Idris, Ismaila and Selamat, Ali and Ngoc, Thanh Nguyen and Omatu, Sigeru and Krejcar, Ondrej and Kuca, Kamil and Penhaker, Marek (2015) A combined negative selection algorithm-particle swarm optimization for an email spam detection system. Engineering Applications of Artificial Intelligence, 39 . pp. 33-44. ISSN 0952-1976
Full text not available from this repository.
Official URL: http://dx.doi.org/10.1016/j.engappai.2014.11.001
Abstract
Email is a convenient means of communication throughout the entire world today. The increased popularity of email spam in both text and images requires a real-time protection mechanism for the media flow. The previous approach has been limited by the adaptive nature of unsolicited email spam. This research introduces an email detection system that is designed based on an improvement in the negative selection algorithm. Furthermore, particle swarm optimization (PSO) was implemented to improve the random detector generation in the negative selection algorithm (NSA). The algorithm generates detectors in the random detector generation phase of the negative selection algorithm. The combined NSA-PSO uses a local outlier factor (LOF) as the fitness function for the detector generation. The detector generation process is terminated when the expected spam coverage is reached. A distance measure and a threshold value are employed to enhance the distinctiveness between the non-spam and spam detectors after the detector generation. The implementation and evaluation of the models are analyzed. The results show that the accuracy of the proposed NSA-PSO model is better than the accuracy of the standard NSA model. The proposed model with the best accuracy is further used to differentiate between spam and non-spam in a network that is developed based on a client-server network for spam detection.
Item Type: | Article |
---|---|
Uncontrolled Keywords: | differential evolution, negative selection algorithm, particle swarm optimization |
Subjects: | Q Science > QA Mathematics > QA75 Electronic computers. Computer science |
Divisions: | Computing |
ID Code: | 55430 |
Deposited By: | Practical Student |
Deposited On: | 06 Sep 2016 01:04 |
Last Modified: | 15 Feb 2017 06:46 |
Repository Staff Only: item control page