INJECTION MOULDING PARAMETERS AND PERFORMANCE OF RICE HUSK-HIGH DENSITY POLYETHYLENE COMPOSITE

NAURAH BT MAT ISA

A thesis submitted in fulfillment of the requirements for the award of the degree of Master of Engineering (Polymer)

Faculty of Chemical and Natural Resources Engineering Universiti Teknologi Malaysia

MARCH 2006

To my beloved husband (Mohd. Yusof Hamzah) and my parents.

ACKNOWLEDGEMENT

I extend my sincere gratitude and appreciation to many people that made this master thesis possible. I am deeply indebted to my supervisors Assoc. Professor Dr. Wan Aizan Wan Abdul Rahman and Dr. Abdul Razak Rahmat whose help, stimulating suggestions and encouragement helped me in all the time of research and writing of this thesis.

I would also like to express my gratitude to all the lecturers from Faculty of Chemical and Natural Resources Engineering and those who have directly or indirectly assisted me in the preparation of this thesis. My fellow friends and staffs from the Department of Polymer Engineering supported me in my research work. I want to thank them for all their help, support, interest and valuable hints. Especially I am obliged to Ms. Zainab Salleh, Mr. Suhee Tan Hassan, Mr. Nordin Ahmad and Mr. Sukor Ishak. I also want to thank Mr. Chen Chang Hoong and Mr. Toh Sow Chong for all their ideas and assistance.

I gratefully express my thanks to my grandfather (Mr. Saad Ismail) for his trust and generosity supported my first semester with his own money. Also to School of Graduate Studies UTM for the generous financial and providing me UTM-PTP scholarship after the first semester to carry out the study.

Especially, I would like to give my special thanks to my husband Yusof who was giving me a full support until the end of the day. His love and patient enabled me to complete this work. Above all, I thank Allah the Almighty for His grace, mercy and guidance throughout my life. Thank you.

ABSTRACT

A column end cap part was produced from a two stages process. The first stage was the compounding of rice husk and HDPE into pellet size and the second stage was moulding it into a product. Four sizes of rice husk were used at various compositions. The size ranged from 500 µm and below (coded as A, B, C and D) while the content of rice husk as the filler in the composite varies from 30, 40, and 50 percent of weight. A fixed amount of compatibilizer and lubricant were used. From the various compositions, only one formulation was selected for further analysis, based on the injection moulding processability and the strength of the material. The melt flow rate above 4 g/10 min was used to be the lower limit for injection moulding process. The best impact strength was the priority in the composite selection. A composite at 30 weight percent rice husk size A (RH30PEA) was found to have optimum rheological properties with respect to strength, thus used in the injection moulding process. An optimum condition was determined for the processing parameters involve melt temperature (180 °C), injection pressure (60 kg/cm²), screw speed (240 rpm), screw backpressure (15 kg/cm²), holding time (6 sec), cooling time (42 sec) and mould temperature (30 °C) using the Taguchi Method. The dimension of column end cap was taken as the quality measurement in the determination. The performance of the column end cap product was evaluated after the exposure to environment, accelerated UV aging and water. The impact strength experienced gradual drop with the time of exposure to environment, UV aging and water but not significantly affect the performance of the column end cap. The product absorbed less percentage of water compared to the conventional wood. The properties exhibited by the column end cap showed the advantage of using RHPE composite in the construction industry.

ABSTRAK

Profil tiang yang berongga memerlukan penutup hujung bagi mengelakkan penakungan air. Penutup hujung tiang dihasilkan melalui dua peringkat proses. Peringkat pertama adalah dengan proses penyebatian serbuk sekam padi dan HDPE ke saiz butiran dan peringkat kedua ialah pengacuannya ke bentuk produk akhir. Empat saiz sekam padi telah digunakan pada setiap komposisi. Saiz ini berjulat di antara 500 µm dan ke bawah (dikodkan sebagai A, B, C dan D) manakala kandungan pengisi sekam padi di dalam komposit ini meliputi dari 30, 40 dan 50 peratus berat. Jumlah bahan pengserasi dan pelincir adalah pada kadar yang tetap. Daripada komposisi yang pelbagai ini, hanya satu formulasi yang telah dipilih untuk analisis selanjutnya. Pemilihan ini berdasarkan kesesuaian proses pengacuan suntikan serta kekuatan bahan setelah membentuk produk. Kadaralir lebur sebanyak 4 g/10 min digunakan sebagai had minimum untuk memilih bahan ini. Selain itu kekuatan hentaman yang terbaik menjadi keutamaan dalam pemilihan komposit. Komposit yang mengandungi 30 peratus sekam padi bersaiz A (RH30PEA) didapati memiliki sifat reologi yang optimum apabila berkadaran dengan kekuatan, lalu membolehkannya untuk diacuankan. Parameter proses yang optimum seperti suhu leburan (180 °C), tekanan suntikan (60 kg/cm²), kelajuan skru (240 rpm), tekanan belakang skru (15 kg/cm²), masa penahanan (6 sec), masa penyejukan (42 sec) dan suhu acuan (30 °C) ditentukan dengan kaedah Taguchi. Pengukuran dimensi penutup hujung tiang diambil dalam penentuan kualiti. Ketahanan produk ini dinilai setelah pendedahan kepada persekitaran, pecutan sinar ultra lembayung (UV) serta air. Kekuatan hentaman mengalami penurunan dengan masa pendedahan namun kesannya tidak ketara. Produk ini juga didapati kurang menyerap air berbanding kayu biasa.

TABLE OF CONTENTS

CHAPTER	TITLE	PAGE
TITLE PAGE		i
DECLARATION O	F ORIGINALITY AND EXCLUSIVENESS	ii
DEDICATION		iii
ACKNOWLEDGEN	MENTS	iv
ABSTRACT		v
ABSTRAK		vi
TABLE OF CONTE	ENTS	vii
LIST OF TABLES		х
LIST OF FIGURES		xii
LIST OF SYMBOLS	s	xvi

1 INTRODUCTION

1.1	Introduction	1
1.2	Problems Statement	4
1.3	Objectives	6
1.4	Scopes	6

2 LITERATURE REVIEW

2.1	Introduction	8
2.2	Lignocellulosic Thermoplastic Composite (LTC)	8
2.3	Lignocellulosic-Polyethylene (PE) Composite	13
2.4	Rice Husk-Polyethylene (RHPE) Composite	16
2.5	Processing	21
2.6	Product Testing	31

3 METHODOLOGY

3.1	Introduction	34
3.2	Raw Materials	34
3.3	Formulation	38
3.4	Apparatus for Sample Preparation	39
3.5	Experimental Procedures	42
3.6	Product Testing	56

4 RESULT AND DISCUSSION (PART I): (MATERIAL DETERMINATION)

4.1	Introduction	61
4.2	Filler Characterization	61
4.3	The RHPE Composite for Injection Moulding	69
4.4	The Limitations	75
4.5	Flow Simulation	80
4.6	Characteristics of RHPE Composite	84

5	RESULT AND DISCUSSION (PART II):
	PROCESSING PARAMETER OPTIMIZATION AND
	PRODUCT TESTING

5.1	Introduction	85
5.2	Trial Setting	85
5.3	Taguchi Analysis	100
5.4	Column End Cap Performance	114

6 CONCLUSION AND RECOMMENDATION

(6.1	Conclusion	136
	6.2	Recommendation for Future Study	138
REFERENC	CES		139
PUBLICATIONS		151	
APPENDIX	A-D		152

LIST OF TABLES

TABLE NO.	TITLE	PAGE

2.1	The thermal stability polyethylene and polypropylene	14
2.2	Rice production (000 t) from 1970-2002	18
2.3	Chemical composition of rice husk from different sources	18
2.4	The list of Teel-Global Resources Technologies LLC	
	product properties	20
2.5	Taguchi Orthogonal Array L ₈	26
3.1	Physical properties of HDPE grade HD5218AA	35
3.2	Physical properties of the dispersing & binding agent	37
3.3	Raw material formulation and composition	38
3.4	Type of feeder used for various formulation	45
3.5	The temperature setting of Sino PSM co-rotating	
	twin-screw extruder	45
3.6	The range of parameters used for optimization the	
	processing condition	53
3.7	The constant parameter used for the injection moulding	53
3.8	Number of run and the setting for optimization	54
3.9	The sample's specification data for product testing	56
4.1	Main characteristics of the rice husk fillers	63
4.2	Thermogravimetric analysis of rice husk	68
4.3	Properties of RHPE composite and virgin HDPE	84
5.1	List of the parameters for troubleshooting	86

5.2	Setting range for barrel temperature	87
5.3	Setting range for injection pressure	87
5.4	Setting range for screw speed	87
5.5	Setting range for screw backpressure	88
5.6	Setting range for holding time	88
5.7	Setting range for cooling time	88
5.8	Setting range for mould cooling temperature	89
5.9	The dimension of column end cap from each run	101
5.10	Matrix for the Seven-Variable Screening Experiment	
	Factors (Variable)	102
5.11	The optimum setting obtained after the optimization.	108
5.12	Tabulated data for the control limit calculation.	110

LIST OF FIGURES

FIGURE NO.	TITLE	PAGE

1.1	The design of column end cap (CECap) as the end product of	
	Rice Husk-HDPE (RHPE) composite based component	3
2.1	Breakdown in use of wood plastic composite (left) and natural fibre-	
	thermoplastic composite (right)	12
2.2	Effect of weatherometer exposure on wood flour-thermoplastic	
	Composites	15
2.3	Moisture sorption of 50 % wood flour and HDPE at 27°C (80°F) and	
	65 percent relative humidity	16
2.4	The LTCs injection moulded product.	22
2.5	Temperature history in an injection moulded part.	28
2.6	Pressure history in an injection moulded part.	29
3.1	The injection moulding machine JSW N100B II	41
3.2	The flow of research works	42
3.3	The RHPE composite materials compounded via co-rotating	
	twin screw extruder	44
3.4	The RHPE composite materials compounded via co-rotating twin screw	
	extruder.	47
3.5	A typical injection moulding process	51
3.6	The Column End Cap (CECap) mould (a) core side (b) cavity side	52
3.7	CECap part samples are immersed in a stainless steel water bath	57

xii

3.8	CECap samples are mounted on the 45° rack at the exposure site	58
4.1	Image of rice husk particles (a) type A, (b) type B, (c) type C,	
	and (d) type D	62
4.2	Illustration of rice husk's cell geometry cross section	63
4.3	Physical structure of rice husk (SEM x500)	64
4.4	Thermogram of rice husks at four different sizes	65
4.5	Derivative thermogram of rice husks at four different sizes	67
4.6	The melt flow rate of RHPE composites at different filler loading	
	of RH (A)-RH (D)	70
4.7	Apparent viscosity curves for different rice husk filler size	
	at different filler loading	72
4.8	The impact resistance of RHPE composites with 30 weight %	
	of rice husk at different filler size	73
4.9	The impact resistance of RHPE (A) composites at different	
	filler loading	75
4.10	Melting peak of RHPE composite at 30 wt% rice husk size A	76
4.11	Thermogravimetric analysis of RH30PE (A)	77
4.12	The plan view of column end cap	81
4.13	The side view of column end cap	81
4.14	Filling pattern of RHPE composite in the CECap cavity	83
4.15	Plan view of the column end cap	84
4.16	Side view of the column end cap	84
5.1	Sprue sticking	91
5.2	Illustration of the sprue sticking	92
5.3	Part sticking in cavity	93
5.4	Sink mark (a) overall product (b) sinking area	94
5.5	Short shot	95
5.6	Part flashing	96
5.7	Blushing on top of the cap	97
5.8	Material degraded due to overheating.	98

5.9	Material leaking and drooling	99
5.10	Overcooling cause to mould sweating and rusting.	100
5.11	The average of CECap length at x-axis and y-axis	101
5.12	Bell curve with effects	105
5.13	Quality control chart with the average part dimension control	
	limit for the CECap production	114
5.14	Quality control chart with the range part dimension control	
	limit for the CECap production	115
5.15	The well produced column end cap part after optimization	116
5.16	The water absoption rate of column end cap (CECap) based	
	on RHPE compared to HDPE	119
5.17	The water absoption rate of column end cap (CECap) based	
	on RHPE compared to HDPE	119
5.18	The swelling percent of column end cap (CECap) based	
	on RHPE compared to HDPE	120
5.19	The swelling percent of the column end caps (CECap)	
	compared to wood	120
5.20	The impact strength of HDPE-based CECap, RHPE-based	
	CECap and wood by the length of exposure	121
5.21	RHPE-based CECap before and after natural weathering	123
5.22	The surface of unfilled HDPE sample at 100x magnification	124
5.23	The surface of RHPE composite sample at 100x magnification	124
5.24	The surface of wood sample at 100x magnification	125
5.25	Lightness (L*) of HDPE-based CECap, RHPE-based CECap	
	and wood after outdoor exposure	126
5.26	The difference of color changes by the length of natural weathering	127
5.27	The impact strength of HDPE-based CECap, RHPE-based CECap	
	and wood by length of exposure	129
5.28	Effect of UV light to RHPE composite CECap	130

5.29	Effect of UV light to wood (a) wood surface darkens after			
	2000 hr UV exposure (b) warping observed	130		
5.30	Accelerated UV effect on HDPE composite surface			
	at 100x magnification	131		
5.31	Accelerated UV effect on wood surface at 100x magnification	132		
5.32	The accelerated UV effect on the RHPE composite surface at 100x			
	magnification	133		
5.33	Lightness (L*) of HDPE-based CECap, RHPE-based CECap			
	and wood after UV exposure	134		
5.34	The difference of color changes by the length accelerated weathering	135		
5.35	The impact strength of the CECaps and wood by the length			
	of exposure	137		

XV

LIST OF SYMBOLS

HDPE	-	high density polyethylene
PP	-	polypropylene
PVC	-	polyvinyl chloride
RHPE	-	rice husk-high density polyethylene
CECap	-	column end cap
LTC	-	lignocellulosic-thermoplastic composite
RH (A)	-	rice husk size 250-500 μm
RH (B)	-	rice husk size 125-250 μm
RH (C)	-	rice husk size 63-125 μm
RH (D)	-	rice husk size less than 63 µm
RH30PEA	-	rice husk-HDPE composite with 30 weight percent filler size A
Tg	-	glass transition temperature
T _{process}	-	processing temperature
T _{degradation}	-	degaradation temperature
T_k	-	minimum cooling time
Fo	-	Fourier number
α	-	thermal diffusivity
h	-	part thickness
$T_{\rm w}$	-	mould wall temperature
T _e	-	ejection temperature
°C	-	degree of Celsius
M_1	-	mass of pycnometer

M_2	-	mass of pycnometer with water
M_3	-	mass of pycnometer with specimen
M_4	-	mass of pycnometer with water and specimen
$ ho_{w}$	-	density of water at ambient temperature (23 °C)
MFR	-	melt flow rate
DSC	-	Differential Scanning Calorimetry
TGA	-	Thermogravimetric Analysis
SEM	-	Scanning Electron Microscopy
Ζ	-	zone
D	-	die
MINT	-	Malaysian Institute for Nuclear Technology Research
ρ	-	density
m	-	mass
v	-	volume
А	-	weight of the sample in air
В	-	weight of sample in water
ρ_o	-	density of water at the tested temperature
T _m	-	melting temperature
T _c	-	crystallization temperatures
ΔHf	-	enthalpy change of heating
ΔH_c	-	enthalpy change of cooling
MFE	-	Mean Failure Energy
h	-	constant height
W	-	mean-failure mass
f	-	factor for conversion to joules (9.80665 x 10^{-3})
MFM	-	Mean Failure Mass
Wo	-	smallest mass at which an event occurred
d_w	-	increment of tup weight, kg,
A	-	$\sum_{i=0}^{k} in_i$
i	-	counting index, starts at h_o or w_o

n_i	-	number of events that occurred at h_i or w_i
N	-	total number of failures or non-failures, whichever is smaller.
ΔE_{ab}	-	colour changes
TG	-	thermogravimetric
DTG	-	derivative thermogravimetric
HDT	-	heat distortion temperature
MSFE	-	Minimum Significant Factor Effect
XEE	-	estimate of experimental error
Sd	-	standard deviation
df	-	degree of freedom
k	-	sample size measured
N	-	number of runs
σ	-	confidence level
LCL	-	Lower Control Limit
CCL	-	Control Centre Line
UCL	-	Upper Control Limit

CHAPTER 1

INTRODUCTION

1.1 Introduction

As we approach the 21st century, there is a great awareness of the need for materials in an expanding world population and increasing affluence. At the same time, we are also facing problems such as the lack of landfills area, our resources are being used up, our planet is being polluted, that non-renewable resources will not last forever, and the need for environmental friendly materials.

Composite materials made from plant fibres are receiving a great deal of attention today since they are considered to be an environmentally friendly resource (Rowell, 1998). This revolutionary product, lignocellulosic-thermoplastic composite (LTC) is a combination of any type of natural fibre or wood waste and polymers, such as polyethylene (PE), polypropylene (PP) and polyvinyl chloride (PVC) in powder/ pellet form or regrind, including additives, colourants, lubricants and binders (Clemons and Ibach, 2004). LTC technology has been around for a quarter of a century, but it has gone unnoticed, largely due to a lack of demand. However this situation is changing with new design possibilities being offered in this fashionable marriage of materials (Anonymous, 2002).

In Malaysia, research on the lignocellulosic-thermoplastic composite is currently done by a few research institutes. But most of the studies are focusing toward blending and material study. No matter how good the result of the material, it is priceless if the material could not be turned into commercial products (Wee, 2002).

Recently a company based in Ipoh, Perak of Malaysia, has successfully produced an advanced composites material by compounding the cellulosic-short fibre in the High Density Polyethylene (HDPE) matrix. This composite material is extruded to profile shape, which looks exactly like a high-strength wood bar: in terms of dimension, colour, and hardness (Fibersit, 2003). Rice husk is being used up to 80 percent by weight as the reinforcing fibre in this composite material, which designed and engineered to yield performance properties superior to that of traditional wood. The Fibersit Technology composite is claimed to have all the structural qualities of wood, handles like wood but yet is stronger and more durable than wood. It can be nailed, screwed, drilled, sawn, milled, processed and finished just like wood.

However, this Fibersit Technology is only applicable in extrusion processing which means, only for a very limited dimension of product. On the account of this, Ministry of Science, Technology and Innovation (MOSTI) Malaysia has granted a fund under the Intensification of Research in Priority Areas (IRPA) Programme at Universiti Teknologi Malaysia, Skudai, Malaysia to conduct a research which inspired by the Fibersit Technology.

The information presented in this thesis is part of the ongoing research to study on the technique of producing rice husk-HDPE (RHPE) composite and the capability of injection moulding process to produce the column end cap (CECap) part from the material. As in Figure 1.1, the CECap part was selected as the endproduct since it can be applied on top of the Fibersit column and at the same time complete up the design.

Figure 1.1 The design of column end cap (CECap) as the end product of Rice Husk-HDPE (RHPE) composite based component.

The study consists of four stages: material development, material characterization, moulding conditions on the selected formulation and end-use performance. The development of the material involved the raw material identification and characterization up to the composite preparation. The objective in the material development stage was set to identify the processable material for injection moulding. In characterizing the material, an objective is set to obtain the material that has the best impact properties. The selected material was then proceeded to produce the CECap part via injection moulding. When producing the part, a few moulding variables has been considered to achieve the perfect CECap product.

Research on injection moulded LTCs were reported by a few researchers outside Malaysia. Abu-Sharkh and Hamid (2003) have studied on the date palm fibre-polypropylene composites; Yang *et al.* (2004 and 2005) concentrated on rice husk flour filled polypropylene composites; Panthapulakkal *et al.* (2005) and Sain (2005) moulded wheat straw fibre filled polypropylene composites; while Stark

and Matuana (2002, 2003 and 2004), Keener *et al.* (2004) and Clemons and Ibach (2004) were working on wood flour filled HDPE composites. Their product samples however were moulded into the standard shape of testing such as tensile, Izod or Charpy impact and flexural test.

Based from some local researchers, Premalal *et al.* (2002) for example has studied on rice husk powder filled polypropylene composites while Rozman *et al.* (2000, 2001, 2003a, 2003b and 2004) focused on the material testing of many other lignocellulosic composite types such as coconut fibre, oil palm empty fruit bunch (EFB), rice husk and oil palm frond fibre. The composite's samples however were prepared via compression moulding (hot-pressed technique) and cut into testing shapes.

Since there is limited research on injection moulded LTCs in Malaysia, a study on the injection moulding process to produce the LTCs is necessary to bridge the gap of technology with other advanced countries. Data obtained from the study can be used as a guideline by local manufacturer in producing the rice husk-HDPE composite product or other lignocellulosic composite material which is similar to the RHPE composite properties.

1.2 Problems Statement

There are very limited reports about the production of LTC using injection moulding technique. Although some of the overseas manufacturers have established their work in this area but only a few of them used rice husk as filler since this type of cellulose is reported as regional.

Especially in Malaysia, this technology is quite new and not yet established. As we know, there is none of LTC manufacturer in Malaysia involve in injection moulding process. Most of them concentrate in extrusion process and currently produce LTC profiles as their main product (known as wood-plastic composite lumber). Extrusion process is preferred because it is much easier and promises a well distribution of filler compared to injection moulding process.

Injection moulding process needs a lot of considerations especially in the composite formulations and processing parameters. This method of processing has the advantages for moulding a more complicated shape of product. Composite formulation is then adjusted to meet the processing requirements.

In order to commercialize rice husk-HDPE (RHPE) composite using injection moulding process, a study of the processing parameter in injection moulding has probably guide our local manufacturer in their production. This study was carried out to develop an optimal formulation and processing condition for rice husk based HDPE component using injection moulding process instead of typical extrusion process. Some basic concept assist very much at the beginning and this was followed by some modifications of work.

List of problems statement:

- Which size of rice husk filler is suitable for the RHPE composite manufacturing? Is it suitable for injection moulding process?
- ii) What is the optimum composition of rice husk as filler for the HDPE composite?
- iii) In what condition should the injection moulding be operated to produce the column end cap component using the selected formulation?
- iv) What is the effect of weathering and water absorption on the aesthetic and mechanical properties of rice husk-HDPE composite?

1.3 Objectives

This study aimed to develop an optimal formulation and processing condition for rice husk based HDPE component using injection moulding process instead of typical extrusion process for construction component such as column end cap. The main objective was further divided into:

- i. To identify the appropriate size of rice husk suitable as a filler in HDPE.
- ii. To determine the optimum composition of rice husk to be used for injection moulding process.
- iii. To investigate the optimum injection moulding process condition for the column end cap component production.
- iv. To study the effect of weathering and water absorption degradation on the aesthetic and mechanical properties of rice husk-HDPE composite.

1.4 Scopes

The scopes of this research include:

- Identification of suitable rice husk type for moulding from four sizes of rice husk that was classified as A, B, C and D.
- Selection of the best composition of rice husk that can be moulded with good impact strength. The percentage was varied from 30, 40 and 50 % rice husk.

- The processing parameters optimization such as the barrel temperature, cycle time and cooling time for easy flow, material processability and product homogeneity in the injection moulding. The parameters were optimized by Taguchi method.
- Weathering and water absorption tests were conducted on the rice husk-HDPE composite. Samples after these tests were analyzed on impact strength, morphology and colour changes.