. 2005.

Experiences in Using an Automated System for Improving

Students’ of Computer Programming. Lecture Notes in

Computer Science Learning (Springer Berlin/ Heidelberg).

267-272.

[13] Higgins, C. A., G. Gray, P. Symeonidis, and A. Tsintsifas.

2006. Automated Assessment and Experiences of Teaching

Programming. Journal of Educational Resources in

Computing. 5(3): Article 5.

[14] Gotel, O., C. Scharff and A. Wildenberg. 2007. Extending

and Contributing to an Open Source Web-Based System

for the Assessment of Programming Problems. In

Proceedings of the 5th International Symposium on

Principles and Practice of Programming in Java (PPPJ’07).

Lisboa, Portugal. 3-12.

[15] Auffarth, B., M. Lopez-Sanchez, J. C. Miralles, and A. Puig.

2008. System for Automated Assistance in Correction of

Programming Exercises (SAC). In Proceedings of the fifth

162 Rohaida Romli, Shahida Sulaiman & Kamal Zuhairi Zamli / Jurnal Teknologi (Sciences & Engineering) 77:9 (2015) 149-163

CIDUI–V International Congress of University Teaching and

Innovation.

[16] Tremblay, G., F. Gu´erin, A. Pons, and A. Salah. 2008. Oto,

A Generic and Extensible Tool for Marking Programming

Assignments. Journal of Software-Practice and Experience.

38(3): 307-333

[17] Nunome, A., H. Hirata, M. Fukuzawa and K. Shibayama.

2010. Development of an E-learning Back-end System for

Code Assessment in Elementary Programming Practice. In

Proceeding of the 38th Annual Fall Conference on

SIGUCCS. Norfolk, VA, USA. 181-186.

[18] Queiros, R. and J. S. Leal. 2012. PETCHA-A Programming

Exercises Teaching Assistant. In Proceeding of the 17th ACM

Annual Conference on Innovation and Technology in

Computer Science Education (ITiCSE’12). Haifa, Israel. 192-

197.

[19] Shamsi, F. A. and A. Elnagar. 2012. An Intelligent

Assessment Tool for Students’ Java Submissions in

Introductory Programming Courses. Journal of Intelligent

Learning Systems and Applications. 4(1): 59-69.

[20] Sherman, M., S. Bassil, D. Lipman, N. Tuck and F. Martin.

2013. Impact of Auto-Grading on an Introductory

Computing Course. Journal of Computing Sciences in

Colleges. 28(6): 69-75.

[21] Malmi, L., R. Saikkonen and A. Korhonen. 2002. Experiences

in Automatic Assessment on Mass Courses and Issues for

Designing Virtual Courses. In Proceedings of the 7th Annual

Conference on Innovation and Technology in Computer

Science Education (ITiCSE’ 02). Aarhus Denmark. 55-59.

[22] Chu, H. D., J. E. Dobson and I. C. Liu.1997. FAST: A

Framework for Automating Statistical-based Testing.

Software Quality Journal. 6(1): 13-36.

[23] Burnstein, I. 2003. Practical Software Testing. New York:

Springer-Verlag.

[24] Deimel-Jr., L. E. and B. A. Clarkson.1978. The TODISK-

WATLOAD System: A Convenient Tool for Evaluating

Student Programs. Proceeding of 16th ACM Annual

Southeast Regional Conference. Atlanta). 168-171.

[25] Van-Vliet, H. 2008. Sofware Engineering: Principles and

Practice. 3rd Edition. Great Britain: John Wiley & Sons, Ltd,

Glasgow.

[26] Sommerville, I. 1995. Software Engineering. 5nd Edition. USA:

Pearson-Addison Wesley.

[27] Goodenough, J. B. and S. L. Gerhart. 1975. Towards a

Theory of Test Data Selection. In Proceedings of the

International Conference on Reliable Software. New York,

USA. 493-510.

[28] Jackson, D. 2000. A Semi-Automated Approach to Online

Assessment. Proceedings of the 5th annual SIGCSE/SIGCUE

Conference on Innovation and Technology in Computer

Science Education (ITiCSE ’00). Helsinki, Finland. 164-167.

[29] Clarke, L. A. 1976. A System To Generate Test Data and

Symbolically Execute Programs. IEEE Transaction on

Software Engineering. SE-2(3): 215-222.

[30] Gupta, N., A. P. Mathur and M. L. Soffa. 1998. Automated

Test Data Generation Using an Iterative Relaxation

Method. ACM SIGSOFT Software Engineering Notes. 23(6):

231-245.

[31] Pargas, R. P., M. J. Harrold and R. R. Peck. 1999. Test-Data

Generation Using Genetic Algorithms. Journal of Software

Testing, Verification and Reliability. 9(4): 263-282.

[32] Offutt, J., S. Liu, A. Abdurazik and P. Ammann. 2003.

Generating Test Data from State-Based Specifications.

Software Testing, Verification and Reliability. 13: 25-53.

[33] Zamli, K. Z., N. A. M. Isa, M. F. J. Klaib and S. N. Azizan. 2007.

Tool for Automated Test Data Generation (and Execution)

Based on Combinatorial Approach. International Journal

of Software Engineering and Its Applications. 1(1): 19-36.

[34] Alshraideh, M., L. Bottaci and B. A. Mahafzah. 2010. Using

Program Data-state Scarcity to Guide Automatic Test Data

Generation. Software Quality Journal. 18(1): 109-144.

[35] Zhang, Y., D, Gong and Y. Luo. 2011. Evolutionary

Generation of Test Data for Path Coverage with Faults

Detection. In Proceeding of the 2011 Seventh International

Conference on Natural Computation (ICNC). 4: 2086-2090.

[36] McMinn, P., M. Harman, K. Lakhotia, Y. Hassoun and J.

Wegener. 2012. Input Domain Reduction through Irrelevant

Variable Removal and Its Effect on Local, Global, and

Hybrid Search-Based Structural Test Data Generation. IEEE

Transactions on Software Engineering. 38(2): 453-477.

[37] Benouhiba, T. and W. Zidoune. 2012. Targeted Adequacy

Criteria for Search-based Test Data Generation. In

Proceeding of 2012 International Conference on

Information Technology and e-Services (ICITeS’12). Sousse,

Tunisia. 1-6.

[38] Bhasin, H., N. Singla, and S. Sharma. 2013. Cellular

Automata Based Test Data Generation. ACM SIGSOFT

Software Engineering Notes. 38(4): 1-7.

[39] Monpratarnchai, S., S. Fujiwara, A. Katayama, and T.

Uehara. 2014. Automated Testing for Java Programs using

JPF-based Test Case Generation. ACM SIGSOFT Software

Engineering Notes. 39 (1): 1-5.

[40] Guo, M., T. Chai and K. Qian. 2010. Design of Online

Runtime and Testing Environment for Instant Java

Programming Assessment. In Proceeding of 7th

International Conference on Information Technology: New

Generation (ITNG 2010). Las Vegas, NV. 1102-1106.

[41] Cheng, Z., R. Monahan and A. Mooney. 2011. nExaminer: A

Semi-automated Computer Programming Assignment

Assessment Framework for Moodle. In Proceedings of

International Conference on Engaging Pedagogy 2011

(ICEP11). NCI, Dublin, Ireland. 1-12.

[42] Jones, E. L. 2001. Grading Student Programs- A Software

Testing Approach. Journal of Computing Sciences in

Colleges. 16(2): 185-192.

[43] Isong, J. 2001. Developing An Automated Program

Checker. Journal of Computing Sciences in Colleges.

16(3): 218-224.

[44] Edwards, S. H. 2003. Improving Student Performance by

Evaluating How Well Student Test Their Own Programs.

Journal on Educational Resources in Computing (JERIC).

3(3): 1-24.

[45] Fischer, G. and J. W. Gudenberg. 2006. Improving the

Quality of Programming Education by Online Assessment.

Proceedings of the 4th International Symposium on

Principles and Practice of programming in Java.

Mannheim, Germany. 208-211.

[46] Rossling, G. and S. Hartte. 2008. WebTask: Online

Programming Exercises Made Easy. Proceedings of

ITiCSE’08. Madrid, Spain. 363.

[47] Jurado, F., M. Redondo and M. Ortega. 2012. Using Fuzzy

Logic Applied to Software Metrics and Test Cases to Assess

Programming Assignments and Give Advice. Journal of

Network and Computer Applications. 35(2): 695-712.

[48] Shukur, Z., R. Romli and A. B. Hamdan. 2005. Skema

Penjanaan Data dan Pemberat Ujian Berasaskan Kaedah

Analisis Nilai Sempadan (A Schema of Generating Test

Data and Test Weight Based on Boundary Value Analysis

Technique), Technology Journal. 42(D): 23-40.

[49] Ihantola, P. 2006. Automatic Test Data Generation for

Programming Exercises with Symbolic Execution and Java

PathFinder. Master Thesis of Helsinki University of

Technology, Finland.

[50] Tillmann, N., J. D. Halleux, T. Xie, S. Gulwani and J. Bishop.

2013. Teaching and Learning Programming and Software

Engineering via Interactive Gaming. In Proceedings of the

2013 International Conference on Software Engineering

(ICSE’13). San Francisco, CA, USA. 1117-1126.

[51] Tillmann, N. and J. D. Halleux. 2008. Pex-white Box Test

Generation for .NET, Tests and Proofs. Lecture Notes in

Computer Science. 4966: 134-153.

[52] Hakulinen, L. and L. Malmi. 2014. QR Code Programming

Tasks with Automated Assessment. Proceedings of the 2014

conference on Innovation & technology in computer

science education (ITiCSE’14). Uppsala, Sweden. 177-182.

[53] Romli, R., S. Sulaiman and K. Z. Zamli. 2010. Automatic

Programming Assessment and Test Data Generation: A

Review on Its Approaches. In Proceeding of 2010

http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=6022397&contentType=Conference+Publications&searchField%3DSearch_All%26queryText%3Dtest+data+generation
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=6022397&contentType=Conference+Publications&searchField%3DSearch_All%26queryText%3Dtest+data+generation
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=6022397&contentType=Conference+Publications&searchField%3DSearch_All%26queryText%3Dtest+data+generation
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=6022397&contentType=Conference+Publications&searchField%3DSearch_All%26queryText%3Dtest+data+generation
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6012803
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=5710949&contentType=Journals+%26+Magazines&pageNumber%3D3%26searchField%3DSearch_All%26queryText%3Dtest+data+generation
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=5710949&contentType=Journals+%26+Magazines&pageNumber%3D3%26searchField%3DSearch_All%26queryText%3Dtest+data+generation
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=5710949&contentType=Journals+%26+Magazines&pageNumber%3D3%26searchField%3DSearch_All%26queryText%3Dtest+data+generation
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=32
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=32
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=6216624&contentType=Conference+Publications&pageNumber%3D3%26searchField%3DSearch_All%26queryText%3Dtest+data+generation
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=6216624&contentType=Conference+Publications&pageNumber%3D3%26searchField%3DSearch_All%26queryText%3Dtest+data+generation
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=6216624&contentType=Conference+Publications&pageNumber%3D3%26searchField%3DSearch_All%26queryText%3Dtest+data+generation
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=6216624&contentType=Conference+Publications&pageNumber%3D3%26searchField%3DSearch_All%26queryText%3Dtest+data+generation
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=6216624&contentType=Conference+Publications&pageNumber%3D3%26searchField%3DSearch_All%26queryText%3Dtest+data+generation

163 Rohaida Romli, Shahida Sulaiman & Kamal Zuhairi Zamli / Jurnal Teknologi (Sciences & Engineering) 77:9 (2015) 149-163

International Symposium on Information Technology

(ITSim’10). Kuala Lumpur, M’sia. 1186-1192.

[54] Romli, R., S. Sulaiman and K. Z. Zamli. 2011. Current

Practices of Programming Assessment at Higher Learning

Institutions. CCIS 179 (Springer Berlin/Heidelberg). Part 1:

471-485.

[55] Bache, R. and G. Bazzana. 1994. Software Metrics for

Product Assessment. International Software Quality

Assurance Series, Europe: McGraw-Hill.

[56] Tracey, N. G. 2000. A Search-Based Automated Test-Data

Generation Framework for Safety Critical Software. PhD

Thesis, University of York, UK.

[57] IPL Information Processing Ltd., Structural Coverage

Metrics. 1997. [Online] from:

http://www.ipl.com/pdf/p0823.pdf. [Accessed on: 10 Feb

2009].

[58] Pezze, M. and M. Young. 2008. Software Testing and

Analysis: Process, Principles, and Techniques. USA: John

Wiley & Sons, Inc.

[59] Gillies, A. 1992. Software Quality: Theory and Management.

Boston: Kluwer Academic Publisher.

[60] Romli, R., S. Sulaiman, and K. Z. Zamli. 2011. Test Data

Generation in Automatic Programming Assessment: The

Design of Test Set Schema for Functional Testing.

Proceeding of 2nd International Conference on

Advancements in Computing Technology (ICACT’11). Jeju

Island, South Korea.1078-1082.

[61] Romli, R., S. Sulaiman, and K. Z. Zamli.2013. Designing a Test

Set for Structural Testing in Automatic Programming

Assessment. International Journal of Advances in Soft

Computing and Its Application (Special Issues on

Application of Soft Computing in Software Engineering).

5(3): 41-64.

[62] Fraenkel, J. R. and N. E. Wallen. 2000. How to Design and

Evaluate Research in Education, 4th Edition, USA: McGraw-

Hill Companies.

[63] Howden, W. E. 1978. An Evaluation of the Effectiveness of

Symbolic Testing. Software-Practice and Experience. 8:

381-397.

[64] McMinn, P. 2004. Search-based Software Test Data

Generation: A Survey. Software Testing, Verification &

Reliability. 14(2): 105-156.

http://www/

