

73:2 (2015) 11–17 | www.jurnalteknologi.utm.my | eISSN 2180–3722 |

Full paper
Jurnal

Teknologi

Towards a New Framework for TPM Compliance Testing

Usama Tharwat Elhagaria*, Bharanidharan Shanmugamb, Jamalul-lail Ab. Mananc

aFaculty of Computing, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
bAdvanced Informatics School, 81310 UTM Johor Bahru, Johor, Malaysia
cMIMOS Berhad, Malaysia

*Corresponding author: elhagari_u@yahoo.com

Article history

Received :10 December 2014

Received in revised form :
1 February 2015

Accepted :12 February 2015

Graphical abstract

Abstract

Trusted Computing Group (TCG) has proposed the Trusted Computing (TC) concept. Subsequently, TC

becomes a common base for many new computing platforms, called Trusted Platform (TP) architecture
(hardware and software) that, practically, has a built-in trusted hardware component mounted at the

hardware layer and a corresponding trusted software component installed at the operating system level.

The trusted hardware component is called Trusted Platform Module (TPM) whose specification has been
issued by TCG group and it is implemented by the industry as a tamper-resistant integrated circuit. In

practice, the security of an IT TPM-enabled system relies on the correctness of its mounted TPM. Thus,

TPM testing is urgently needed to assist in building confidence of the users on the security functionality
provided by the TPM. This paper presents the state of the art of the modelling methods being used in the

TPM compliance testing as well as it demonstrates some of the important attacks against TPM. Finally, the

paper proposes new framework criteria for TPM Testing that aim at increasing the quality of TPM testing.

Keywords: Trusted platform module; compliance testing; modelling; trusted computing; FSM; EFSM

© 2015 Penerbit UTM Press. All rights reserved.

1.0 INTRODUCTION

Recently, software on computing platforms has become

increasingly complex leading to a large number of potential

vulnerabilities. Consequently, protecting information technology

systems through software-based mechanisms has become

increasingly more unable to solve all security problems there in. To

mitigate this issue, hardware-based embedded security solutions

have been used in the information technology industry. Among the

key advances, Trusted Computing Platform Alliance (TCPA),

which was later replaced by the Trusted Computing Group (TCG),

proposed the Trusted Computing (TC) concept. Subsequently, TC

became the common base for many new computing platforms,

called Trusted Platform (TP) architecture that, practically, has a

built-in trusted hardware component at the physical level and

corresponding trusted software component at operating system

level. The trusted hardware component is called Trusted Platform

Module (TPM) whose specification was issued by the TCG group

and is implemented by industry as a tamper-resistant integrated

circuit. TPM is dedicated to performing cryptographic functionality

and to securely store cryptographic keys and secrets.

 Since the last couple of years, hundreds of millions of PC

laptops and desktops have been equipped with TPM chips. In fact,

there are many different vendors that produce TPM chips, such as

Atmel, Infineon, Broadcom, Sinosun and

STMicroelectronics/Winond, and, of course, with different modes

of implementation. This implies that there is an urgent need to have

a testing methodology that can help security application developers

and end-users to verify the compliance of their TPM-enabled

systems with respect to TCG specifications.1,2

 Past research works in the area of TPM testing fall into two

broad categories, namely; compliance testing,2-8 and security

analysis on the TPM specifications,2,9-15. This paper presents

several modelling methods which are in the domain of TPM

compliance testing. Recent efforts show that many TPMs available

in the market are non-compliant to the TCG specification.2-8. At

this point, it is worth mentioning that China has its own

specification and its trusted hardware component is called Trusted

Cryptography Module (TCM). The TCM chip has been specified

and manufactured by China. It was concluded that there was a gap

between the TCM implementations and the Chinese specification.16

This paper also presents the state of the art of some important

attacks that have been conducted against the TPM during last years.

We begin with the modelling methods of TPM specifications in

section 2. Sub-section 2.1 is the discussion on the informal method

of TPM compliance testing (with an example). Modelling of TPM

specification based on FSM and EFSM (with examples) are

presented in sub-section 2.2 and sub-section 2.3 respectively.

Section 3 presents the attacks against TPM. This paper is concluded

with proposing features of a new framework for TPM testing in

section 4.

12 Usama, Bharanidharan & Jamalul-lail / Jurnal Teknologi (Sciences & Engineering) 73:2 (2015), 11–17

2.0 MODELLING METHODS OF TPM

SPECIFICATIONS

There are mainly three methods that have been used in modelling

the TPM specifications. The TPM testing was first introduced using

informal method.1,17 On the other hand, next research efforts in

TPM testing used two formal methods that are based on state

machine theory namely, Finite State Machine (FSM) and Extended

Finite State Machine (EFSM).4,5,16 In the next sub-sections a brief

discussion on the following three methods; informal modelling,

FSM-based modelling and EFSM-based modelling is presented.

2.1 Informal Modelling

The TPM compliance testing was first introduced using informal

method in which TPMs from different vendors were evaluated.1,17

In informal modelling, testing is conducted in two levels and two

quality dimensions, as shown in Figure 1.

Figure 1 Compliance testing levels and quality dimensions of TPM

 Firstly, the Compliance Testing Levels consists of the

application level and the protocol level. At the application level, the

TPM is tested from real application standpoint to test the TPM

functionality. The protocol level is dedicated to test the TPM's

commands with respect to the data structures. Secondly, in

Compliance TPM Testing there are four core quality dimensions

namely, functionality, reliability, security and performance.

Nevertheless the conducted informal method, only two quality

dimensions were considered,1,2 which are functionality and

reliability. Notably, under the functionality dimension, only a

function test is conducted. Whereas under the reliability dimension,

integrity test and stress test are conducted. In this paper, the other

quality dimensions namely, security and performance are discussed

in later subsections.

 Two other aspects of the Compliance TPM testing include,

“TPM behavior”, which is examined via function test and “TPM

behavior upon failures” which is examined using the integrity tests.

Yet another aspect is the stress tests which examine “TPM behavior

under extreme conditions”.

 Here, we emphasize and focus on their method of generating

test cases to test the data structure of TPM’s commands. In order to

test the data structure of a single command, many test cases are

needed to test the command parameters. Thus to generate test cases

for each command, the command execution is modeled as a state

transition into a return code, as shown in Figure 2.

Figure 2 TPM command execution model

It is observed that the number of test cases in compliance testing is

an issue. To mitigate this issue, the input parameters of the TPM

commands are categorized into four different categories based on

input parameters which are described below1,17:

Valid: they are acceptable inputs and allow TPM to correctly and

successfully process the command. Consequently, the return code

must be TPM_SUCCESS.

The following three categories should return code indicating an

error:

Illegal (A): these are inacceptable inputs as they have either wrong

data structure or unspecified values, which are not stated by TPM

specifications,

Invalid (B): these are inacceptable inputs as their values are wrong

or meaningless values.

Unsupported (C): these are inputs with values stated by TPM

specifications but not acceptable in the context of the command.

The steps of the integrity tests at the protocol level are as

follows1,17:

(1) Study in detail the TPM specifications.

(2) Categorize the TPM commands based on their related TPM

functionality (Dependency Graph).

(3) From the Dependency Graph draw the action graph which

shows the required execution order of the TPM commands for

successful individual TPM commands execution.

(4) Define the state(s) at which the command (under test) is

allowed to execute.

(5) Define the TPM return code(s) for those state(s) at which the

command is not allowed to execute.

(6) Construct a table/graph showing all the command parameters

after manipulation and the related return codes. Table 1 shows

TPM_CreateWrapKey as an example.

(7) Execute all the commands required, indicated by the action

graph, for the successful command execution.

(8) Send the command input message with only one manipulated

parameter to the TPM.

(9) Compare the return code from the TPM with the expected one

as stated in the table/graph.

(10) Repeat step 9 and 10 for each manipulated parameter.

(11) If all the return codes from the TPM match the expected ones

then the implementation of the command under test is

complaint with TPM specification, based on integrity test

only.

(12) Repeat step 2 up to step 11 for TPM commands, stated on the

TPM specifications.

 The research work1,17 that used the informal method is

considered as the founder of TPM compliance testing and has

contributed valuable knowledge and experience significantly in

TPM testing. Based on the results of the conducted informal

method we know that some TPM implementations which are from

(Infineon, Atmel, and ST STM 19 WP 18) were found to be

incompliant with TCG specification and have security related bugs.

However, the method used in determining the compliance was still

informal16 and, furthermore its generation of test cases was not

automatic and the test method needs to be reviewed and improved

so that it becomes more systematic2.

 It is generally known that manual generation of test cases is

an expensive, error-prone and time consuming process. Nowadays,

with the improvement of TPM implementations, the informal

method and manual generation of test cases might not be so

effective in dealing with greater number of cases of incompliance

of TPM implementations.

13 Usama, Bharanidharan & Jamalul-lail / Jurnal Teknologi (Sciences & Engineering) 73:2 (2015), 11–17

Table 1 TPM_CreateWrapKey command and its related TPM’s return codes

STATE Parameter name Input Type Return Code

S2,S4, S6,S8

TPM_CreateWrapKey Input Message

TPM_DISABLED

S3 TPM_DEACTIVATED

S5 TPM_NOSRK

S7
TPM_DEACTIVATED

TPM_NOSRK

S1
tag

 A
TPM_BADTAG

 B

paramSize B
TPM_BAD_PARAM_SIZE

ordinal
 A

 C

parentHandle

B

TPM_INVALID_AUTHHANDLE

TPM_KEYNOTFOUND

 C

dataUsageAuth

dataMigrationAuth

keyInfo

ver

keyUsage
 A

TPM_INVALID_KEYUSAGE
 C

keyFlags
 A

TPM_BAD_PARAMETER
 C

authDataUsage
 A

TPM_BAD_PARAMETER
 C

algorithmParms

 A
TPM_BAD_KEY_PROPERTY

C

TPM_NOTFIPS

 algorithmID

authHandle

B TPM_AUTHFAIL

 C
TPM_INVALID_AUTHHANDLE

authLastNonceEven

nonceOdd

continueAuthSession

pubAuth B TPM_AUTHFAIL

2.2 FSM-based Modelling Method

Mealy machines and Moore machines are two types of finite state

machines or finite automata. These are widely used to model

finite state systems in different areas such as communication

protocols and sequential circuits.

Definition 1: a deterministic finite state machine (FSM) D is a

six-tuple:

D = (S, I, O, δ, λ, sinit) where S, I , and O are finite and non-empty

sets of states, input alphabet and output alphabet, sinit is the initial

state, δ: SxI→S and λ:SxI→O are the functions of state transition

and output, respectively.

 The conformance of system implementation to the system

specification can be tested by using FSM. This problem is called

conformance testing or fault detection problem;3 at which two

FSMs are given: a specification machine SPEC and

implementation machine IMP. We can only observe the behavior

of IMP that is a black box.

 To test the conformance of an implementation under test

IUT to its specification, it is needed to generate test cases from

the SPEC model and then apply these test cases to the IUT. Test

cases can be generated automatically from SPEC. A test case

contains input and expected output. Therefore IUT conforms to

its specification if it passes all the test cases.

 TPM operational states, that are shown in Table 2, were

modelled, and the commands of TPM based on deterministic

finite state machine.4,5 There are four FSM models have been

constructed which include the TPM operational states, TPM

disabled-command suite, TPM deactivated-command suite and

TPM unowned-command suite.

14 Usama, Bharanidharan & Jamalul-lail / Jurnal Teknologi (Sciences & Engineering) 73:2 (2015), 11–17

Table 2 TPM operational states

State Enable/Disable Active/Inactive Owned/Unowned

S1 Enable Active Owned

S2 Disable Active Owned

S3 Enable Inactive Owned
S4 Disable Inactive Owned

S5 Enable Active Unowned

S6 Disable Active Unowned
S7 Enable Inactive Unowned

S8 Disable Inactive Unowned

 We give an explanatory example for modelling TPM

specifications based on FSM; Figure 3 shows the FSM model of

the eight TPM operational states. This example is based on the

reported methodology.4,5 The parameters of the FSM model are

as follow:

D0 = (S0, I0, O0, δ0, λ0, sinit0)

S0 = {s1, s2, s3, s4, s5, s6, s7, s8}

I0 = {TPM_OwnerSetDisable, TPM_PhysicalDisable,

TPM_PhysicalSetDeactivated, TPM_SetTempDeactivated,

TPM_OwnerClear, TPM_ForceClear, TPM_PhysicalEnable,

TPM_TakeOwnership}

O0= {S} where S means that the TPM successfully has executed

the related command.

sinit0= s5

Bread-First Search has been used to generate test cases from D0.

 Basically, FSM is used to model the control portions of

system specification. This could be the main weakness of FSM as

system specification normally contains data dependencies

between the specification parts; which means that FSM is not

powerful enough to model concrete systems in a concise way.3

Consequently, FSM model may have issues such as state

explosion as the number of states increases rapidly6 and FSM is

not realistic in most practical situations.7 According to the TPM

specification, majority of TPM’s commands are dependent on

data from each other and a successful command execution may

need other command(s) that have been successfully executed.

Therefore, modeling the TPM specification using FSM, taking

into account control and data dependencies between the

commands, could result in impractically huge model and

consequently having state explosion problem. Furthermore, the

data dependency of the TPM’s commands should be tested to

determine the behaviors of the TPM implementation.

Figure 3 FSM model for the TPM’s operational states

2.3 EFSM-based Modelling Method

EFSM8 is generalization of FSM; i.e. EFSM is a traditional Mealy

FSM extended with variables, predicates, and operations.

Additionally, one main advantage of EFSM over FSM is that

EFSM helps in reducing number of states. This advantage is

because of the fact that EFSM is able to model the control flow

of a system while its data flow is represented by variables,

predicates, and operations.

Definition 2: An EFSM is a six-tuple [6, 9] (S, s0, I, O, T, V)

where S is a non-empty finite set of states, s0 S is the initial

state, I and O are non-empty finite sets of input and output

interactions, T is a non-empty finite set of transitions and V is a

non-empty finite set of variables. t T is a six-tuple (si, se, x, c,

y) where si, se S denote the initial and terminating states of t,

respectively, x I is the input interaction of t, c is a logical

expression representing a condition of t and expressed in terms of

the variable of V, y O is the output interaction of t.

 EFSM-Based specification modelling was used in trusted

computing16, where it is reported that the specifications of the

Trusted Cryptography Module (TCM) were modelled by using

EFSM. Firstly, the dependencies between the TCM commands

were de-fined and, consequently, a dependency graph was drawn.

Secondly, an EFSM model was constructed and test cases were

generated for the EFSM model. The authors mentioned that the

test case generation was not fully automatic. Finally, the TCM

compliance testing was conducted in two layers, namely:

command-level and function level. The former was used to test

the TCM reliability, i.e. its behaviour when receive legal-

manipulated command message, as well as testing the TCM

robustness where the behaviour of the TCM was tested by

sending illegal-manipulated command message. In the latter,

functionality test was conducted for testing the TCM functions.

 To give an illustrative example of the EFSM modelling of

the TPM specifications, Figure 4 shows EFSM model for a

portion of the TPM specification, storage functions sub-module

and some commands of the admin ownership module sub-

module. This example adopts the reported methodology. 16 The

EFSM model was constructed based on the research work of and

the TPM specification version 1.2, level 2 revision 116. As can

be seen from Figure 4, the parameters of the EFSM model are as

following:

15 Usama, Bharanidharan & Jamalul-lail / Jurnal Teknologi (Sciences & Engineering) 73:2 (2015), 11–17

S= {S1, S2, S3, S4};

s0= S1;

I={ TPM_TakeOwnership, TPM_OwnerClear,

TPM_ForceClear, TPM_DisableOwnerClear,

TPM_DisableForceClear, TPM_Seal, TPM_Unseal,

TPM_Unbind, TPM_CreateWrapKey, TPM_LoadKey2,

TPM_GetPubKey, TPM_Sealx}

O= {Create Owner, Clear Owner, Create Key, Disable

ForceClear, Disable Owner-Clear, Load Key, Unseal, Seal,

UnBind, Get PubKey}

V= {Ownership Enabled, KeyLoaded, KeyExists,

OwnerClearEnabled, ForceClearEnabled}

There are 13 transitions where t1T is TPM_TakeOwnership

[OwnershipEnabled]/ Create Owner.

 The EFSM-Based specification modelling9 has made some

improvement to the FSM-based modelling4,5 in modelling and

generating test cases. However, it lacks the automatic generation

of test cases. Furthermore, in order to use this method in TPM

compliance testing it needs to involve the internal TPM data, such

as flags, as variables to represent the relationship among the TPM

commands.

Figure 4 EFSM model for the storage functions and admin ownership sub-modules

3.0 ATTACKS AGAINST TPM

Although the main function of TPM chips is establishing trust and

is to provide security services to their host platforms, many

attacks have been performed against either the TPM chip itself or

its environment, such as communication interface with the other

platform's components. These attacks are either practical attack

or security flaws that have been revealed by security analysis

research work on the TPM specifications. Table 3 shows a

collection of attacks against TPM and LPC bus (communication

interface with other TP's components).

Table 3 Attacks against the TPM by year

Attack

Year of the Attack

2004 2005 2006 2007 2008 2009 2010 2011 2013

Physical Attack X

Attacking TPM-Based architecture

Against TXT X

Against BitLocker X

Dictionary Attack

Online X X

Offline X

Replay Attack X X

Attacking the TPM Communication Interface (LPC Bus)

Passive X

Reset X

Violating the integrity of

TPM commands
 X X X

 The attacks, as shown in Table 3, vary from simple attacks

to sophisticated attacks. For instance, in the reset attack,10 an

attacker uses a small piece of wire in order to reset the TPM

without resetting the whole TP. In other words, due to this attack

the integrity values that represent the TP configuration and stored

in TPM are changed to zeros. This violates the first design goal

of TPM and breaks the remote attestation and sealing feature

provided by the TPM. The passive attack is similar to the reset

attack. Attackers can use inexpensive equipment to eavesdrop

critical information from the LPC Bus.11

 The Object-Independent Authorization Protocol (OIAP) is a

TPM security protocol mainly intended to prevent replay attack.

However, it was proved formally that OIAP has problem in its

design which makes it vulnerable to replay attack.12,13

Additionally, it is reported that the research work showed

16 Usama, Bharanidharan & Jamalul-lail / Jurnal Teknologi (Sciences & Engineering) 73:2 (2015), 11–17

formally an improper implementation of the OIAP which may

lead to replay attack as well.13

 TCG specification stated countermeasures against

dictionary attacks, so TPM implementations contain protection

mechanisms against dictionary attacks. Despite this protection,

that mechanism was defeated.1 Furthermore, in certain

circumstances offline dictionary attack against TPM is possible

which may lead to other issues, for example, "to impersonate the

TPM owner to the TPM, or the TPM to its owner".14

 As a result of formal analysis on the TPM specifications,

versions 1.1 and 1.2, it is reported that the integrity of the

TPM_CertifyKey command can be violated due to a design

problem in the Hash-Based Message Authentication Code

(HMAC) calculation.15-17

 The most sophisticated attack against TPM, so far, is the

physical attack which was performed by Christopher

Tranovsky.18 He was able to access TPM chips, by using electron

microscope, from inside reaching the TPM data bus. So he was

able to get any piece of information stored in the chip, such as

cryptography keys. This means that the tamper-resist feature of

TPM has been defeated. A worst case scenario could be, "not only

is the data on individual chips at risk from this attack, once the

manufacture's code is copied from the chip it could be used to

produce counterfeit chips, which also could contain backdoors".
19

 In addition to the above mentioned attacks, both of

BitLocker, an encryption feature provided by Microsoft

Windows, and the Intel Trusted Execution Technology (TXT)

have been successfully attacked by Fraunhofer Institute for

Information (SIT)20 and Invisible Things Lab (ITL)21

respectively.

 Although the results of the security analysis on the TPM

specifications do play a crucial role in evaluating the quality of

the TPM specifications and subsequently the security

functionality provided by the TPM chips that implemented based

on the specifications, to the best of our knowledge, none of the

existing TPM testing frameworks1,4,5,22,23 has ever used these

analysis results to evaluate the TPM under test.

4.0 CONCLUSION

Trusted computing (TC) is a promising technology for enhancing

the security of computer systems and networks. TCG issued

specifications for TC technology which is called TCG

specifications. We emphasize on the TPM specifications. Based

on past works it is discovered that there is a gap between some

TPM implementations and the TPM specifications. This gap may

cause the TPM component to fail in performing its security

functionality and consequently may result in failing the security

of its mounted system. Therefore, there is an urgent need to test

the compliance of TPM implementation with reference to its

specifications. In this paper, we report on some progress of the

research works in the field of TPM testing have been achieved.

The two major contributions of our work are on TPM compliance

testing and security analysis on TPM specifications. In

compliance testing of TPM, we presented the three modelling

methods, namely, informal, FSM and EFSM. The main problem

of these three methods is that there is a high possibility that it

might cause state space explosion. Furthermore, the existing

TPM compliance testing framework that we have referred to in

the literature so far, conducted their tests based on test cases pre-

generated earlier. In other words, a complete test suite must first

be derived completely before conducting the TPM compliance

testing. This approach is referred to as batch-mode testing.

Additionally, to our knowledge, none of the existing TPM testing

frameworks has ever used the results of the TPM security analysis

to evaluate the TPM implementations.

 We can safely conclude that testing security devices such as

TPM needs to be done systematically through automatically

generated random test cases to increase the quality of testing.

Moreover, automatic security testing has never been emphasized

as a quality dimension in the exiting Framework for TPM

Testing. We have discussed and highlighted the urgent need to

enhance the current TPM testing frameworks to achieve higher

quality TPM testing.

 For future work, we propose a new framework for TPM

Testing that has several features. Firstly, it should have capacity

to generate random test cases on-the-fly. This helps in alleviating

the state space explosion problem and improves the quality of

testing.

 Secondly, it should posse other quality dimensions such as

automatic security testing. Furthermore, it should be suitable for

the TPM stakeholders such as normal TPM users who have

abstract knowledge about TPM.

References

[1] Ahmad-Reza, S., et al. 2006. TCG Inside? A Note on TPM Specification

Compliance. In Proceedings of the first ACM workshop on Scalable

trusted computing. ACM: Alexandria, Virginia, USA.

[2] Ruhr-University. Chair for System Security-TPM Compliance Test.

2006 [cited 2009 October 18]; Available from:

http://www.trust.rub.de/home/current-projects/tpmct/.

[3] Lee, D. and M. Yannakakis. 1996. Principles and Methods of Testing

Finite State Machines-A Survey. Proceedings of the IEEE. 84(8): 1090–
1123.

[4] Zhan, J., et al. 2008. Research on Automated Testing of the Trusted

Platform Model. Zhang Jia Jie, Hunan, China: Inst. of Elec. and Elec.

Eng. Computer Society.

[5] Zhang, H., et al. 2008. A Practical Solution to Trusted Computing

Platform Testing. Wuhan, Hubei, China: Inst. of Elec. and Elec. Eng.

Computer Society.

[6] Bourhfir, C., et al. 1997. Automatic Executable Test Case Generation
for Extended Finite State Machine Protocols. In Testing of

Communicating Systems. Springer. 75–90.

[7] Petrenko, A., S. Boroday, and R. Groz. 2004. Confirming

Configurations in EFSM Testing. Software Engineering, IEEE

Transactions on. 30(1): 29–42.

[8] Bochmann, G. V. and J. Gecsei. 1977. A Unified Method for the

Specification and Verification of Protocols. Proceedings of IFIP
Congress 77. 229–234.

[9] Li, H., H. Hu, and X.-F. Chen. 2009. Research on Compliant Testing

Method of Trusted Cryptography Module. Jisuanji Xuebao/Chinese

Journal of Computers. 32(4): 654–663.

[10] Bernhard, K., Oslo. 2007. Improving the Security of Trusted Computing,

in Proceedings of 16th USENIX Security Symposium on USENIX

Security Symposium. USENIX Association: Boston, MA.

[11] Kursawe, K., D. Schellekens, and B. Preneel. 2005. Analyzing trusted
platform communication, in In: ECRYPT Workshop, CRASH –

CRyptographic Advances in Secure Hardware. 8.

[12] Bruschi, D., et al. Replay attack in TCG specification and solution. 2005.

Tucson, AZ, United states: IEEE Computer Society.

[13] Xu, S., et al. 2009. Security Analysis of OIAP Implementation based on

BAN Logic. In 1st International Conference on Multimedia Information

Networking and Security, MINES 2009. Hubei.

[14] Chen, L. and M. Ryan. 2009. Offline Dictionary Attack on TCG TPM
Weak Authorisation Data, and Solution. In Future of Trust in

Computing. 193-196.

[15] Gürgens, S., et al. 2008. Security Evaluation of Scenarios Based on the

TCG’s TPM Specification, in Computer Security–ESORICS 2007. 438–

453.

[16] Delaune, S., et al. 2011. A Formal Analysis of Authentication in the

TPM. In Formal Aspects of Security and Trust. Springer. 111–125.
[17] Fu, D., et al. 2013. Authentication of the Command TPM_CertifyKey in

the Trusted Platform Module. TELKOMNIKA Indonesian Journal of

Electrical Engineering. 11(2): 855–863.

[18] Tarnovsky, C. 2010. Deconstructing A `Secure' Processor. In Black Hat

Brie_ngs Federal. http://www.blackhat.com/presentations/bh-dc-

17 Usama, Bharanidharan & Jamalul-lail / Jurnal Teknologi (Sciences & Engineering) 73:2 (2015), 11–17

10/Tarnovsky_Chris/BlackHat%-DC-2010-Tarnovsky-DASP-.

February 2010.

[19] Jackson, W. Black Hat: Engineer Cracks 'Secure' TPM Chip. 2010;

Available from: http://redmondmag.com/articles/2010/02/03/black-hat-

engineer-cracks-tpm-chip.aspx.
[20] Chen, L., et al. 2009. Attacking the BitLocker Boot Process, in Trusted

Computing. Springer Berlin / Heidelberg. 183–196.

[21] Wojtczuk, R. and J. Rutkowska. 2009. Attacking Intel Trusted

Execution Technology in,In Black Hat DC,

http://invisiblethingslab.com/resources/bh09dc/Attacking%20Intel%20

TXT%20-%20paper.pdf. 2009.

[22] Li, H., D. Feng, and X. Chen. 2009. Compliant Testing Method of

Trusted Cryptography Module [J]. Journal of Wuhan University

(Natural Science Edition). 1: 008.
[23] Xiao-Feng, C. 2009. The Formal Analysis and Testing of Trusted

Platform Module. Chinese Journal of Computers. 32(4): 646–653.

