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Graphical Abstract 
 

 

Abstract 
 
This study is concerned with the development of a stochastic rainfall model that can generate 

many sequences of synthetic daily rainfall series with the similar properties as those of the 

observed. The proposed model is Markov chain-mixed exponential (MCME). This model is 

based on a combination of rainfall occurrence (represented by the first-order two-state 

Markov chain) and the distribution of rainfall amounts on wet days (described by the mixed 

exponential distribution). The feasibility of the MCME model is assessed using daily rainfall data 

from four rainfall stations (station S02, S05, S07 and S11) in Johor, Malaysia. For all the rainfall 

stations, it was found that the proposed MCME model was able to describe adequately 

rainfall occurrences and amounts. Various statistical and physical properties of the daily 

rainfall processes also considered. However, the validation results show that the models’ 

predictive ability was not as accurate as their descriptive ability. The model was found to 

have fairly well ability in predicting the daily rainfall process at station S02, S05 and S07. 

Nonetheless, it was able to predict the daily rainfall process at station S11 accurately.  

 

Keywords: MCME, Markov chain, mixed exponential distribution, daily rainfall, rainfall station 

 

Abstrak 
 

Kajian ini adalah berkaitan dnegan pembentukkan model hujan stokastik yang boleh 

menjana banyak siri hujan harian sintetik dengan sifat yang sama dengan data yang 

dicerap. Model yang dicadangkan ialah rantai Markov-bergabung eksponen. Model ini 

adalah berdasarkan gabungan antara kejadian hujan (diwakili dengan rantai Markov) 

dengan taburan jumlah hujan harian (digambarkan oleh taburan bergabung eksponen). 

Keupayaan model ini dinilai menggunakan data hujan harian dari empat stesen hujan 

(stesen S02, S05, S07 dan S11) di Johor. Keputusan kajian mendapati bahawa model yang 

dicadangkan berupaya untuk menerangkan secukupnya sifat statistic dan fizikal proses hujan 

harian yang diambil kira untuk keempat-empat stesen hujan. Walau bagaimanapun, 

keputusan pengesahan menunjukkan bahawa keupayaan model untuk membuat ramallan 

tidaklah setepat keupayaan deskriptif. Model ini didapati mempunyai keupayaan sederhana 

untuk meramal proses hujan harian di stesen S11 dengan tepat. Secara keseluruhan, model ini 

boleh menerangkan pola bermusim terhadap sifat cerapan hujan untuk semua stesen hujan.  

 

Kata kunci: MCME, rantai Markov, taburan bergabung eksponen, hujan harian, stesen hujan 
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1.0  INTRODUCTION 
 

Rainfall is a continuous process where various sizes 

and shapes of isolated raindrops fall at different 

rates. A significant period of dry weather with no 

rainfall can have major consequences on water 

supply affecting plants and crop production, while 

excessive rainfall may cause flood which brings a 

great cost to human, economic and environmental 

systems. Therefore, knowledge of the frequency of 

occurrence and intensity of rainfall events is essential 

for water resources management. 

A more recent climate issue of concern is the 

effects of rainfall variable on agriculture. Many 

studies have been conducted to study the impacts 

of rainfall variables, especially rainfall occurrence 

and intensity on crop production (Zhang et al. 2004, 

Zhang and Liu 2005, Yu et al. 2010, Yang et al. 2012). 

Such studies always require daily rainfall data as 

input. However, even when the rainfall records are 

available, they contain only limited and finite 

information regarding the historical rainfall data. With 

this limitation, stochastic simulations of rainfall have 

been widely used to generate many sequences of 

synthetic rainfall series that could accurately 

preserve the properties of the observed rainfall at a 

given location. 

Generally, there are two stochastic models that 

are commonly being used in describing the rainfall 

process, namely cluster model (Kavvas and Delleur 

1981) and occurrence-amount model (Woolhiser 

and Roldan 1982). Compared to cluster model, Han 

(2001) showed that the occurrence-amount model 

provides a better fit to rainfall amounts. Occurrence-

amount model consists of two components: rainfall 

occurrence and rainfall amount. The rainfall 

occurrence is based on the sequence of wet and 

dry days while the rainfall amount is based on wet 

day amount. Two models to represent each 

component are combined to form an overall rainfall 

model. Markov chain-mixed exponential (MCME) is 

an example of occurrence-amount model that has 

successfully been employed to model daily rainfall 

series (Woolhiser and Pengram 1979, Woolhiser and 

Roldan 1986, Han 2001, Hussain 2008, Detzel and 

Mine 2011). 

Fadhilah et al. (2007b) used MCME model for 

simulating hourly rainfall series in Peninsula Malaysia. 

It was found that the MCME model was able to 

preserve the statistical and physical properties of the 

rainfall process. The capability of this model need to 

be further assessed using different data sets. 

Therefore, this study utilized the capability of MCME 

model using the daily rainfall series. The objectives 

are to generate synthetic daily rainfall series using 

MCME model and assess the performance of the 

model by comparing the synthetic daily rainfall series 

with the observed daily rainfall data for some areas 

in Johor. The model’s ability to preserve accurately 

the statistical and physical properties of the 

observed data will be evaluated. This is because this 

model will offer significant help to the water resource 

and planning authorities in generating synthetic 

data at stations where data quality and records are 

inadequate.  

 

 

2.0  EXPERIMENTAL 
 

2.1  Study Area and Data 

 

Johor is the largest state in the southern part 

Peninsular Malaysia and is located between the 

1°20"N and 2°35"N latitudes. It covers a total land 

area of about 19210 km² and has an equatorial 

climate with northeast monsoon rain from November 

until February blowing from the South China Sea. 

The daily rainfall dataset of 12 rainfall stations in 

Johor, which covers the period from January 1975 to 

December 2007 were used in this study. The data sets 

obtained from Malaysia Metrological Department 

were of good quality with no missing values 

throughout the 33 year period. Location of the 

rainfall stations can be seen in Figure 1 and Table 1. 
 

 
 

Figure 1 Location of rainfall stations in Johor 
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Table 1 List of rainfall stations considered with their 

geographical coordinates 

 

Station Station Name Latitude Longitude 

S01 Ladang Getah 

Kukup Pontian 

1°21'00"N 103°27'36"E 

S02 Ladang Benut 

Rengam 

1°50'24"N 103°21'00"E 

S03 Stor JPS JB 1°28'12"N 103°45'00"E 

S04 Pintu Kawalan 

Tampok Batu 

Pahat 

1°37'48"N 103°12'00"E 

S05 Senai 1°37'48"N 103°40'12"E 

S06 Sek Men Bkt 

Besar 

1°45'36"N 103°43'12"E 

S07 Sek Men Inggeris 

Batu Pahat 

1°52'12"N 102°58'48"E 

S08 Pintu Kawalan 

Sembrong 

1°52'48"N 103°03'00"E 

S09 Pintu Kawalan 

Separap 

1°55'12"N 102°52'48"E 

S10 Kluang 2°01'12"N 103°19'12"E 

S11 Tangkak 2°15'00"N 102°34'12"E 

S12 Mersing 2°27'00"N 103°49'48"E 

 

 

2.2  Markov Chain-Mixed Exponential (MCME) model 

 
Markov chain-mixed exponential (MCME) model is a 

type of occurrence-amount model. This model can 

be expressed mathematically by assuming the 

amount of rainfall falling on 𝑡𝑡ℎ day and 𝑛𝑡ℎ year is a 

random variable. The MCME model {𝑍𝑛(𝑡): 𝑡 =
 1, 2, … ;  𝑛 =  1,2, … } is defined as: 

 
𝑍𝑛(𝑡) = 𝑋𝑛(𝑡)𝑌𝑛(𝑡)                                                            (1)  
 

where 𝑋𝑛(𝑡) represents the occurrence process and 

𝑌𝑛(𝑡) represents the amount of rainfall when 𝑋𝑛(𝑡) is 

wet. The process of daily rainfall occurrences is 

represented by a first-order two-state Markov chain 

while the mixed exponential distribution is used to 

describe the distribution of daily rainfall amounts on 

wet days. 

 

2.2.1 The Occurrence Process 
 

A first-order Markov chain model is used to simulate 

daily rainfall occurrences due to its simplicity and the 

relative ease in estimating the model’s two 

parameters. The rainfall data is treated as a series of 

two states, namely dry or wet; modelled as either a 0 

or 1 respectively. The random variable represents the 

occurrence or non-occurrence of precipitation on 

day t of year n can be expressed as: 

 

𝑋𝑛 = {
0     if day 𝑡 is dry
1     if day 𝑡 is wet

                                                  (2)  

Thus, the transition probabilities of the first-order 

Markov chain are defined as follows: 

 
𝑝𝑖𝑗(𝑡) = 𝑃{𝑋𝑛(𝑡) = 𝑗 | 𝑋𝑛(𝑡 − 1) = 𝑖}                         (3) 

 

where i and  j can be 0 or 1, t = 1, 2,… and n = 1,2,3… 

The maximum likelihood estimation is used to 

estimate transition probabilities by computing the 

observed number of transitions 𝑎𝑖𝑗,𝑘(𝑡) from state i on 

day t to state j on day t+1 in period k across the 

entire length of record (Woolhiser and Pegram 1979). 

By taking the year into k = 12 monthly periods, two 

transition probabilities to be estimated are 

formulated as follows: 

 
𝑝00,𝑘(𝑡) =  𝑎00,𝑘(𝑡)/[𝑎00,𝑘(𝑡) + 𝑎01,𝑘(𝑡)]                        (4) 

𝑝10,𝑘(𝑡) = 𝑎10,𝑘(𝑡)/[𝑎10,𝑘(𝑡) + 𝑎11,𝑘(𝑡)]                          (5) 

 

where 𝑝00 is the probability of a day to be dry given 

that the previous day was dry and 𝑝10 is the 

probability of a day to be dry given that the previous 

day was wet. 

 

2.2.2  The Amount Process 

 

Motivated by Fadhilah et al. (2007a) and Suhaila et 

al. (2007) whom have proven that the mixed 

exponential distribution model is suitable in 

describing rainfall data in Peninsular Malaysia, the 

mixed exponential distribution is used in this work to 

model the daily rainfall amounts on wet days.  

Let 𝑌𝑛(𝑡) denotes the rainfall amount on the 𝑡𝑡ℎ day 

of the 𝑛𝑡ℎ year. If 𝑋𝑛(𝑡) = 1, then 𝑌𝑛(𝑡) is greater than 

or equal to a threshold value. In this study, the 

threshold value is equal to 1mm where rainfall 

amount less than 1mm is considered as dry day. The 

distribution of daily rainfall amounts 𝑌𝑛(𝑡) is described 

by the mixed exponential as follows: 

𝑓𝑌𝑛(𝑡)(𝑥) = (𝑝/𝛽1)exp (−
𝑥

𝛽1
+ (1 −

𝑝

𝛽2
) exp (−

𝑥

𝛽2
) (6) 

 

for x ≥ 1, 0 ≤ 𝑝 ≤ 1 and 0 < 𝛽1 < 𝛽2 where 𝑝 is the 

mixing probability, 𝛽1 and 𝛽2 explain a small mean 

and large mean respectively of two exponential 

distributions and x represents the daily rainfall 

amount on wet day.  

The parameters of the mixed exponential 

distribution are estimated through the method of 

maximum likelihood (MLE) with the log-likelihood 

function defined as follows: 

𝑙 = ln 𝐿 = ∑ ln [
(

𝑝

𝛽1
) exp (−

𝑥

𝛽1
) +

(1 − 𝑝/𝛽2)exp (−𝑥/𝛽2)
]

𝑛

𝑖=1

                     (7) 

 

where 𝑛 is the sample size. 

 

The iterative optimization technique is used to 

maximize the log-likelihood function which is in 

implicit form. Everitt and Hand (1981) suggested the 

following solutions for estimating the parameters to 

the log-likelihood equation. 

�̂� = (1/𝑛) ∑ �̂�(1|𝑥𝑖

𝑛

𝑖=1

)                                                       (8) 

�̂�1 = (1/𝑛�̂�) ∑ �̂�(1|𝑥𝑖

𝑛

𝑖=1

)𝑥𝑖                                                (9) 
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�̂�2 = [1/𝑛(1 − �̂�)] ∑ �̂�(2|𝑥𝑖

𝑛

𝑖=1

)𝑥𝑖                                        (10) 

Where  

 

 �̂�(1|𝑥𝑖) = {(𝑝/𝛽1)[exp (−𝑥𝑖/𝛽1)]}/{(𝑝/𝛽1)[exp (−𝑥𝑖/
                           𝛽1)] + (1 − 𝑝/𝛽2)[exp (−𝑥𝑖/𝛽2)]}  

 

�̂�(2|𝑥𝑖) = {(1 − 𝑝/𝛽2)[exp (−𝑥𝑖/𝛽2)]}/{(𝑝/𝛽1)[exp (−𝑥𝑖/
𝛽1)] + (1 − 𝑝/𝛽2)[exp (−𝑥𝑖/𝛽2)]}   

 

These iterative equations are used for getting the 

optimal solution using a method suggested by 

Nguyen and Mayabi (1990). Through this method, 

seven initial estimates for 𝑝 and 𝛽1 are formed by 

ranging 𝑝 from 0.2 to 0.8 at intervals of 0.1 and 𝛽1 

from 0.2�̂� to 0.8�̂� at intervals of 0.1�̂� where �̂� is the 

mean rainfall amounts of all wet days. The 

corresponding 𝛽2 is calculated using the given 𝑝 and 

𝛽1: 

 
𝛽2 = [�̂� − (𝑝/𝛽1)]/(1 − 𝑝)                                           (11) 
 

The iteration provides the highest value out of the 

seven likelihood functions is taken to be the optimal 

solution to estimate the parameters. 

 

2.3  Assessment of the MCME model 

 

Daily rainfall series from station S02, S05, S07 and S11 

(chosen randomly from 12 rainfall stations in Johor) 

are used to assess the performance of the daily 

MCME model. The series are divided into two-

subseries with different length based on the rule of 

thumb. The longer sub-series (approximately 2/3 

length of series) is used to calibrate the model and 

the shorter sub-series (approximately 1/3 length of 

series) is used to validate the model. Based on the 

parameter set estimated from calibration period 

(1975-1997), 30 simulations of synthetic daily rainfall 

series for 33 year period (1975-2007) were generated 

using random number generation process.  

For the evaluation of MCME model’s performance, 

simulated MCME parameters will be compared with 

the observed values for calibration and validation 

period (1998-2007). In addition, a set of statistical and 

physical properties will also be used for the 

evaluation of model’s ability in preserving the 

observed properties of rainfalls. In this study, these 

comparisons are analysed monthly. For the month of 

February, the analysis is conducted separately for 

the non-leap years and leap years where February 1 

and February 2 represent the February for the non-

leap years and leap years respectively. 

Model evaluation is based on the graphical 

comparison between the simulated and observed 

characteristics. Graphically, the simulated rainfall 

characteristics are represented by the boxplots and 

the observed characteristics are represented by the 

dots connected by the dashed lines. The proposed 

model is said to have an “excellent” or “very well” 

ability in conserving the characteristics of historical 

data if the observed value is comparable to the 

median value (the middle 50% value) of the boxplot. 

If the observed value falls on the whiskers and within 

the range defined by the simulated minimum and 

maximum, then the proposed model is said to have 

a “fairly well” ability. Otherwise, the model either 

underestimates or overestimates the observed 

characteristics.  

Performance of MCME model in calibration period 

and validation period would be compared. If MCME 

model can perform well for calibration period, this 

means that the model has the ability to describe the 

daily rainfall process. On the other hand, if the MCME 

model can preserve observed characterize of 

rainfalls for the validation period, the model is said to 

have predictive ability.  

 

 

3.0  RESULTS AND DISCUSSION 
 

3.1 Performance of the Daily MCME Model in 

Calibration Period (1975-1997) 

 

In assessing the descriptive ability of MCME model, 

daily rainfall series from year 1975 to 1997 is used in 

the calibration process. At each station, monthly 

MCME parameters for calibration period are 

estimated using MLE and the results are summarized 

in Table 2. These calibrated parameters are used to 

generate 30 simulations of synthetic time series for 33 

year period. From the 30 sets of monthly simulated 

data, simulated characteristics (represented by 

boxplots) computed for all stations are compared 

with the empirical characteristics (represented by 

the dots connected by the dashed line). In this 

section, however only the graphical comparison for 

station S02 is depicted (see Figures 2 to 6).   

 

3.1.1  Transition Probabilities for Calibration Period 

 

Graphical comparisons (Figure 2) have shown that 

the simulated transition probabilities are well 

preserved and comparable to the empirical values 

for four rainfall stations. The median value of each 

boxplot excellently matched the empirical value. 

Besides, the seasonal trends of the probabilities are 

also well preserved. Thus, it can be concluded that 

the daily rainfall occurrence characteristics for all 

stations are well preserved by the MCME simulations. 
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Figure 2 Comparison between simulated and empirical 

Markov chain parameters at station S02 

 

 

At station S02, the probability of a dry day following 

another dry day decreases rapidly from the month of 

January till April followed by a slight increase till June 

and finally declines to its lowest value in November 

before rising again in December. Besides, the 

relatively low value of  𝑝10 in the months of 

November and December shows that a given day in 

these two months are more unlikely to be dry if the 

previous day was wet.  

Transition probabilities at station S05 show that a 

day in the months of April and November tends to 

be dry if the previous day was dry. Similarly, there is a 

higher probability of rain on a given day if the 

previous day was also rainy in the months of January, 

November and December. Besides, comparison 

results also have shown that the month of November 

as the wettest month in both station S07 and S11. This 

is because the probability of a day being wet is the 

highest during this month, regardless of the status of 

the previous day.  

In general, all stations show a low probability of 

having a given day is dry if the previous day was wet 

in the months of November, December and January. 

 

3.1.2 Mixed Exponential Parameters for Calibration 

Period 

 

From the comparisons, the middle 50% of simulated 

mixing parameters, 𝑝 in the boxplots (see Figure 3), in 

particular, do not match the empirical values. This 

happens for the month of October and December in 

station S02, November and December in station S07 

with the month of April in station S11. This is also true 

for the simulation of the smaller mean, 𝛽1 and larger 

mean, 𝛽2 in the same month in station S02. The 

middle 50% of boxplots for the smaller mean at 

station S07 and larger mean at station S11 however 

contain the empirical values. Only empirical larger 

mean for the month of December in station S07 and 

empirical smaller mean for the month of April in 

station S11 are on the whisker of the boxplots.  

In contrast, the median of the simulated boxplots 

and the empirical parameter values for station S05 

show close agreement in value as well as the trend. 

Its rainfall distribution largely consists of a larger mean 

distribution. Overall, daily rainfall amounts 

characteristics for all rainfall stations are well 

preserved by the MCME model. 

 

Figure 3 Comparison between simulated and empirical 

mixed exponential parameters at station S02 

 

 

The wide differences in simulated and empirical 

values for the mixed exponential for some months in 

all rainfall stations can be explained mainly due to 

the fact that the mixed exponential parameters are 

estimated by the maximum likelihood method. This 

method does not aim to preserve the specific 

observed mixed exponential parameters but merely 

aims to find any parameters that maximize the 

likelihood of matching the mixed exponential 

function to the empirical distribution. Therefore, it is 

expected that the simulated rainfall series would 

provide a good match between the simulated 

mixed exponential function and the empirical rainfall 
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distribution rather than preserve the exact values of 

mixed exponential parameters. 

 

3.1.3  Statistical Properties for Calibration Period 

 
Statistical properties (mean, standard deviation, 

kurtosis and skewness) of 30 simulations and 

observed rainfall series are compared (see Figure 4). 

At all stations, the means of the simulations have 

close agreement with the observed statistical 

properties. For the standard deviation, most of the 

empirical values are contained in the middle 50% of 

the boxplots except for the month of July and 

November in station S02 with the month of 

December in station S05. MCME model preserved 

the kurtosis of daily rainfall series accurately for the 

whole year except for the month of December in 

station S05 with the month of January and March in 

station S07. This is also true for the skewness of the 

observed series where the empirical values for the 

same months are underestimated by the model. 

Overall, statistical properties of the observed rainfall 

series are well preserved by the MCME model. 

 

 
Figure 4 Comparison between simulated and empirical 

statistical properties at station S02 

 

 

3.1.4  Physical Properies for Calibration Period 

 

Physical properties include the daily maximum and 

number of dry or wet days is evaluated on monthly 

basis. For daily maximum rainfall, the observed 

values are contained in the middle 50% of the 

boxplots for most of the months in all stations, 

however only result of station S02 is displayed. 

Empirical values for the month of February1, April, 

October and November in station S02, May, October 

and November in station S05, January, April, June 

and August in station S07 and April, June and 

October in station S11, however fall on the whisker of 

the boxplots. Only empirical values for the month of 

December in station S05 and March in station S07 

are underestimated by the MCME model. 

 

 
Figure 5 Comparison between simulated and empirical 

physical properties at station S02 

 

 

In contrast, the number of wet days and dry days 

for all stations has shown excellent agreements 

between the observed values and the medians of 

simulated properties. Among the twelve months for 

all rainfall stations, January is the driest month while 

November is the month that gives most rainfall. In 

general, the simulations are able to preserve 

adequately various physical properties of the rainfall 

series considered. 
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Stn MCME 

parameters 

Month 

Jan Feb1 Feb2 Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

S02 𝑝00 0.8516 0.8166 0.7500 0.6946 0.5973 0.6582 0.6927 0.6659 0.6493 0.6386 0.5876 0.5556 0.7471 

𝑝10 0.4566 0.5039 0.6957 0.4629 0.4523 0.5305 0.5726 0.6024 0.5103 0.5105 0.4907 0.3962 0.3935 

𝑝 0.1351 0.7463 0.4563 0.3022 0.2412 0.1337 0.7390 0.0965 0.6452 0.6636 0.0399 0.4108 0.0501 

𝛽1 3.0096 12.6368 6.6994 9.9421 7.9920 6.8397 8.9758 13.0811 10.3362 10.4892 6.1012 6.3224 4.7152 

𝛽2 20.4330 33.1432 20.2865 22.0159 19.0520 14.9723 20.0248 13.0846 21.5956 23.7107 14.1564 21.9325 18.9770 

S05 𝑝00 0.8046 0.7781 0.7368 0.6841 0.5106 0.5618 0.6566 0.5966 0.6447 0.5876 0.5324 0.4586 0.6193 

𝑝10 0.4069 0.4966 0.5000 0.4570 0.4513 0.4824 0.5714 0.5446 0.5261 0.5331 0.4301 0.3950 0.3722 

𝑝 0.4673 0.2949 0.4585 0.3298 0.2844 0.3411 0.4443 0.2765 0.4901 0.5824 0.4005 0.5094 0.7359 

𝛽1 5.4787 4.7769 5.0591 6.3675 6.6170 6.2977 6.6453 4.0306 6.5210 8.9870 5.5809 6.6787 9.0661 

𝛽2 23.7794 20.7607 21.9031 21.0554 19.2810 18.7958 18.7269 17.1076 22.5401 23.1960 19.8413 23.3577 36.5262 

S07 𝑝00 0.7971 0.7411 0.7381 0.7303 0.6483 0.7149 0.7313 0.6979 0.7078 0.6722 0.6642 0.5714 0.6850 

𝑝10 0.4464 0.4790 0.6875 0.4457 0.5404 0.4704 0.5747 0.5909 0.5400 0.5167 0.4323 0.3934 0.4505 

𝑝 0.6986 0.2831 0.3149 0.3511 0.8046 0.5193 0.3940 0.8980 0.4704 0.5039 0.7236 0.9088 0.9834 

𝛽1 7.0199 5.4717 6.2587 7.2774 14.0169 6.3468 6.5628 14.9127 9.3506 9.8564 10.3546 14.2634 15.6519 

𝛽2 27.2277 18.7184 29.1731 20.7365 32.7641 24.4345 20.2964 42.8463 22.5102 20.7982 23.7423 23.6356 50.5579 

S11 𝑝00 0.9002 0.8408 0.8045 0.7105 0.6209 0.7134 0.7500 0.7111 0.7344 0.6636 0.6493 0.5620 0.7700 

𝑝10 0.4959 0.6061 0.6341 0.5156 0.6269 0.5897 0.7706 0.6590 0.5565 0.5960 0.5069 0.4461 0.4622 

𝑝 0.3243 0.6765 0.2458 0.2256 0.0661 0.4041 0.4403 0.5255 0.1029 0.1151 0.5110 0.4507 0.9073 

𝛽1 7.9893 10.3615 7.1712 5.9123 6.4171 9.6409 8.9700 10.7701 4.9727 15.2235 9.2265 9.6229 12.3516 

𝛽2 16.1527 26.7960 25.3803 17.8925 19.1372 22.7398 22.3124 19.8585 16.7193 15.2336 18.7951 18.9417 30.8703 

Table 2 Summary of MCME parameters estimation for four rainfall stations 
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3.2  Performance of the Daily MCME Model in 

Validation Period (1998-2007) 

 

In assessing the predictive ability of MCME model, 

daily rainfall series from same rainfall stations which 

covers the period from 1998 to 2007 is used in the 

validation process. Simulated MCME parameters and 

properties of 30 simulations for the same period are 

compared to the empirical values using graphical 

method. A further investigation for the simulated and 

empirical characteristics is conducted by 

summarizing the performance of simulated 

characteristics on the bar chart and the findings are 

discussed in the sections below.  

 
3.2.1  Transition Probabilities for Validation Period 

 

The performance of simulated transition probabilities 

at four rainfall stations is summarized in Figure 6. 

Among the stations, empirical transition probabilities, 

𝑝00 from station S02 are most likely to be well 

preserved by the simulated values followed by 

station S11, S05 and finally S07. Besides, it is apparent 

that at each rainfall stations majority of the empirical 

transition probabilities, 𝑝00 are fairly well preserved. 

Empirical values from all stations have the possibility 

to be overestimated except for the station S07. 

 

 
Figure 6 Performance of simulated transition probabilities at 

four rainfall stations 

At station S02, over 50% of the empirical transition 

probabilities, 𝑝10 are underestimated by the MCME 

model. But, majority of the empirical transition 

probabilities at station S05 are excellently preserved 

by the simulated values. Furthermore, most of the 

empirical values at station S11 are overestimated.  

Generally, MCME model is equally likely to well, 

fairly well preserve or underestimate the observed 

Markov chain parameters at station S02. However, 

the model tends to well or fairly well preserve the 

empirical values for the Markov chain parameters at 

station S05. Besides, MCME simulations are prone to 

fairly well preserve the empirical transitional 

probabilities at station S07 while overestimate at 

stationS11. 

 

3.2.2  Mixed Exponential Parameters for Validation 

Period 

 

Figure 7 summarizes the performance of simulated 

mixed exponential parameters at four rainfall 

stations. Among these stations, no empirical 

parameters are overestimated except for the mixing 

probability, 𝑝 at station S07. Most of the simulated 

mixing probability at station S02, S05 and S11 are 

comparable to the empirical values. In contrast, 

majority of the empirical probabilities at station S07 

are fairly well preserved.   

At station S11, more than 50% of empirical smaller 

mean, 𝛽1 are well preserved by MCME model. 

However, none of empirical smaller mean at station 

S02 is well preserved. They are either fairly good 

preserved or underestimated. Besides, majority of the 

empirical smaller mean at station S05 and S07 are 

fairly well preserved. For larger mean 𝛽2, most of 

empirical values at station S02 are fairly well 

preserved and this is also true for other three stations.  
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Figure 7 Performance of simulated mixed exponential 

parameters at four rainfall   stations 

 

 

Overall, MCME model is likely to underestimate the 

empirical values for the mixed exponential at station 

S02. In contrast, simulations generated by the model 

tend to fairly well preserve the empirical mixed 

exponential parameters at station S05 and S07. At 

station S11, MCME model tends to well preserve the 

empirical values for mixed exponential parameters. 

 
3.2.3  Statistical Properties for Validation Period 

 

From Figure 8, it can be seen that at each station, 

the probability for the daily means of observed 

rainfall series to be well and fairly well preserved by 

MCME model is the same. Besides, there is no 

probability for the observed daily means to be 

overestimated except for station S05. For the 

standard deviations of observed rainfall series, most 

of the empirical values at station S02, S05 and S07 are 

fairly well preserved by the model. In contrast, over 

40% of the empirical standard deviations at station 

S11 are well preserved.  

 

 
 

Figure 8 Performance of simulated statistical properties at 

four rainfall station 

 

 

Furthermore, the likelihood for the kurtosis of 

observed series to be underestimated, well and fairly 

well preserved, is the same at station S02. At station 

S05 and S11, most of the empirical kurtosis is fairly 

good preserved. Among the rainfall stations, the 

likelihood for the empirical skewness to be well 

preserved is highest at station S07. However, 

empirical skewness at station S05 has the highest 

probability to be fairly well preserved. 

Overall, MCME simulations are prone to fairly well 

preserve the statistical properties of observed rainfall 

series at all stations except for the station S07. 

 

3.2.4  Physical Properties for Validation Period 

 

From Figure 9, it is apparent that there is a high 

percentage for the maximum rainfall of observed 

rainfall series at station S05, S07 and S11 to be well 

preserved. Most of the empirical maximum amount 

at station S02 however is fairly well preserved. 

Besides, there is no probability for the empirical 

maximum amount to be overestimated among the 

stations except for the station S05.  



162                                Tony Hadibarata et al. / Jurnal Teknologi (Sciences & Engineering) 74:11 (2015) 153–163 

 

 

 
 

Figure 9 Performance of simulated physical properties at 

four rainfall stations 

 

 

For the number of wet days in rainfall series, most of 

the empirical values at station S02 and S05 fall on the 

whisker of the boxplots. This is also true for the 

empirical values for the number of dry days at the 

same stations. But, at station S07, most of the 

empirical values for the number of wet and dry days 

in series are well preserved. At station S11, the 

percentage for the number of wet days to be 

underestimated is same as the percentage for the 

number of dry days to be overestimated.  

In general, MCME simulations are prone to fairly 

well preserve the physical properties of observed 

rainfall series at station S02 and S05. On the other 

hand, MCME model is likely to well preserve the 

observed physical properties at station S07. At station 

S11, the model tends to underestimate the physical 

properties of observed rainfall series. 

 

3.3  Comparison between the Performance of Daily 

MCME Model in Calibration and Validation Period 

 

Performance of daily Markov chain-mixed 

exponential model is assessed based on the 

performance of simulated MCME parameters, 

statistical and physical properties of simulated rainfall 

series in calibration and validation period and the 

result is summarized (Figure 10). It is apparent that 

MCME simulations prone to well preserve the 

observed characteristics during calibration period for 

all rainfall stations. Therefore, at all rainfall stations, 

the model is able to describe the daily rainfall 

process accurately. 

In contrast, the performance of daily MCME model 

in the validation period is not as good as in the 

calibration period. In validation period, MCME 

simulations tend to fairly well preserve the observed 

characteristics for all rainfall stations except for the 

station S11. Hence, the model has fair ability in 

predicting the daily rainfall process at station S02, S05 

and S07 but tends to predict the daily rainfall process 

at station S11 accurately. 

 

 
 

Figure 10 Performance of daily MCME model in both periods 

 

 

4.0  CONCLUSION 
 

The feasibility of the MCME model in simulating 

rainfall series is evaluated using daily rainfall data 

from four rainfall stations (station S02, S05, S07 and 

S11) in Johor for the 33 year period (1975-2007). At all 

stations, graphical comparisons have shown that the 

rainfall occurrence process can be well described by 

the first-order two-state Markov chain model. For the 

distribution of rainfall amounts on wet days, mixed 

exponential distribution is found to describe well. 

Besides, the statistical and physical properties of the 

underlying daily rainfall process are well described by 

the MCME daily model. The performance of MCME 

model in validation period is not as well as in the 

calibration period. The model is found to have a fairly 

well ability in predicting the daily rainfall process at 

station S02, S05 and S07 but tends to predict the 

rainfall process at station S11 accurately. In general, 

the model is able to preserve the seasonal trend of 

the observed rainfall properties for all stations. 

Several recommendations may be suggested for 

improving the modelling of the MCME. The order of 

Markov chain should be investigated first before 
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modelling rainfall occurrences using Markov chain. 

Distribution of daily rainfall amount should also fitted 

using various statistical distributions to find the most 

acceptable fit. Besides, parameters for the rainfall 

amount distribution should be estimated and 

compared using different methods to find the best 

method for estimating the parameters. 
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