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Abstract 

 

Trusted Computing Group (TCG) has proposed the Trusted Computing (TC) concept. Subsequently, TC 

becomes a common base for many new computing platforms, called Trusted Platform (TP) architecture 
(hardware and software) that, practically, has a built-in trusted hardware component mounted at the 

hardware layer and a corresponding trusted software component installed at the operating system level.  

The trusted hardware component is called Trusted Platform Module (TPM) whose specification has been 
issued by TCG group and it is implemented by the industry as a tamper-resistant integrated circuit. In 

practice, the security of an IT TPM-enabled system relies on the correctness of its mounted TPM. Thus, 

TPM testing is urgently needed to assist in building confidence of the users on the security functionality 
provided by the TPM. This paper presents the state of the art of the modelling methods being used in the 

TPM compliance testing as well as it demonstrates some of the important attacks against TPM. Finally, the 

paper proposes new framework criteria for TPM Testing that aim at increasing the quality of TPM testing.   
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1.0  INTRODUCTION 

 

Recently, software on computing platforms has become 

increasingly complex leading to a large number of potential 

vulnerabilities. Consequently, protecting information technology 

systems through software-based mechanisms has become 

increasingly more unable to solve all security problems there in. To 

mitigate this issue, hardware-based embedded security solutions 

have been used in the information technology industry. Among the 

key advances, Trusted Computing Platform Alliance (TCPA), 

which was later replaced by the Trusted Computing Group (TCG), 

proposed the Trusted Computing (TC) concept. Subsequently, TC 

became the common base for many new computing platforms, 

called Trusted Platform (TP) architecture that, practically, has a 

built-in trusted hardware component at the physical level and 

corresponding trusted software component at operating system 

level. The trusted hardware component is called Trusted Platform 

Module (TPM) whose specification was issued by the TCG group 

and is implemented by industry as a tamper-resistant integrated 

circuit. TPM is dedicated to performing cryptographic functionality 

and to securely store cryptographic keys and secrets. 

  Since the last couple of years, hundreds of millions of PC 

laptops and desktops have been equipped with TPM chips. In fact, 

there are many different vendors that produce TPM chips, such as 

Atmel, Infineon, Broadcom, Sinosun and 

STMicroelectronics/Winond, and, of course, with different modes 

of implementation. This implies that there is an urgent need to have 

a testing methodology that can help security application developers 

and end-users to verify the compliance of their TPM-enabled 

systems with respect to TCG specifications.1,2 

  Past research works in the area of TPM testing fall into two 

broad categories, namely; compliance testing,2-8 and security 

analysis on the TPM specifications,2,9-15. This paper presents 

several modelling methods which are in the domain of TPM 

compliance testing. Recent efforts show that many TPMs available 

in the market are non-compliant to the TCG specification.2-8. At 

this point, it is worth mentioning that China has its own 

specification and its trusted hardware component is called Trusted 

Cryptography Module (TCM). The TCM chip has been specified 

and manufactured by China. It was concluded that there was a gap 

between the TCM implementations and the Chinese specification.16 

This paper also presents the state of the art of some important 

attacks that have been conducted against the TPM during last years. 

We begin with the modelling methods of TPM specifications in 

section 2. Sub-section 2.1 is the discussion on the informal method 

of TPM compliance testing (with an example). Modelling of TPM 

specification based on FSM and EFSM (with examples) are 

presented in sub-section 2.2 and sub-section 2.3 respectively. 

Section 3 presents the attacks against TPM. This paper is concluded 

with proposing features of a new framework for TPM testing in 

section 4. 
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2.0  MODELLING METHODS OF TPM 

SPECIFICATIONS 

 

There are mainly three methods that have been used in modelling 

the TPM specifications. The TPM testing was first introduced using 

informal method.1,17 On the other hand, next research efforts in 

TPM testing used two formal methods that are based on state 

machine theory namely, Finite State Machine (FSM) and Extended 

Finite State Machine (EFSM).4,5,16 In the next sub-sections a brief 

discussion on the following three methods; informal modelling, 

FSM-based modelling and EFSM-based modelling is presented. 

 

2.1  Informal Modelling 

   

The TPM compliance testing was first introduced using informal 

method in which TPMs from different vendors were evaluated.1,17 

In informal modelling, testing is conducted in two levels and two 

quality dimensions, as shown in Figure 1.  

 
Figure 1  Compliance testing levels and quality dimensions of TPM  

 

 

  Firstly, the Compliance Testing Levels consists of the 

application level and the protocol level. At the application level, the 

TPM is tested from real application standpoint to test the TPM 

functionality. The protocol level is dedicated to test the TPM's 

commands with respect to the data structures. Secondly, in 

Compliance TPM Testing there are four core quality dimensions 

namely, functionality, reliability, security and performance. 

Nevertheless the conducted informal method, only two quality 

dimensions were considered,1,2 which are functionality and 

reliability. Notably, under the functionality dimension, only a 

function test is conducted. Whereas under the reliability dimension, 

integrity test and stress test are conducted. In this paper, the other 

quality dimensions namely, security and performance are discussed 

in later subsections. 

  Two other aspects of the Compliance TPM testing include, 

“TPM behavior”, which is examined via function test and “TPM 

behavior upon failures” which is examined using the integrity tests. 

Yet another aspect is the stress tests which examine “TPM behavior 

under extreme conditions”.  

  Here, we emphasize and focus on their method of generating 

test cases to test the data structure of TPM’s commands. In order to 

test the data structure of a single command, many test cases are 

needed to test the command parameters. Thus to generate test cases 

for each command, the command execution is modeled as a state 

transition into a return code, as shown in Figure 2. 
 

 

Figure 2  TPM command execution model 

It is observed that the number of test cases in compliance testing is 

an issue. To mitigate this issue, the input parameters of the TPM 

commands are categorized into four different categories based on 

input parameters which are described below1,17: 

 

Valid: they are acceptable inputs and allow TPM to correctly and 

successfully process the command. Consequently, the return code 

must be TPM_SUCCESS. 

The following three categories should return code indicating an 

error: 

Illegal (A): these are inacceptable inputs as they have either wrong 

data structure or unspecified values, which are not stated by TPM 

specifications,  

Invalid (B): these are inacceptable inputs as their values are wrong 

or meaningless values. 

Unsupported (C): these are inputs with values stated by TPM 

specifications but not acceptable in the context of the command. 

 

The steps of the integrity tests at the protocol level are as 

follows1,17: 

 

(1) Study in detail the TPM specifications. 

(2) Categorize the TPM commands based on their related TPM 

functionality (Dependency Graph). 

(3) From the Dependency Graph draw the action graph which 

shows the required execution order of the TPM commands for 

successful individual TPM commands execution. 

(4) Define the state(s) at which the command (under test) is 

allowed to execute. 

(5) Define the TPM return code(s) for those state(s) at which the 

command is not allowed to execute. 

(6) Construct a table/graph showing all the command parameters 

after manipulation and the related return codes. Table 1 shows 

TPM_CreateWrapKey as an example. 

(7) Execute all the commands required, indicated by the action 

graph, for the successful command execution.   

(8) Send the command input message with only one manipulated 

parameter to the TPM. 

(9) Compare the return code from the TPM with the expected one 

as stated in the table/graph. 

(10) Repeat step 9 and 10 for each manipulated parameter. 

(11) If all the return codes from the TPM match the expected ones 

then the implementation of the command under test is 

complaint with TPM specification, based on integrity test 

only. 

(12) Repeat step 2 up to step 11 for TPM commands, stated on the 

TPM specifications. 

 

 

  The research work1,17 that used the informal method is 

considered as the founder of TPM compliance testing and has 

contributed valuable knowledge and experience significantly in 

TPM testing. Based on the results of the conducted informal 

method we know that some TPM implementations which are from 

(Infineon, Atmel, and ST STM 19 WP 18) were found to be 

incompliant with TCG specification and have security related bugs. 

However, the method used in determining the compliance was still 

informal16 and, furthermore its generation of test cases was not 

automatic and the test method needs to be reviewed and improved 

so that it becomes more systematic2. 

  It is generally known that manual generation of test cases is 

an expensive, error-prone and time consuming process. Nowadays, 

with the improvement of TPM implementations, the informal 

method and manual generation of test cases might not be so 

effective in dealing with greater number of cases of incompliance 

of TPM implementations.
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Table 1  TPM_CreateWrapKey command and its related TPM’s return codes 

 

STATE Parameter name Input Type Return Code 

S2,S4, S6,S8 

TPM_CreateWrapKey Input Message 

TPM_DISABLED 

S3 TPM_DEACTIVATED 

S5 TPM_NOSRK 

S7 
TPM_DEACTIVATED 

TPM_NOSRK 

S1 
tag 

  A 
TPM_BADTAG 

  B 

paramSize   B 
TPM_BAD_PARAM_SIZE 

ordinal 
  A 

  C   

parentHandle 

  
B 

TPM_INVALID_AUTHHANDLE 

  
TPM_KEYNOTFOUND 

  C 

dataUsageAuth       

dataMigrationAuth       

keyInfo       

ver       

keyUsage 
  A 

TPM_INVALID_KEYUSAGE 
  C 

keyFlags 
  A 

TPM_BAD_PARAMETER 
  C 

authDataUsage 
  A 

TPM_BAD_PARAMETER 
  C 

algorithmParms 

  A 
TPM_BAD_KEY_PROPERTY 

  
C 

  
TPM_NOTFIPS 

  algorithmID   

authHandle 

  
B TPM_AUTHFAIL 

  

  C 
TPM_INVALID_AUTHHANDLE 

authLastNonceEven     

nonceOdd       

continueAuthSession       

pubAuth   B TPM_AUTHFAIL 

 

 

2.2  FSM-based Modelling Method 

 

Mealy machines and Moore machines are two types of finite state 

machines or finite automata. These are widely used to model 

finite state systems in different areas such as communication 

protocols and sequential circuits. 

 

Definition 1: a deterministic finite state machine (FSM) D is a 

six-tuple: 

 

D = (S, I, O, δ, λ, sinit ) where S, I , and O are finite and non-empty  

sets of states, input alphabet and output alphabet, sinit is the initial 

state, δ: SxI→S and λ:SxI→O are the functions of state transition 

and output, respectively. 

  The conformance of system implementation to the system 

specification can be tested by using FSM. This problem is called 

conformance testing or fault detection problem;3 at which two 

FSMs are given: a specification machine SPEC and 

implementation machine IMP. We can only observe the behavior 

of IMP that is a black box. 

  To test the conformance of an implementation under test 

IUT to its specification, it is needed to generate test cases from 

the SPEC model and then apply these test cases to the IUT. Test 

cases can be generated automatically from SPEC. A test case 

contains input and expected output. Therefore IUT conforms to 

its specification if it passes all the test cases. 

  TPM operational states, that are shown in Table 2, were 

modelled, and the commands of TPM based on deterministic 

finite state machine.4,5 There are four FSM models have been 

constructed which include the TPM operational states, TPM 

disabled-command suite, TPM deactivated-command suite and 

TPM unowned-command suite. 
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Table 2  TPM operational states 

 

State Enable/Disable Active/Inactive Owned/Unowned 

S1   Enable Active Owned 

S2 Disable Active Owned 

S3 Enable Inactive Owned 
S4 Disable Inactive Owned 

S5 Enable Active Unowned 

S6 Disable Active Unowned 
S7 Enable Inactive Unowned 

S8 Disable Inactive Unowned 

 

 

  We give an explanatory example for modelling TPM 

specifications based on FSM; Figure 3 shows the FSM model of 

the eight TPM operational states. This example is based on the 

reported methodology.4,5 The parameters of the FSM model are 

as follow: 

 

D0 = (S0, I0, O0, δ0, λ0, sinit0) 

S0 = {s1, s2, s3, s4, s5, s6, s7, s8} 

I0 = {TPM_OwnerSetDisable, TPM_PhysicalDisable, 

TPM_PhysicalSetDeactivated, TPM_SetTempDeactivated, 

TPM_OwnerClear, TPM_ForceClear, TPM_PhysicalEnable, 

TPM_TakeOwnership} 

O0= {S} where S means that the TPM successfully has executed 

the related command. 

sinit0= s5 

Bread-First Search has been used to generate test cases from D0. 

  Basically, FSM is used to model the control portions of 

system specification. This could be the main weakness of FSM as 

system specification normally contains data dependencies 

between the specification parts; which means that FSM is not 

powerful enough to model concrete systems in a concise way.3 

Consequently, FSM model may have issues such as state 

explosion as the number of states increases rapidly6 and FSM is 

not realistic in most practical situations.7 According to the TPM 

specification, majority of TPM’s commands are dependent on 

data from each other and a successful command execution may 

need other command(s) that have been successfully executed. 

Therefore, modeling the TPM specification using FSM, taking 

into account control and data dependencies between the 

commands, could result in impractically huge model and 

consequently having state explosion problem. Furthermore, the 

data dependency of the TPM’s commands should be tested to 

determine the behaviors of the TPM implementation. 

 

Figure 3  FSM model for the TPM’s operational states 

 

 

2.3  EFSM-based Modelling Method 

 

EFSM8 is generalization of FSM; i.e. EFSM is a traditional Mealy 

FSM extended with variables, predicates, and operations. 

Additionally, one main advantage of EFSM over FSM is that 

EFSM helps in reducing number of states. This advantage is 

because of the fact that EFSM is able to model the control flow 

of a system while its data flow is represented by variables, 

predicates, and operations. 

 

Definition 2: An EFSM is a six-tuple [6, 9] (S, s0, I, O, T, V) 

where S is a non-empty finite set of states, s0  S is the initial 

state, I and O are non-empty finite sets of input and output 

interactions, T is a non-empty finite set of transitions and  V is a  

non-empty  finite set of variables. t  T is a six-tuple (si, se, x, c, 

y) where si, se  S denote the initial and terminating states of t, 

respectively, x I is the input interaction of t, c is a logical 

expression representing a condition of t and expressed in terms of 

the variable of V, y  O is the output interaction of t. 

  EFSM-Based specification modelling was used in trusted 

computing16, where it is reported that the specifications of the 

Trusted Cryptography Module (TCM) were modelled by using 

EFSM. Firstly, the dependencies between the TCM commands 

were de-fined and, consequently, a dependency graph was drawn. 

Secondly, an EFSM model was constructed and test cases were 

generated for the EFSM model. The authors mentioned that the 

test case generation was not fully automatic. Finally, the TCM 

compliance testing was conducted in two layers, namely: 

command-level and function level. The former was used to test 

the TCM reliability, i.e. its behaviour when receive legal-

manipulated command message, as well as testing the TCM 

robustness where the behaviour of the TCM was tested by 

sending illegal-manipulated command message. In the latter, 

functionality test was conducted for testing the TCM functions. 

  To give an illustrative example of the EFSM modelling of 

the TPM specifications, Figure 4 shows EFSM model for a 

portion of the TPM specification, storage functions sub-module 

and some commands of the admin ownership module sub-

module. This example adopts the reported methodology. 16 The 

EFSM model was constructed based on the research work of and 

the TPM specification version 1.2, level 2 revision 116. As can 

be seen from Figure 4, the parameters of the EFSM model are as 

following: 
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S= {S1, S2, S3, S4}; 

s0= S1; 

I={ TPM_TakeOwnership, TPM_OwnerClear, 

TPM_ForceClear, TPM_DisableOwnerClear, 

TPM_DisableForceClear, TPM_Seal, TPM_Unseal, 

TPM_Unbind, TPM_CreateWrapKey, TPM_LoadKey2, 

TPM_GetPubKey, TPM_Sealx} 

O= {Create Owner, Clear Owner, Create Key, Disable 

ForceClear, Disable Owner-Clear, Load Key, Unseal, Seal, 

UnBind, Get PubKey} 

V= {Ownership Enabled, KeyLoaded, KeyExists, 

OwnerClearEnabled, ForceClearEnabled} 

There are 13 transitions where t1T is TPM_TakeOwnership 

[OwnershipEnabled]/ Create Owner. 

  The EFSM-Based specification modelling9 has made some 

improvement to the FSM-based modelling4,5 in modelling and 

generating test cases. However, it lacks the automatic generation 

of test cases. Furthermore, in order to use this method in TPM 

compliance testing it needs to involve the internal TPM data, such 

as flags, as variables to represent the relationship among the TPM 

commands. 

 

 
Figure 4  EFSM model for the storage functions and admin ownership sub-modules 

 

 

3.0  ATTACKS AGAINST TPM 

 

Although the main function of TPM chips is establishing trust and 

is to provide security services to their host platforms, many 

attacks have been performed against either the TPM chip itself or 

its environment, such as communication interface with the other 

platform's components. These attacks are either practical attack 

or security flaws that have been revealed by security analysis 

research work on the TPM specifications. Table 3 shows a 

collection of attacks against TPM and LPC bus (communication 

interface with other TP's components). 

 

Table 3  Attacks against the TPM by year 

 

Attack 

Year of the Attack 

2004 2005 2006 2007 2008 2009 2010 2011 2013 

Physical Attack       X   

Attacking TPM-Based architecture  

Against TXT      X     

Against BitLocker      X    

Dictionary Attack 

Online  X X       

Offline     X     

Replay Attack  X    X    

Attacking the TPM Communication Interface  (LPC Bus) 

Passive  X        

Reset X         

Violating the integrity of 

TPM commands 
   X    X X 

 

 

  The attacks, as shown in Table 3, vary from simple attacks 

to sophisticated attacks. For instance, in the reset attack,10 an 

attacker uses a small piece of wire in order to reset the TPM 

without resetting the whole TP. In other words, due to this attack 

the integrity values that represent the TP configuration and stored 

in TPM are changed to zeros. This violates the first design goal 

of TPM and breaks the remote attestation and sealing feature 

provided by the TPM. The passive attack is similar to the reset 

attack. Attackers can use inexpensive equipment to eavesdrop 

critical information from the LPC Bus.11 

  The Object-Independent Authorization Protocol (OIAP) is a 

TPM security protocol mainly intended to prevent replay attack.  

However, it was proved formally that OIAP has problem in its 

design which makes it vulnerable to replay attack.12,13 

Additionally, it is reported that the research work showed 
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formally an improper implementation of the OIAP which may 

lead to replay attack as well.13 

  TCG specification stated countermeasures against 

dictionary attacks, so TPM implementations contain protection 

mechanisms against dictionary attacks. Despite this protection, 

that mechanism was defeated.1 Furthermore, in certain 

circumstances offline dictionary attack against TPM is possible 

which may lead to other issues, for example, "to impersonate the 

TPM owner to the TPM, or the TPM to its owner".14 

  As a result of formal analysis on the TPM specifications, 

versions 1.1 and 1.2, it is reported that the integrity of the 

TPM_CertifyKey command can be violated due to a design 

problem in the Hash-Based Message Authentication Code 

(HMAC) calculation.15-17 

  The most sophisticated attack against TPM, so far, is the 

physical attack which was performed by Christopher 

Tranovsky.18 He was able to access TPM chips, by using electron 

microscope, from inside reaching the TPM data bus. So he was 

able to get any piece of information stored in the chip, such as 

cryptography keys. This means that the tamper-resist feature of 

TPM has been defeated. A worst case scenario could be, "not only 

is the data on individual chips at risk from this attack, once the 

manufacture's code is copied from the chip it could be used to 

produce counterfeit chips, which also could contain backdoors". 
19 

  In addition to the above mentioned attacks, both of 

BitLocker, an encryption feature provided by Microsoft 

Windows, and the Intel Trusted Execution Technology (TXT) 

have been successfully attacked by Fraunhofer Institute for 

Information (SIT)20 and Invisible Things Lab (ITL)21 

respectively. 

  Although the results of the security analysis on the TPM 

specifications do play a crucial role in evaluating the quality of 

the TPM specifications and subsequently the security 

functionality provided by the TPM chips that implemented based 

on the specifications, to the best of our knowledge, none of the 

existing TPM testing frameworks1,4,5,22,23 has ever used these 

analysis results to evaluate the TPM under test.   

 

 

4.0  CONCLUSION 

 

Trusted computing (TC) is a promising technology for enhancing 

the security of computer systems and networks. TCG issued 

specifications for TC technology which is called TCG 

specifications. We emphasize on the TPM specifications. Based 

on past works it is discovered that there is a gap between some 

TPM implementations and the TPM specifications. This gap may 

cause the TPM component to fail in performing its security 

functionality and consequently may result in failing the security 

of its mounted system. Therefore, there is an urgent need to test 

the compliance of TPM implementation with reference to its 

specifications. In this paper, we report on some progress of the 

research works in the field of TPM testing have been achieved. 

The two major contributions of our work are on TPM compliance 

testing and security analysis on TPM specifications. In 

compliance testing of TPM, we presented the three modelling 

methods, namely, informal, FSM and EFSM. The main problem 

of these three methods is that there is a high possibility that it 

might cause state space explosion. Furthermore, the existing 

TPM compliance testing framework that we have referred to in 

the literature so far, conducted their tests based on test cases pre-

generated earlier. In other words, a complete test suite must first 

be derived completely before conducting the TPM compliance 

testing. This approach is referred to as batch-mode testing. 

Additionally, to our knowledge, none of the existing TPM testing 

frameworks has ever used the results of the TPM security analysis 

to evaluate the TPM implementations. 

  We can safely conclude that testing security devices such as 

TPM needs to be done systematically through automatically 

generated random test cases to increase the quality of testing. 

Moreover, automatic security testing has never been emphasized 

as a quality dimension in the exiting Framework for TPM 

Testing.  We have discussed and highlighted the urgent need to 

enhance the current TPM testing frameworks to achieve higher 

quality TPM testing.  

  For future work, we propose a new framework for TPM 

Testing that has several features. Firstly, it should have capacity 

to generate random test cases on-the-fly. This helps in alleviating 

the state space explosion problem and improves the quality of 

testing.  

  Secondly, it should posse other quality dimensions such as 

automatic security testing. Furthermore, it should be suitable for 

the TPM stakeholders such as normal TPM users who have 

abstract knowledge about TPM. 
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