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ABSTRACT 

 

 

 

 

Various types of microporous carbon gas adsorbents have been prepared from 
Malaysia carbonaceous solid waste, the palm shell as the precursor for further 
modification into carbon molecular sieve (CMS). It is an advantage to utilize the 
palm shell as starting material by converting into useful CMS since it can be 
obtained easily and abundantly in the country. The precursors were prepared in 
laboratory fluidized and fixed bed reactors by one-step physical treatments, which 
included carbonization in N2 flow and directly followed by CO2 activation. The 
effects of carbonization parameters, such as carbonization temperature, hold time and 
N2 flow rate on the porosity development have been studied. The characterizations of 
precursors were carried out by constant volumetric physisorption analyzer to 
determine various characteristic parameters from the analysis of adsorption isotherm. 
Here, N2 and CO2 have been used as the adsorptive gas for analysis at 77 and 273 K, 
respectively. Although the entire precursor appeared to be highly microporous, only 
some precursors produced were considered suitable to be used as precursor of CMS 
for O2/N2 separation based on the literature survey finding. Then the precursors were 
modified into CMS using chemical vapor deposition (CVD) technique. The CVD 
technique involved deposition of pyrolytic carbon on the precursor by cracking of 
hydrocarbon gas substance. CVD parameters such as type of hydrocarbon gas 
substance, deposition temperature, deposition hold time and % v/v of hydrocarbon 
gas substance were manipulated to have pyrolytic carbon deposited on the pore 
mouth for improving separation selectivity with some trade-off in O2 adsorption 
capacity. The characterizations of CMS were carried out by constant volumetric 
physisorption analyzer to determine the adsorption kinetic of O2 and N2 for 
determining the selectivity and O2 adsorption capacity from isotherm at 298 K. The 
deposition mechanisms were proposed from the result obtained. By directly applied 
CVD to deposit carbon on precursor for modifying the pore mouth produced CMS 
which is not up to expected performance compared to commercial carbon molecular 
sieve (CCMS). It was due to the existence of a small portion of pore with bigger pore 
size. These pores could not be effectively lowered because further deposition of the 
pyrolytic carbon will close the smaller pore resulting in abrupt reduction in O2 
adsorption capacity. The conventional CVD involving pore blocking by pyrolytic 
carbon followed by control gasification in CO2 atmosphere were used. In this 
experiment, the best samples from directly applied CVD and conventional CVD have 
selectivity of 8.00 and 5.00 respectively compared to the selectivity of 2.09 for the 
precursor.   
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 Pelbagai jenis karbon penjerap gas berliang-mikro telah dihasilkan daripada 
sisa pepejal berkarbon di Malaysia, iaitu tempurung kelapa sawit sebagai prekursor 
untuk pengubahsuaian seterusnya kepada pelbagai penapis molekul karbon (CMS). 
Ini merupakan satu kelebihan untuk menggunakan tempurung kelapa sawit sebagai 
bahan asas dan mengubahnya kepada CMS berguna kerana tempurung kelapa sawit 
dapat diperoleh dengan mudah dan banyak di negara kita. Prekursor telah dihasilkan 
dengan menggunakan reaktor-reaktor di makmal dengan rawatan fizikal satu-langkah 
dimana prosesnya termasuklah karbonisasi dalam aliran N2 dan seterusnya diikuti 
dengan pengaktifan dengan CO2. Parameter-parameter karbonisasi yang 
mempengaruhi pembentukan keliangan seperti suhu, masa penetapan dan kadar 
aliran N2 telah dikaji dan dikenalpasti. Analisis penentuan sifat-sifat prekursor telah 
dijalankan dengan menggunakan peralatan penjerapan gas secara isipadu tetap untuk 
mendapatkan ciri-ciri struktur liang daripada isoterma penjerapan. N2 dan CO2 telah 
digunakan sebagai gas penjerap untuk analisis tersebut pada 77 K dan 273 K masing-
masing. Walaupun semua prekursor yang terhasil menunjukkan struktur berliang 
mikro, hanya segelintir daripadanya didapati sesuai sebagai prekursor khas untuk 
CMS pemisahan O2/N2 berdasarkan kajian literature. Kemudian, prekursor 
diubahsuai kepada CMS menggunakan teknik pemendapan wap kimia (CVD). 
Teknik CVD melibatkan pemendapan karbon pirolitik ke atas prekursor melalui 
pemecahan molekul gas hidrokarbon. Parameter-parameter CVD seperti jenis gas 
hidrokarbon, suhu, masa penetapan dan %v/v gas hidrokarbon semasa pemendapan 
telah dikaji untuk memastikan karbon pirolitik termendap pada mulut liang agar 
dapat meningkatkan kepilihan dengan sedikit penurunan pada kapasiti penjerapan O2. 
Analisis penentuan sifat-sifat CMS telah dijalankan dengan peralatan penjerapan gas 
secara isipadu tetap juga untuk menentukan kinetik penjerapan O2 dan N2 dan 
isoterma, khas untuk mendapatkan nilai kepilihan dan kapasiti penjerapan O2 
masing-masing. Mekanisme pemendapan juga dicadangkan berdasarkan data-data 
tersebut. Aplikasi CVD secara langsung untuk memendapkan karbon pada prekursor 
dengan tujuan untuk mengubahsuai mulut liang tidak berjaya mendapatkan CMS 
setanding dengan penapis molekul karbon komersial (CCMS). Ini kerana wujudnya 
sebahagian kecil liang dengan saiz yang lebih besar. Liang-liang tersebut tidak dapat 
dikecilkan kerana pemendapan karbon pirolitik yang selanjutnya akan menutup 
liang-liang yang kecil mengakibatkan penurunan mendadak pada kapasiti penjerapan 
O2. Kemudian, CVD konvensional yang melibatkan penutupan semua liang dengan 
karbon pirolitik diikuti dengan pengaktifan dalam CO2 secara terkawal telah 
dijalankan. Daripada eksperimen ini, sampel terbaik daripada CVD secara langsung 
dan CVD konvensional menunjukkan nilai kepilihan 8.00 dan 5.00 masing-masing 
berbanding nilai kepilihan 2.09 pada prekursor. 
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CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

 

 

1.1 Typical Characteristics of Adsorbents 

 

Adsorption process can be defined as when porous and discontinuity surface 

of a solid is exposed to a gas, the gas molecules will form bonds with it and become 

attached (Yang,1987).  In another words, adsorption is a separation process in which 

certain components of a gaseous or liquid phase are selectively transferred to the 

surface of a solid adsorbent.  There are four principles type of adsorption (Slejko, 

1985): 

 

(a) Exchange (ion exchange) – The electrostatic attachment of ionic species to 

site of opposite charge at the surface of the adsorbent, with subsequent 

displacement of these species by other ionic adsorbate of greater electrostatic 

affinity. 

(b)  Physical – The action of Van der Waals forces, which are comprised of both 

London dispersion forces and classical electrostatic affinity. 

(c) Chemical – The reaction between an adsorbate and an adsorbent resulting in a 

change in the chemicals form of the adsorbate. 

(d)  Specific – The attachment of adsorbate molecules at functional groups on 

adsorbent surfaces can also result from specific interactions, which do not 

result in adsorbate transformation. 
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The physical adsorption is based on three distinct separation mechanisms 

(Do. 1998): 

 

(a) Steric - The porous solid has pores with dimension such that it allows small 

molecules to enter while excluding large molecules from entry.  Steric 

separation occurred unique with zeolite due to the uniform aperture size in 

the crystalline structure (Safarudin, 2000).  

(b) Equilibrium - Solid has different abilities to accommodate different species 

that is the solid preferentially removes the stronger adsorbing species. 

(c) Kinetic – Different species have different rates of diffusion into the pores. 

Thus by controlling the time of exposure, the comparable faster diffusing 

species is preferentially removed by the solid.  Kinetic separation is possible 

only with carbon molecular sieve (CMS) because of the distribution of pore 

sizes and has found only one commercial application: the production of 

nitrogen from air (Yang, 1987). 

 

The success or failure of the process depends on how the solid performs in 

both equilibria and kinetics.  A solid with good capacity but slow kinetic will take 

adsorbate molecules too long time to reach the particle interior.  This means long gas 

residence times in a column, hence a long throughput.  On the other hand, a solid 

with fast kinetics but low capacity will require large amount of solid for a 

throughput.  To satisfy these two requirements, the following aspects must be 

satisfied (Do, 1998). 

 

(a) The solid must have reasonably high surface area or micropore volume. 

(b) The solid must have relatively large pore network for the transport of 

molecules to the interior. 

 

The classification of pore size as recommended by International Unit of Pure 

and Applied Chemistry (IUPAC) (Sing, 1985) is often used to delineate the range of 

pore size (d is the pore diameter).  
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Micropores   d < 2nm 

Mesopores  2 < d < 50 nm 

Macropores   d > 50 nm  

 

This classification is arbitrary and was developed based on the adsorption of 

nitrogen gas at its normal boiling point (77K). 

 

Micropores can be further subdivided into ultramicroporosity and 

supermicroporosity (Marsh, 1987). 

 

Ultramicroporosity    d < 0.5 nm  

Supermicroporosity    1.4 <d< 3.2 nm 

 

As ultramicroporosity has pore diameter equal or less than the diameter of the 

adsorbate molecule and activated diffusion effects and/or molecular sieve effects are 

the indication of the presence of ultramicroporosity.  While for supermicroporosity, 

adsorption occurs by cooperative effects.  The definitions and mechanisms of the 

above three effects will be discussed later in Chapter 3. 

 

 

 

 

1.1.1 Molecular Sieve Carbon or Carbon Molecular Sieve 

 

Since it is less hydrophilic than zeolite, carbon molecular sieve (CMS) can be 

used more efficaciously in separation processes involving wet gas stream.  At present 

CMS is produced commercially by Bergbau-Forschung GmbH in West Germany and 

by Takeda Chemical Company and Kuraray Chemical Company in Japan.  The raw 

material for Bergbau-Forchung’s MSC is bituminous coal, 40 microns.  Commercial 

CMS for air separation is produced by cracking hydrocarbon such as methane in 

order to deposit a thin layer of coke at the pore mouth.  CMSN2 produced by 

Bergbau-Forchung GmbH was used in PSA for the production of dry and CO2 free 

N2 at 99.9% purity without the need to predry the air feed (Yang, 1987).  Today, 

most commercial carbon sieves are prepared from anthracite or hard coal by 
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controlled oxidation and subsequent thermal treatment.  Subsequent treatments 

including controlled cracking of hydrocarbon within the micropore system and 

partial gasification under carefully regulated condition (Manzoor Zahur, 1991).  Such 

a treatment is known as Chemical Vapor Deposition (CVD) and will be discussed in 

detail in Chapter 4.  Table 1.1 shows the typical usage of different adsorbent in 

industrial processes nowadays. 

 

 

Table 1.1: Typical process using adsorption technology (Do,1998) 

Separation Adsorbent 
Normal paraffin, iso-paraffin Zeolite 5-A 
Nitrogen / oxygen gas Zeolite 5-A  
Oxygen / nitrogen gas Carbon molecular sieve 
Ethylene / vent stream Activated carbon 
VOCs removal from air Activated carbon 
Carbon dioxide, ethylene from natural 
gas 

Zeolite 

Sulfur compound from natural gas Zeolite 
Drying of reactive gases Zeolite 3-A, Silica gel, Alumina 
Solvent removal from air Activated carbon 
Ordors from air Activated carbon 
NOx, SOx, from flue gas   Zeolite, Activated carbon 
 

 

 

 

1.2 Gas Adsorption Processes. 

 

Large-scale adsorption processes can be divided into two broad classes.  The 

first and the most important is the cyclic batch system, in which the adsorption bed is 

alternately saturated and then regenerated in a cyclic manner.  The second is a 

continuous flow system, which involves a continuous flow of adsorbent 

countercurrent to a flow of feed (Geankoplis, 1993).  For system where the 

separation factor is high and mass transfer resistance is small, cyclic processes are 

generally employed because of advantages of simplicity and cost.  Continuous 

countercurrent operation is generally used only where selectivity are low and mass 

transfer resistance is high as it is only under these conditions that the additional 

capital cost of a countercurrent system can be justified (Manzoor Zahur, 1991). 
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There are four basic methods in common use for the cyclic batch adsorption 

system using fixed beds such as temperature-swing adsorption (TSA), pressure-

swing adsorption (PSA), inert-purge gas stripping cycle and displacement-purge 

cycle.  In general, these four basic methods operate with two or sometimes three 

fixed beds in parallel, one in adsorption cycle and the other two in a desorbing cycle 

to provide continuity of flow.  After a bed has completed the adsorption cycle, the 

flow is switched to second newly regenerated bed for adsorption.  These methods 

differ from each other mainly in the means used to regenerate the adsorbent after the 

adsorption cycle (Geankoplis, 1993).  

 

For PSA cyclic batch adsorption the bed is desorbed by reducing pressure at 

essentially constant temperature and purging the adsorbate.  This process for gases 

uses very short cycle time for regeneration compared to that for the temperature-

swing cycle.  However, the major limitation is that PSA cycles are restricted to 

components that are not too strongly adsorbed.  For equilibrium system, usually high 

vacuum is not desirable for desorption process, but if the preferentially adsorbed 

species is too strongly adsorbed, an uneconomically high vacuum is required for an 

effective desorption.  Thus, for this case, TSA is a generally preferred option due to 

modest change of temperature produces, in general, a significant change in the gas-

solid adsorption equilibrium constant (Ruthven et al., 1994).  

 

 

 

 

1.3 Air Separation Technologies. 

 

Cryogenic separation that is liquefaction followed by distillation-remains the 

most frequently used process for large-scale application.  Adsorption by PSA might 

be an alternative for N2/O2 separation as the cost required for a low temperature and 

high-pressure liquefaction during cryogenic separation is very expensive.  While 

major cost for PSA is in the compressor costs and volume of the beds.  The cost for 

adsorption is generally lower than distillation from small to medium throughput and 

when high purity products are not required (Yang, 1987).  Basically for adsorption of 

air by PSA, bed size is the controlling factor in capital cost.  Since production is 
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proportional to bed volume, capital costs increase more rapidly as a function of 

production rate compared to cryogenic plants (Smith and Klosek, 2001).  Moreover 

the compression power is also proportional to the volume bed size, causing 

proportional increase in utility cost.  Currently there are many other air separation 

technologies available such as chemical processes, polymeric membranes and ion 

transport membrane and Table 1.2 presented the brief comparison among those 

technologies (Smith and Klosek, 2001). 

 

 

Table 1.2: Technology comparison table (Smith and Klosek, 2001). 

Process Status Economic range  

(sTPD) 

Byproduct 

capability 

Purity limit 

(vol%) 

Adsorption semi mature <150 poor 95 
Chemical developing undetermined poor 99+ 
Cryogenic mature >20 excellent 99+ 
Membrane semi mature <20 poor ~40 
ITM developing undetermined poor 99+ 
Note to Table1.2: 
Status – degree to which the technology has been commercialized. 
Economic range –  typical production range where the technology is currently economically feasible. 
Byproduct capability – is a measure of the ability of the process to produce relatively pure nitrogen or 
argon stream without add-on DEOXO or cryogenic systems. 
Purity limit – maximum purity that can be economically produced using specific technology. 
DEOXO process – the stoichiometric quantity of hydrogen required to oxide the residual oxygen is 
introduced, and the gas stream is then passed over a catalyst bed in which essentially all the oxygen is 
oxidized to water which is then removed by adsorption on a zeolite desiccant. 
sTPD – Production in Ton per day.  

 

 

For air separation by using CMS, the PSA cycle used is vacuum swing cycle.  

For sorption of oxygen and nitrogen on the CMS, it is apparent that there is the little 

difference in equilibrium but a large difference in diffusivity, with oxygen being 

more rapidly adsorbed species.  The high pressure raffinate product in the PSA 

process is therefore nitrogen.  In such a system purging with nitrogen to remove the 

faster diffusing oxygen from the bed is undesirable, since, as well as wasting 

product, a certain fraction of slowly diffusing nitrogen will adsorbed, thus reducing 

the capacity for oxygen during the next adsorption step.  The kinetic PSA processes 

avoided this difficulty by using a vacuum to clean the bed rather than a purge 

(Ruthven et al., 1994).  Adsorption and polymeric membrane process will continue to 
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improve in both cost and energy efficiency through ongoing research and 

development of adsorbents and membrane materials.  None of the technology is 

expected to challenge cryogenics for large tonnage production of high purity oxygen. 

ITM technology is currently foreseen as the best candidate to challenge cryogenics 

for the production of high purity, tonnage quantities of oxygen.  The limitation for all 

the non-cryogenic processes is the requirement of liquid oxygen or nitrogen for 

system back up (Smith and Klosek, 2001).  

 

Cryogenic process is currently the most efficient and cost-effective 

technology to produce large quantities of oxygen, nitrogen, and argon products.  

However, it requires stringent air pretreatment section to remove process 

contaminants, including water, CO2 and hydrocarbons. Van Hardeveld et al. (2001) 

have analyzed the cause of a serious explosion in an air separation unit (ASU) in 

Bintulu (Malaysia) on 25 December 1997.  Ultimately, conclusive evidence was 

obtained that combustible airborne particulates had passed the main purification 

section of the air separation unit.  These combustible contaminants had accumulated 

on the aluminium main vaporizers of the distillation column.  Once hydrocarbon 

combustion was triggered, it led to aluminium combustion, which generated heat and 

vaporized the cryogenic liquids.    

 

 

 

 

1.4 Adsorption Mechanism 

 

Forces of adsorption of relevant interest here is the van der Waals forces, 

which exists between all atoms and molecules and can be classified into three groups 

(Do, 1998). 

 

a) Dipole-dipole forces 

b) Dipole-induced dipole forces – in this case one molecule having a permanent 

dipole will induce a dipole in a non-polar atom. 

c) Dispersion forces. 
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The dispersion force is the most important force in physical adsorption.  It 

has an origin in the quantum mechanics.  Non-polar atom such as neon or helium, the 

time average of its dipole moment is zero.  But at instant time “t” there is an 

asymmetry in the distribution of electrons around the nucleus and this generates a 

finite dipole.  This so generated dipole will polarize any nearby atom (that is it 

distorts the electron distribution) so that the nearby atom will acquire a dipole.  These 

two dipoles will attract and the time average of this attractive force is finite 

(Do,1998).  As a result, our characterization was solely based on physical adsorption 

with dipole-dipole and dipole-induced dipole forces is neglected as these forces were 

proved not playing an important role in air separation by CMS which will be further 

described in Chapter 3. 

 

 

 

 

1.5 Research on Palm Oil Wastes for Carbon Adsorbent Preparation  

 

Malaysia palm oil industries are producing about 27.6 million tons of solid 

wastes, including 14.8 million tons of empty palm oil fruit bunches, 2.7 million tons 

of fruit fibers and 7.7 million tons of palm shells in year 2000 (Wong and Nasir Ani, 

2002).  Palm kernel shells have long been used as fuel in boiler to produce steam and 

electricity for mill.  Palm kernel shell is the hard portion of the oil palm fruit that is 

broken to extract oil from the kernel.  Generally, the palm oil mills have excess shells 

that are unutilized and contribute to environmental pollution (Puad, Hamami and 

Zaihan, 2002).  

 

The principle commercial activated carbon feed stocks and proportions in 

which they are used were summarized by Bansal et.al. at 1988 as wood,35%; 

coal,28%; lignite,14%; coconut shell,10%; peat,10% and others, 3% (Guo and Lua. 

2002).  As the price of commercial activated carbon has dropped continually over the 

last decade or so, agricultural by-products are gaining great importance as precursors 

to active carbon production.  First, they lost their role as a major fuel and source of 

energy; second, they are ever accumulating renewable sources; and third, they are 

low-ash materials (Pastor-villegas and Duran-Valle. 2002).  
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 There are two factors contributing to the properties in activated carbon 

produced that are raw material and processing method.  The selection of the 

precursor essentially determines the range of adsorptive and physical properties that 

can be attained in the activated carbon products (Guo. and Lua. 2002).  Asiah (1992) 

has conducted the experiment on several local agricultural by-products suitable for 

producing active carbon.  She carbonized sugarcane fibre, rice husk, fiber and shell 

of palm at 450 °C.  The first two precursor produced chars showing standard 

isotherm of type II with hysteresis loop are closed in the pressure range near 

saturation.  This shape reveals that the adsorbing solid contains mesopores with an 

upper size restriction whilst palm fiber char sample adsorption isotherm is mixed 

type I and IV.  This isotherm showed that char is mixed of micro and mesopore.  

Palm shell char however showing type I isotherm indicating microporous property.  

As char will be further activated to activated carbon it is important to ensure the 

quality of char prior to the further process.  Generally, the activation reaction rate is 

dependent on the transient pore structure of char during the activation process (Lua 

and Guo, 2001).  Guo and Lua (2000) in his experiment have drawn the conclusion 

that the shell activated carbon was predominantly microporous whilst activated 

carbon derived from fibre predominant mesopore and macropore because of severe 

reduction of carbon-CO2.  Furthermore, hardness is an important property of the 

activated carbon and experimental result obtained by Lua and Guo (2001) has proven 

that the lowest Rockwell Hardness of activated carbon carbonized at 873K for 3h and 

activated at 1173 K for 30 min for palm shell is 19.0, which was sufficiently high to 

minimum hardness required.  Hardness or durability of individual adsorbent particles 

is an important property to be considered, for granular type adsorbent application as 

a result of attrition during regeneration (Slejko, 1985). 

 

Safaruddin (2000) has also characterized both palm shells after pyrolysis 

(char) and (activated carbon) activation after pyrolysis.  He found that palm char has 

surface area higher than coal char and average pore diameter was smaller than coal 

char.  Furthermore, compared to coal, palm shell has another merit of high carbon 

but low ash contents, which are associated with the feasibility of highly porous 

structures within the carbon matrix.  The characterization came out with conclusion 

that palm shell can be used to prepare microporous adsorbent as a starting material 

for carbon molecular sieve.  He also proposed that the suitable method for 
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developing carbon molecular sieve from microporous adsorbent is by deposition of 

carbon or Chemical Vapor Deposition (CVD).   

 

CMS exists for air separation by using PSA system in industry.  In this 

experiment, we are aimed to diverse the sources studied for the production of CMS.  

As the commercial carbon molecular sieve available in the market now is produced 

from hard coal (anthracite) with methane deposition as stated in 1.1.1.  The above 

statement has supported our research objective to convert the palm oil waste 

especially palm shell into carbon molecular sieve.  Besides being value added to the 

waste palm shell, the environmental problem of ever accumulating waste will be 

solved.  Palm shell was chosen in view of its suitability as precursor and the 

processing parameter and method will be manipulated to obtain the CMS suitable for 

air separation by PSA.  

 

 

 

 

1.6 Research Objectives 

 

1. To develop microporous carbon from palm shell as a precursor for further 

pore mouth modification by using CVD method. 

2. To characterize the microporous carbon with appropriate calculation 

method by physisorption technique. 

3. To modify the microporous carbon by one-step CVD process by directly 

applying of CVD and conventional CVD involving pore blocking by 

pyrolytic carbon followed by careful gasification in CO2 atmosphere. 

4. To characterize the CMS after CVD with appropriate calculation method 

by Rate of Adsorption technique.  
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1.7 Research Scopes 

 

This research is the preliminary study of the conversion of palm shell into 

CMS capable for the separation on O2/N2.  The procedure is first to fabricate 

microporous carbon with high micropore volume to serve as precursor for further 

pore mouth modification by using CVD method.  Selection of appropriate starting 

material and various kind of processing method of microporous material is 

essentially important to produce the microporous carbon with narrow pore size 

distribution and relatively small pore size suitable for further modification.  The 

microporous carbon is then undergoes the CVD process which mainly deposits 

carbon on the pore entrance until the desired pore size and distribution is obtained.  

Only one step CVD with direct deposition (DD) is explored in this research although 

two steps CVD and other type of one step CVD technique are available due to some 

constraint.  The CVD research here involved two different approaches that are first 

direct deposition the carbon on the precursor until narrow pore size is reached and 

second closure of the pore of the precursor at the pore entrance followed by pore 

reopening by activation with CO2.  The mechanism of CVD and the development of 

carbon deposit at different parameters is discussed and compared with the existing 

literature survey available. 

 

 

 

 

1.8 Contribution  

 

The research on CMS and particularly CVD method for pore modification is 

of interest of local researcher in the recent years although Bergbau Forchung 

manufactured CMS for PSA process in 1973.  From the literature survey, there is no 

journal published on fabricating CMS for O2/N2 separation using CVD method 

particularly using palm shell as starting material.  Even though, there are published 

journal on fabricating CMS for O2/N2 separation using CVD method using different 

starting material such as coconut shell (Braymer et al., 1994, Cabrera et al., 1993), 

walnut shell (Hu and Vansant, 1995), carbon fiber from petroleum pitch (Casa Lillo 

et al., 2002) and coal (Hu and Vansant, 1995, Chagger et al., 1995),  there are no 
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complete formulation on CVD process and the parameters used are differ from one to 

another due to different precursor and gas or liquid substances used for carbon 

deposition. The contribution of the research is summarized as followed: 

 

• Establishing the detail on fabricating CMS for O2/N2 separation from 

palm shell waste which involved a series of processes.  Appropriate 

analysis methods developed are used for the adsorbent for the 

intermediate products and the end product also included. 

• The ever accumulating palm shell is possible to be solved by 

converting it into high value added product as their role as fuel is still 

not attractive although oil prices have surged high recently due to 

some problem (STAR, 17 Jul. 2004). 

• Served as preliminary research and finding for complete understanding 

of CVD process.  Some useful recommendation was suggested for 

further research direction.  
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