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Abstract 

 

The pattern of wind and rainfall throughout Peninsular Malaysia are varied from one region to another, 
because of strong influences from the monsoons. In order to capture the wind and rainfall variations, a 

functional data analysis is introduced. The purpose of this study is to convert the wind and rainfall data into 

a smooth curve by using functional data analysis method. Fourier basis is used in this study since the wind 
and rainfall data indicated periodic pattern. In order to avoid such overfitting data, roughness penalty is 

added to the least square when constructing functional data object from the observed data. Result indicated 

that if we use a small number of bases functions, the difference is very small between with and without 
roughness penalty, showing that it is safer to smooth only when required. However, when a large basis 

function is employed, the roughness penalty should be added in order to obtain optimal fit data. Based on 
the contour plot of correlation and cross-correlation functions of wind and rainfall data, the relationship 

between both climate functions could be determined.  
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Abstrak 

 

Corak angin dan hujan di Semenanjung Malaysia berubah mengikut wilayah disebabkan pengaruh kuat dari 

monsun. Bagi menerangkan variasi angin dan hujan, analisis data fungsi diperkenalkan. Tujuan kajian ini 
adalah untuk menukarkan data angin dan hujan ke dalam suatu fungsi licin dengan menggunakan kaedah 

analisis data fungsi. Basis Fourier digunakan dalam kajian ini kerana data angin dan hujan menunjukkan 

corak bermusim. Untuk mengelak data terlebih padanan, penalti kasar dikenakan ke atas kaedah kuasa dua 
dalam membentuk data fungsi dari data cerapan. Keputusan menunjukkan jika menggunakan bilangan 

fungsi basis yang kecil, perbezaan yang sangat sedikit dapat dilihat di antara kesan penalti kasar dengan 

tiada penalti kasar, maka lebih selamat untuk melicinkan sesuatu fungsi bila perlu. Walau bagaimanapun,  
jika basis yang besar digunakan, penalti kasar perlu dikenakan untuk menghasilkan padanan yang optimal. 

Berdasarkan, plot kontur korelasi dan korelasi silang fungsi angin dan hujan, hubungan antara kedua-dua 

fungsi iklim tersebut dapat ditentukan. 
 

Kata kunci: Fungsi basis; lengkung licin; penalti kasar; data fungsi; basis Fourier 
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1.0  INTRODUCTION 

 

 Functional Data Analysis (FDA) develops fast in statistics area 

with the aim of estimating a set of related functions or curves rather 

than focusing on a single entity. The information about FDA such 

as the slopes, curvatures, and other characteristics are available 

based on the intrinsically smooth curves built up through FDA. The 

basic idea of FDA is to express discrete observations arising from 

time series into a functional data that represents the entire measured 

function as a single observation, and to draw modeling and make 

inference based on the collection of a functional data by applying 

statistical concept from univariate or multivariate data analysis.  

Recently, FDA has been gaining momentum in many fields such as 

in medicine, biomedicine, public health, biological sciences, 

biomechanics, environmental science, and economics. For example 

in biomedical, a functional analysis of variance which is part of 

functional linear model has been employed to compare several 

groups in the experimental cardiology (e.g. Ferraty et al., 2006; 

Cuevas et al., 2003) meanwhile Ratcliffe et al. (2002) applied 

singular longitudinal analysis with functional regression to 

periodically stimulated foetal heart rates. Based on their results, the 

functional model for the stimulated foetal heart rates represents the 

enhancement for the best standard linear regression model. On the 

other hand, Nikitovic (2011) and Hyndman and Booth (2008) use 
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FDA to forecast demographic rates and the structure of the 

population while in the area of meteorology, Suhaila and Jemain 

(2009) introduced FDA to convert rainfall observations into a 

smoothing rainfall curve which was then used in comparing the 

climate rainfall patterns between regions. 

  Generally, the wind in Malaysia is light and varies; however, 

some periodic changes in the wind flow patterns could influence 

the rainfall distribution. A strong wind is expected to bring heavy 

rainfall at the location. Our main objective in this study is to use 

FDA technique in representing the rainfall and wind data in the 

form of smoothing curves since wind and rainfall data are recorded 

as daily observations at a discrete time interval. FDA isused to 

represent the data in a way that could give information on the 

pattern and variation of the data and make use of the information in 

the slopes and curvatures of curves that are reflected in their 

derivatives. The smooth curve from FDA can then be used to 

compare rainfall and wind variability between regions. Contour 

plot of bivariate rainfall and wind could establish the relationship 

between both smoothing climate variables. 

  Therefore, a functional data analysis will be carried out to 

examine the changes and variability for both climate variables and 

establish the functional relationship between them. The outcome of 

this study is expected to be useful to policy makers, climatologist, 

and water resource planners dealing with climate change for the 

sustainable development and planning of water resources.  

 

 

2.0  STUDY AREA AND DATA 

 

Peninsular Malaysia is located between 1° 7′ North latitude and 

100° 103′ East longitude. Peninsular Malaysia has several types of 

landscapes of its certain latitude and longitude measurements 

which has tropical weather and is affected by monsoonal climate.  

  The wind speed at the east coast of Peninsular is mostly 

influenced by the northeast monsoon (NEM) which occurs from 

November to February, while the southwest monsoon (SWM) may 

possibly influenced the wind speed at the west coast of Peninsular 

between May and August. Based on the daily rainfall distribution, 

Suhaila et al. (2011) used four rainfall regions in Peninsular 

Malaysia which are the Northwest, West, Southwest and East. The 

east coast of Peninsular Malaysia experiences heavy rainfalls 

during the NEM. Heavy rains are also expected during the two 

inter-monsoons: March to April and September to October. On the 

other hand, the stations or areas which are sheltered by mountain 

ranges are relatively free from those monsoons. It is best to 

distinguish the rainfall distribution of the stations according to 

seasons.  

  Meteorological data were obtained from Malaysian 

Meteorological Services (MMS). The wind data is the speed of 

wind in meters per second meanwhile rainfall data is in millimeters 

per day for a period of 25 years from 1985 to 2009. The list of 

stations is provided in Table 1. 

 
Table 1  The list of ten stations with their geographical coordinates 

 

Code Stations Latitude Longitude 

S01 Kuala Krai 5.45 102.30 

S02 Batu Embun 4.15 102.75 
S03 Temerloh 3.70 102.94 

S04 Muadzam Shah 3.35 103.25 

S05 Mersing 2.45 103.83 
S06 Senai 1.63 103.67 

S07 Bayan Lepas 5.30 100.27 

S08 C. Highlands 4.60 101.50 
S09 Ipoh 4.57 101.10 

S10 Subang 3.12 101.55 

3.0  METHODOLOGY 

 

This section is divided into two main subsections. Method of 

finding suitable basis functions will be discussed in the first 

subsection. The method of least squares is used to estimate the 

parameters of the basis function. A functional descriptive statistics 

based on mean, standard deviation and correlation of functional 

data will be described in the second sub-section. Contour plots are 

used to describe the relationship between climates variables. 

 

3.1  Basis Function 

 

There are two methods that are normally used in representing the 

functional data, namely, smoothing and interpolation. If the 

discrete values are assumed to be errorless, the process involves 

interpolation method. But if they are some observational errors that 

need to be removed, the transformation from discrete data to 

function may require smoothing. The first step in FDA is to create 

a set of bases functions which used to convert the discrete values 

into a smooth curve. A set of linear combinations of bases functions 

is used in representing functions, which is given as 

 

𝑥(𝑡) = ∑ 𝑐𝑘  ∅𝑘 (𝑡)𝐾
𝑘=1          (1) 

 

where 𝑐𝑘 refers to the basis coefficient, ∅𝑘 is the known basis 

function while 𝐾 is the size of the maximum basis required. 

Fourier series give the best known basis function for periodic data, 

which can then be written as; 

 

𝑥(𝑡) = 𝑐0 +  𝑐1 sin 𝜔𝑡 + 𝑐2 cos 𝜔𝑡 + ⋯     

            (2) 

 

defined by the basis function ∅0 (𝑡) = 1, ∅2𝑘−1 (𝑡) = sin 𝑘𝜔𝑡, 
𝑋2𝑘  (𝑡) = cos 𝑘𝜔𝑡 with 𝑡 = 𝑡1, … , 𝑡𝑇. The basis is periodic, and the 

constant 𝜔 is related to the period 𝑇 by the relation  𝜔 =
2𝜋

𝑇
.  

After the first constant basis function, Fourier basis functions are 

arranged in successive sine and cosine pairs. 

  Let 𝑦𝑖 be the observed discrete data points for 𝑖 = 1,2, … , 𝑇 , 
collected over a continuum time 𝑡. Assuming that there is a 

reasonably smooth function 𝑥(𝑡) that gives rise to those discrete 

points. Defining the model as 

 

𝑦𝑖 = 𝑥(𝑡𝑖) + 𝜀𝑖.         (3) 

 

with mean zero and constant variance 𝜎2, the errors, 𝜀𝑖 are assumed 

to be independent and normally distributed. 

  In order to estimate a reasonably smooth function 𝑥(𝑡), the 

most well-known method of Least Squares estimation (SSE) is 

used. When the function 𝑥(𝑡) is defined in terms of the basis 

function expansion in Equation (1), the coefficients of the 

expansion, 𝑐𝑘 are determined through the least squares method by 

minimizing the sum of squared residuals: 

 

𝑆𝑆𝐸 = ∑ (𝑦𝑖 − 𝑥(𝑡𝑖))2𝑇
𝑖=1         (4) 

with 𝑦𝑖 represent the original observed data and 𝑥(𝑡𝑖) is the fitted 

smooth data. 

  Larger values of 𝐾 basis functions will tend to undersmooth 

or overfit the data (Ramsay et al., 2009). Therefore, when a large 

number of basis functions are used, a more powerful method of 

smoothing called roughness penalty is introduced. The basic idea 

of the roughness penalty approach is similar to the least square with 

an additional of a penalty term in Equation (4) and multiplied by a 

smoothing parameter which plays the role of penalizing the 

roughness to produce a better result. The penalized sum of squares 

(PENSSE) is defined as 
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𝑃𝐸𝑁𝑆𝑆𝐸 = ∑ (𝑦𝑖 − 𝑥(𝑡𝑖))2 + 𝜆 ∫(𝑥 ′′(𝑡))2𝑑𝑡𝑇
𝑖=1 .      (5) 

 

The smoothing parameter 𝜆 controls a compromise between the fit 

to the data and the variability in the function. Large values of 𝜆 will 

increase the amount of smoothing. However, to determine the best 

value for smoothing parameter 𝜆, generalized cross-validation 

(GCV) is applied and is defined as 

 

𝐺𝐶𝑉(𝜆) = (
𝑇

𝑇−𝑑𝑓(𝜆)
) (

SSE

𝑇−df(λ)
)                                        (6) 

 

where 𝑑𝑓(𝜆) refers to the number of degrees of freedom and 𝑇 is 

the number of observations. Several values of 𝜆 are tested, and 

value of 𝜆 which gives the smallest GCV is used. 

 

3.2  Descriptions of Functional Data 

 

The descriptive statistics such as mean, variance, standard 

deviation, covariance and correlation are estimated for functional 

data. The correlation function, describe the relationship between 

times for a climate variable while the cross-correlation function is 

used to determine the dependency between climate variables. 

  Let 𝑥𝑖 , 𝑖 = 1, … 𝑁, be a sample of curves or functions fits to 

data. The mean and variance are given as below; with the standard 

deviation function is the square root of the variance function;  

 

�̅� =  𝑁−1 ∑ 𝑥𝑖(𝑡)𝑁
𝑖=1          (7) 

 

𝑣𝑎𝑟𝑋(𝑡) = (𝑁 − 1)−1  ∑ [𝑥𝑖(𝑡) − �̅�(𝑡)]2𝑁
𝑖=1 .       (8) 

 

The covariance function summarizes the dependence of records 

across difference argument values, and is computed for all 𝑡1 and 

𝑡2 by 

 

𝑐𝑜𝑣𝑋(𝑡1, 𝑡2) = (𝑁 − 1)−1  ∑ {𝑥𝑖(𝑡1) − �̅�(𝑡1)}{𝑥𝑖(𝑡2) − �̅�(𝑡2)}𝑁
𝑖=1 .

       (9) 

 

Meanwhile, the associated correlation function is given as 

 

𝑐𝑜𝑟𝑟𝑋(𝑡1, 𝑡2)  =  
𝑐𝑜𝑣𝑋(𝑡1,𝑡2)

√𝑣𝑎𝑟𝑋(𝑡1)𝑣𝑎𝑟𝑋(𝑡2)
.    (10) 

 

Then, the dependency between variable can be quantified by the 

cross-covariance function 

 

𝑐𝑜𝑣𝑋,𝑌(𝑡1, 𝑡2) = (𝑁 − 1)−1  ∑ {𝑥𝑖(𝑡1) − �̅�(𝑡1)}{𝑦𝑖(𝑡2) − �̅�(𝑡2)}𝑁
𝑖=1

        (11) 

Using Equation (11), the cross-correlation function is given as 

 

𝑐𝑜𝑟𝑟𝑋,𝑌(𝑡1, 𝑡2)  =  
𝑐𝑜𝑣𝑋,𝑌(𝑡1,𝑡2)

√𝑣𝑎𝑟𝑋(𝑡1)𝑣𝑎𝑟𝑌(𝑡2)
.    (12) 

 

Contour plots display the contour line for a function of two climate 

variables between times and variables.  

 

 

4.0  RESULT AND DISCUSSION 

 

This section is divided into three main sub-sections. In the first sub-

section, the number of bases functions required for each region will 

be identified and the results will be validated by examining the 

residuals to obtain an optimal fit to data. Smoothing the functional 

data with and without roughness penalty will be investigated in the 

second sub-section. The third sub-section will summarize the 

pattern of wind-rainfall data using the functional descriptive 

statistics and establishing the relationship between climate 

variables based on correlation values. 

 

4.1  Identifying the Number of Basis Functions 

 

In this study, FDA technique involves building a functional data 

object from the observations that provide information on the pattern 

of the data. By comparing the deviance between the estimated and 

the observed values, we can determine the number of bases 

functions that best described the wind and rainfall data. 

Table 2 illustrates the example showing the analysis of deviance of 

mean wind speed for Batu Embun and mean rainfall for Muadzam 

Shah. Low p-value indicates the possibility of rejecting the null 

hypothesis. Based on those results, there is evidence to show that 

seven basis functions with three harmonics are required in 

describing mean daily wind speed for Batu Embun while nine basis 

functions which represent four harmonics are sufficient in 

describing mean daily rainfall for Muadzam Shah. Figure 1 (wind 

speed) and Figure 2 (rainfall) display the resulting smooth curves 

based on the number of basis functions that have been obtained for 

ten stations. The wind and rainfall patterns are compared regarding 

to the smoothing curves of each station.  

  As shown in Figure 1, five and seven bases are required to 

describe the variation in wind speed for most of the stations. The 

highest number of bases functions is observed for Mersing in which 

eleven bases are required to describe the variation of wind speed of 

the station. High mean speed is observed during the northeast 

monsoon months (Nov to Feb) for stations Muadzam Shah, 

Mersing and Senai while sudden drops in the speed values are 

observed between April and October. Conversely, for other stations 

such as Kuala Krai, Batu Embun, Temerloh, Ipoh and Subang, high 

mean speed is recorded in April and October during the inter-

monsoon months and slightly dropped during November to 

February. Different patterns are achieved for each station may 

possibly due to the factors such as geographical locations, distance 

from the sea and monsoons influence. 

  Figure 2 displays the smoothing rainfall curves with their 

number of bases functions of each station. There are different 

rainfall patterns are found between stations at east Peninsular and 

west Peninsular. As shown in Figure 2, a unimodal rainfall pattern 

is displayed for Mersing station at the east Peninsular. The highest 

seasonal rainfall peak is observed during the Northeast monsoon 

months while low rainfall values are recorded by the rest of the 

months. On the other hand, bimodal rainfall patterns are displayed 

by most of the stations at west Peninsular. The first seasonal rainfall 

peaks are observed in April to May while the second peak is in Sept 

to Oct. The second inter-monsoon is found to be wetter than in the 

first inter-monsoon. In comparison, the period from mid January to 

early February and from mid June to mid August are considered as 

dry periods for stations in the Western region. 

 

4.2  Smoothing With and Without Roughness Penalty 

 

For the smoothing data, we can sometimes get good results, by 

keeping the small number of bases functions related to the amount 

of data being approximated. On the other hand, to obtain an optimal 

fit to data, the other strategy aims by employing a powerful basis 

expansion. Roughness penalty may be added to the least square 

when constructing functional data object from the observed data. 

This approach allows finer control over the amount of smoothing. 

Based on the minimum GCV, parameter λ is chosen.  

  In order to compare the smoothing with or without roughness 

penalty, Temerloh and Cameron Highlands stations are taken as 

examples. Several values of 𝜆 are tested and the GCV values are 

obtained as shown in Table 3. Based on the minimum values of 
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GCV, the value of lambda is shown as 𝜆 = 1𝑒7. The degrees of 

freedom for wind and rainfall data, are given as 𝑑𝑓(𝜆) = 4.98 ≈ 

5, which is equivalent to the number of bases functions that are 

used. Figure 3 shows the smooth functional data for Temerloh and 

Cameron Highlands with and without roughness penalty by using  

small basis functions. As we can see from both stations, the 

differences of smoothing functions are too small in which the 

graphs seem to be overlapping with each other. This shows that by 

smoothing the functional data without a roughness penalty, we will 

not lose much and it is safer to smooth only when compulsory.  

 

 
 

Figure 1  Smoothing wind curves with the required basis functions 
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Figure 2  Smoothing rainfall curves with the required basis functions  

 

Table 2  Analysis of deviance of mean daily wind speed and daily rainfall for Batu Embun and Muadzam Shah 

 
Harmonic Basis Degrees of 

Freedom 

Reductio

n 

Deviance 

Mean 

Deviance 

F P-

Value 

Harmonic Basis Degrees of 

Freedom 

Reductio

n 

Deviance 

Mean 

Deviance 

F P-Value 

Batu Embun 

Between Day 

 

 

1 

 

 

364 

 

 

134.43 

      Muadzam 

Shah 

Between Day 

 

 

1 

 

 

364 

 

 

7005.67 

      

1 3 2 11.53 5.766 23.41 0.00 1 3 2 1816.86 908.43 81.30 0.000 

2 5 2 27.11 13.555 55.04 0.00 2 5 2 608.61 304.30 27.23 0.000 

3 7 2 4.26 2.128 8.64 0.01 3 7 2 348.61 174.31 15.60 0.000 

4 9 2 1.16 0.580 2.36 0.31 4 9 2 155.65 77.82 6.96 0.031 

5 11 2 1.42 0.710 2.88 0.24 5 11 2 50.81 25.41 2.27 0.321 

Residual 13 354 87.19 0.246     Residual 13 354 3955.70 11.17     
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Table 3  Values of lambda, degrees of freedom and GCV by using small basis functions 

 

  Temerloh (Wind)     C. Highlands (Rainfall)   

Loglam Lambda,λ Degrees of 
Freedom 

GCV Loglam Lambda,λ Degrees of 
Freedom 

GCV 

5 1.00E+05 4.9998 0.2464 5 1.00E+05 4.9998 6.6052 

6 1.00E+06 4.9981 0.2464 6 1.00E+06 4.9981 6.6051 

7 1.00E+07 4.9814 0.2463 7 1.00E+07 4.9814 6.6050 

8 1.00E+08 4.8287 0.2468 8 1.00E+08 4.8287 6.6405 

9 1.00E+09 4.0327 0.2674 9 1.00E+09 4.0327 7.8917 

 

 

  Figure 4 show the smooth functional data for Temerloh and 

Cameron Highlands with and without roughness penalty by using 

365 basis functions. Roughness penalty are added to the least 

square when constructing the functional data object from 

observed data in order to reduce the unwanted errors. Table 4 

provides the values of sum of squared residuals for both variables. 

The results indicated that the sum of squared residuals for 

smoothing curve with roughness penalty is smaller than the case 

without roughness penalty. In conclusion, it is better to smooth 

the data with roughness penalty when using a large number of 

bases functions. 

 

 

  
(a)             (b) 

 
Figure 3  Smoothing curves with and without roughness penalty for (a) Temerloh (Wind) and (b) Cameron Highlands (Rainfall) using small number of 
bases functions 

 

  
(a)             (b) 

 
Figure 4  Smoothing curves with and without roughness penalty for (a) Temerloh (Wind) and (b) Cameron Highlands (Rainfall) using large basis functions 
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Table 4  Sum of squared residuals for wind and rainfall data for large number of bases functions 

 

 

Station 

Wind Rainfall 

Without Roughness 

Penalty 

With Roughness 

Penalty 

Without Roughness 

Penalty 

With Roughness 

Penalty 

Kuala Krai 119.34 116.35 4177.18 1781.63 
Batu Embun 90.32 76.47 2464.39 1966.58 
Temerloh 87.36 75.84 2317.64 2085.38 
Muadzam Shah 67.32 47.02 4073.21 2205.96 
Mersing 9.93 1.14 4735.20 3600.44 
Senai 3.54 1.23 3664.08 2565.81 
Bayan Lepas 84.02 82.32 4192.37 4171.56 
C.Highlands 143.44 18.00 2346.73 2255.09 
Ipoh 92.57 91.94 2641.39 2251.47 
Subang 72.21 71.85 3088.01 3065.67 

 

 

4.3  Summarize the Pattern of Data using The Functional  

Descriptive Statistics 

 

In this sub-section, we recast the concepts of mean, standard 

deviation, covariance and correlation into functional terms. 

Figure 5 shows the average pattern of the mean and standard 

deviation of wind and rainfall functions for all ten stations in 

Peninsular Malaysia. High mean speed is observed in August 

with 7.3𝑚/𝑠 while low mean speed is recorded in June and 

November. On the other hand, a large variability of wind speed is 

observed between March and April, and September to October. 

For rainfall data, high mean rainfall function is observed in 

November to December with large rainfall variability was also 

observed during the same period of time. It is expected that high 

mean rainfall is observed during the northeast monsoon months. 

              
  

Figure 5  The mean and standard deviations of wind and rainfall functions 
 

  
Figure 6  The contour plots of the bivariate correlation functions for wind and rainfall  

 



112                                      W. I. Wan Norliyana & Jamaludin Suhaila / Jurnal Teknologi (Sciences & Engineering) 74:1 (2015), 105–112 

 

 

 
Figure 7  The contour plot of the cross-correlation functions for wind and rainfall 

 

 

  Figure 6 shows a contour plot of the bivariate correlation 

function 𝑐𝑜𝑟𝑟𝑤𝑖𝑛𝑑(𝑡1, 𝑡2) for the wind data and the corresponding 

plot for rainfall data which is based on 365 days. Generally, the 

wind data show high positive correlations throughout the year. 

This concludes that the wind speed is highly related between 

times at any points of the year. However,  

different values are recorded for rainfall function over times. It 

seems that rainfalls are highly correlated during the times in 

January and February with the correlation value of 0.8. By 

contrast, moderate negative and positive correlation values are 

observed from April till October.  

  The cross-correlation function of two climate variables 

𝑐𝑜𝑟𝑟𝑤𝑖𝑛𝑑,𝑟𝑎𝑖𝑛 is plotted onto Figure 7. The contour plot of cross-

correlation functions, 𝑡1is plotted along the horizontal axis and 𝑡2 

along the vertical axis, which represent either wind or rainfall. 

Generally, it could be said that moderate and low positive and 

negative correlations are found between two variables throughout 

the year. Zero values between wind and rainfall functions are 

observed during the period of July and August within any point 

throughout the year, which indicate no relationships exist 

between the variables functions. However, rainfall and wind are 

highly correlated at the end of the year during the northeast 

monsoon. It shows the cross-correlation value with 0.70 during 

November to March gives the strong positive relationship 

between wind and rainfall, which indicate that the wind speed 

could influence the rainfall pattern. 

 

 

5.0  CONCLUSION 

 

This study focused on how to define wind and rainfall data in the 

form of smoothing curves for ten stations in Peninsular Malaysia. 

Optimal number of bases functions is determined in describing 

the characteristics of the wind and rainfall of each station. Based 

on the smoothed curves obtained for each station, the wind and 

rainfall patterns are compared. Large variation in rainfall and 

wind speed of the station required large number of bases 

functions. Different results are achieved for wind and rainfall 

curves at the stations may possibly due to several factors such as 

geographical locations, distance from the sea and monsoons 

influence. 

  In establishing the relationship between the two climate 

variables, it shows a positive correlation during the northeast 

monsoon season based on the contour plot, while no clear 

indication of relationships exist for the rest of the months. 

Therefore, it could be said that the monsoons play a major role  

in influencing the relationship between wind and rainfall data. 

  Several applications of FDA such as functional principal 

component, canonical analysis, clustering and functional analysis 

of variance should be employed in future study to examine the 

variation of climate variables and establish relationship between 

the climate variables.  
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