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Abstract 
 

In order to predict and analyse the behaviour of a real system, a simulated model is needed. The more 
accurate the model the better the response is when dealing with the real plant. This paper presents a model 

predictive position control of a Two Wheeled Inverted Pendulum robot. The model was developed by 

system identification using a grey box technique. Simulation results show superior performance of the gains 
computed using the grey box model as compared to common linearized mathematical model.  
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1.0  INTRODUCTION 

 

An accurate model of a robot is needed for controllers design 

purposes. Basically in developing a model, three techniques are 

used, white box modelling, black box modelling and grey box 

modelling technique [1]. The White-box model is based on the first 

principles of physics; usually derived from the Newton equations 

or Euler Lagrange methods. While the Black-box models are based 

on the measurement of input and output data. To develop a black 

box model, no or very little prior knowledge of plant is needed. In 

addition, the model parameters have no direct relationship to first 

principles. The third ways of developing a model of a plant is a 

Grey-box technique. It is a combination between white and black 

box models. The model and structure of this type are known, only 

the values of the parameters are estimated [1]. Models derived by 

grey box model tends to be more accurate than black box model.  

  In the past, many researches worked in the area of modelling 

and control of the robot [2-9]. Euler Lagrange method of modelling 

is shown in [2-4, 9], while Kane’s method is done in [5, 10]. 

Newton’s method is implemented in [6, 7, 11]. Takagi-Sugeono 

fuzzy modelling approach is done in [8]. System identification of 

the robot was illustrated in [12, 13]. In all mathematical modelling, 

that is white box modelling technique, approximation and 

assumptions tends to make the model less accurate. Hence system 

identification approach, that is black and grey box model, is more 

accurate in describing the robot. 

  Also, in the control of TWIP, linear controllers were 

implemented. In [10], pole placement controller was applied at 

different linearized points and was used for velocity tracking, the 

controller tracks the desired velocity. A Linear Quadratic Regulator 

(LQR) was compared with partial feedback linearization for speed 

control in [14], and the nonlinear controller performs better than 

the linear controller. Nonlinear controllers were also investigated 

by researchers. In [9], partial feedback linearization was 

demonstrated, also Sliding Mode Control (SMC) method using 

LQR technique, was used to control the robot behaviour while 

driving on uniform slopes in [15]. Intelligent controllers were also 

used in controlling the TWIP. Fuzzy logic controllers (FLC) were 

investigated in [16, 17] to track desired speed and position. 

Adaptive intelligent controller were shown in [18, 19]. Model 

predictive controller (MPC) was used to control TWIP robot, as 

illustrated in [11] based on linearized model. MPC is a model base 

controller, the more accurate the model presents the actual system, 

the better the controller design becomes successful. MPC has the 

advantage of specifying constraints in the design, it is also an 

optimal controller [20].   
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Therefore, in this work, the MPC will be designed for position 

tracking of the TWIP robot. Two models will be used for the MPC 

design. Linearized model of the robot derived using white box and 

the other derived via grey box method of identification to show the 

superiority of grey box model over linearized model. The rest of 

the paper is organized as follows; section 2 describe the 

mathematical description of the robot and the grey box modelling 

of the robot, section 3 is the MPC controller design, section 4 is for 

the result and discussion, while section 5 gives the conclusion. 

 

  

Figure 1  Free body diagram of the TWIP 

 

 

2.0 DESCRIPTION OF THE TWIP MOBILE ROBOT 

MODEL 

 

The mathematical model and the identified model of the TWIP is 

presented in this section. 

 

2.1  Model of the TWIP 

 

The dynamic equations of the TWIP mobile robot are presented in 

this section. Euler Lagrange method is used to derive the dynamic 

model as in [4]. Figure 1 shows the free body diagram of the robot. 

The three direction of movement of the robot are x transitional 

motion, ϕ tilt angle, and 𝜓 yaw angle. The dynamic equations 

describing the robot are given below as in [4].  

�̈� =
𝐿

𝑅 [2 (𝑀𝑤 +
𝐼𝑎

𝑅2) 𝐿2 + 𝐼𝑦𝑠𝑖𝑛2𝜙 + 𝐼𝑧𝑐𝑜𝑠2𝜙 + 𝑀𝒃𝑑2𝑠𝑖𝑛𝜙]
(𝜏1

− 𝜏2) 

−
2[𝑀𝒃𝑑2 + 𝐼𝑦 − 𝐼𝑧]𝑠𝑖𝑛𝜙𝑐𝑜𝑠𝜙 �̇� �̇�

[2 (𝑀𝑤 +
𝐼𝑎

𝑅2) 𝐿2 + 𝐼𝑦𝑠𝑖𝑛2𝜙 + 𝐼𝑧𝑐𝑜𝑠2𝜙 + 𝑀𝒃𝑑2𝑠𝑖𝑛𝜙]
 

�̈�

=
(𝑀𝑏𝑅2 + 2𝑀𝑤𝑅2 + 2𝐼𝑎)𝑀𝑏𝑔𝑑

[(𝑀𝑏 + 2𝑀𝑤)𝑅2 + 2𝐼𝑎]𝐼𝑥 + 2𝑀𝒃𝑑2(𝑀𝑤𝑅2 + 𝐼𝑎)
𝜙

−
(𝑀𝑏𝑅2 + 2𝑀𝑤𝑅2 + 2𝐼𝑎) + 𝑀𝑏𝑑𝑅

[(𝑀𝑏 + 2𝑀𝑤)𝑅2 + 2𝐼𝑎]𝐼𝑥 + 2𝑀𝒃𝑑2(𝑀𝑤𝑅2 + 𝐼𝑎)
(𝜏1 + 𝜏2)    

 

�̈�

= −
𝑀𝑏

2𝑑2𝑔𝑅2

(𝑀𝒃𝑑2 + 𝐼𝑥)(𝑀𝑏𝑅2 + 2𝑀𝑤𝑅2 + 2𝐼𝑎) − (𝑀𝑏𝑑𝑅)2 𝜙

+
𝑅(𝑀𝒃𝑑2 + 𝐼𝑥 + 𝑀𝑏𝑑𝑅)

(𝑀𝒃𝑑2 + 𝐼𝑥)(𝑀𝑏𝑅2 + 2𝑀𝑤𝑅2 + 2𝐼𝑎) − (𝑀𝑏𝑑𝑅)2 (𝜏1 + 𝜏2) 

 

  The model is nonlinear, to linearize the model, we assume the 

operating point to be where the tilt angle 𝜙 = 0. Hence 𝑠𝑖𝑛𝜙 = 𝜙, 

𝑐𝑜𝑠𝜙 = 1, �̇� = 0, �̇� = 0. Applying the assumption and 

substituting the parameters values in [4], the linearized equations 

becomes; 

�̈� = 68.9659𝜙 − 4.3006(𝜏1 + 𝜏2)                          (1) 

�̈� = −3.7706𝜙 + 0.4902(𝜏1 + 𝜏2)                          (2) 

�̈� = 1.0812(𝜏1 − 𝜏2)                                                       (3) 
In state space form, the linearized equation is given in Equation 4. 

𝐴𝑙 = [

0 1
0 0

0 0
−3.7706 0

0 0
0 0

0 1
68.9659 0

] , 𝐵𝑙 = [

0
0.599

0
−5.776

] , 𝐶𝑙

= [
1 0
0 0

0 0
1 0

]                                  (4) 

 

 

 

 

 

 
Figure 2  System ID flowchart 

 

 

  The general equations describing the robot are simulated in 

Matlab/Simulink environment in open loop form, and the input and 

output data recorded. 

 

2.2  Identification of the TWIP 

 

Grey box method of identification is a statistical method of building 

models of dynamical systems from measured input and output data 

and also prior knowledge of the system dynamics [3]. To develop 

a model using identification approach, the following steps are 

followed as illustrated in the flowchart in Figure 2: 

  To get the data used in the identification, the voltage driving 

the two DC motors of the robot and is used for the input and 

depending on particular application of TWIP, the outputs can be 

horizontal position and velocity, the tilt angle and tilt rate, and the 

yaw angle and yaw rate movement. In this work, two outputs are 

chosen to be the tilt angle and the horizontal position. The 
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excitation signal used is a sine wave. The data recorded were used 

to refine the model in (4) using weighted least square method, by 

using Matlab ssest function. An approximate of the refined model 

to two decimal places is given in Equation 5. 

 

𝐴𝑔 = [

0 −0
−0 −0

69.04 −0
15.82 −0

1 0
0 1

0 −0
−0 −0

] , 𝐵𝑔 = [

11.55
4.69
−0
−0

], 

 𝐶𝑔 = [
0 0
0 0

0 1
57.3 0

]                                           (5) 

 

 

3.0  MPC DESIGN 

 

The aim of model predictive control is to bring the predictive output 

of a system as close as possible to the desired set point [20]. The 

model of the system is used to predict the future evolution of the 

system to optimize the control signal. Given a system in Equation 

6. 

 

�̇� = 𝐴𝑚𝑥(𝑡) + 𝐵𝑚𝑢(𝑡)  
𝑦(𝑡) = 𝐶𝑚𝑥(𝑡)                                                                               (6) 

We define the auxiliary variables; 

            𝑧(𝑡) = �̇�(𝑡)                                         
𝑦(𝑡) = 𝐶𝑥(𝑡)                                                                              (7) 

We choose a new state variable vector 𝑥(𝑡) = [𝑧(𝑡)𝑇 𝑦(𝑡)𝑇]. The 

new augmented state model is given in (8): 

 

 

 

[
�̇�(𝑡)

�̇�(𝑡)
] = [

𝐴𝑚 0𝑇
𝑚

𝐶𝑚 𝐼0𝑞𝑥𝑞
] [

𝑧(𝑡)

𝑦(𝑡)
] + [

𝐵𝑚

0𝑞𝑥𝑚
] �̇�(𝑡) 

 
Figure 3  MPC Block diagram 

 

 

𝑦(𝑡) = [0𝑚 𝐼𝑞𝑥𝑞] [
𝑧(𝑡)

𝑦(𝑡)
]                                                 (9) 

Where Iqxq is identity matrix with dimension qxq, 0qxq is zero 

matrix. The new model matrix is 

 

𝐴 = [
𝐴𝑚 0𝑇

𝑚

𝐶𝑚 𝐼0𝑞𝑥𝑞
] , 𝐵 = [

𝐵𝑚

0𝑞𝑥𝑚
] , 𝐶 = [0𝑚 𝐼𝑞𝑥𝑞] 

 

The cost function is given in Equation 10 

𝐽 = ∑ 𝑥(𝑘𝑖 + 𝑚|𝑘𝑖)𝑇𝑄𝑥

𝑁𝑝

𝑚=1

(𝑘𝑖 + 𝑚|𝑘𝑖) + ∆𝑈𝑇𝑅∆𝑈  (10) 

 

Where Q and R are weighting matrices, and ∆U is future control 

trajectory with length Nc. Np is the prediction horizon. The MPC 

control block is shown in Figure 3. From the figure, it can be seen 

that an embedded integrator is added to the design. The optimal 

gains Kx and Ky were computed using the lqr MATLAB command, 

choosing Q = C*CT, and R = 0.1. The gains computed using the 

linearized white box model is given in 11, while the MPC gains 

computed using the grey box model are given in 12. 

𝐾𝑥 = [−7.7458   − 9.4865  − 30.2670   − 4.1151], 
  𝐾𝑦 = [−3.1623    0.0000]                       (11) 

𝐾𝑥 = [−9.3453  − 16.6703  − 42.6428  − 10.2680], 
 𝐾𝑦 = [−3.1623    0.0000]                        (12) 

 

 

4.0  RESULTS AND DISCUSSION 

 

The response of the robot to track step, sine and pulse signal 

position, using both the linearized and the identified model gains  

computed in previous section, is shown in this section for 

comparison. 

  Figures 4-5 shows the response for tracking step input and the 

error between the two models. Clearly the grey box model shows 

better response with less error than the linearized model. Sine wave 

and pulse signal tracking are shown in Figures 5-7 respectively.  

 
Figure 4  Step response for tracking 1 m 

 

 
Figure 5  Step response error for tracking 1 m 

Figure 7  Pulse response tracking 
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Figure 8 and 9 shows the tilt angle response and the control signal 

respectively for the step input. 

 

 
Figure 8  Tilt response for step input 

 

 
Figure 9  Control signal for step input 

 

 

  It is observed that the response of the TWIP using the 

feedback MPC gains computed using the grey box model has better 

smooth response than the linearized model gains, this is clearly 

seen in the error signal of Figure 5. Since the linearized model is 

linearized around zero degrees, so the identified model has better 

operating range than the linearized model, hence better 

performance in the MPC optimization algorithm. 

 

 

5.0  CONCLUSION 

 

Position control of TWIP is presented using MPC, the model was 

developed using identification using grey box technique. Since, the 

response of the system to various signals were simulated using the 

gains from both the mathematical linearized model and the grey 

box identified model, it was found that, the response of the robot 

using the grey box gains shows a superior performance 

(smoothness) in terms of practical behavior than the linearized 

model gains which shows noisy results. 
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