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ABSTRACT 

 

 

 

 

Oil palm trunk (OPT) has never been used as a substrate in simultaneous 

saccharification and fermentation (SSF) for lactic acid production due to the 

existence of lignin in lignocellulose which makes biomass difficult to be hydrolyzed 

by enzymes and microbes. Hence, when used as substrate, effective pretreatment 

method is necessary so as to release the cellulose from complex crystalline structure. 

Production of lactic acid via SSF required compromising circumstances as microbe 

and enzyme perform best at different operating conditions. Present study 

demonstrated the production of lactic acid from microwave-alkali (Mw-A) pretreated 

OPT biomass by using cellulase, 1,4-β-D-glucosidase and Rhizopus oryzae NRRL 

395 through SSF process. The OPT biomass was treated using three different 

pretreatment methods: Mw-A, steam-alkali-chemical (SAC) and Mw-A + SAC 

techniques. Variations on physical and chemical constituents on OPT were analyzed. 

After pretreatment, results revealed higher amount of cellulose ( /100  biomass) 

was obtained for Mw-A sample, 71.88 as compared to Mw-A +SAC, 56.50 and 

SAC, 42.70. The 72   enzymatic saccharification revealed that accumulated glucose 

amount (Mw-A sample) was 4.86-fold as compared to untreated substrate. The 

values of enzyme kinetics parameters: Lineweaver-Burk method (  =3.682      , 

    =4.750            ) were in close agreement with non-linear regression 

(  =3.422      ,     =4.710            ), obeying Michaelis-Menten model. 

Experimental design on SSF was performed by response surface methodology 

(RSM) using face centered central composite design. The influence of three 

independent variables: temperature (32–42   ), pH (4–6) and enzyme ratio (3:1–7:1) 

on lactic acid production were investigated. When temperature, pH and enzyme ratio 

were set to 36.11   , 4.56 and 5:1; experimental value was in good agreement with 

RSM model prediction where lactic acid production at 6.632 ± 0.032       was 

achieved. By performing Mw-A pretreatment; treated OPT substrate was easy to be 

utilized in SSF process for the production of lactic acid.       
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ABSTRAK 

 

 

 

 

Batang kelapa sawit (OPT) belum pernah digunakan sebagai substrat dalam 

fermentasi dan pensakaridaan serentak (SSF) untuk penghasilan asik laktik 

disebabkan kewujudan komponen lignin dalam lignoselulosa yang mengakibatkan 

biojisim sukar untuk dihidrolisiskan oleh enzim dan mikrob. Oleh itu apabila 

digunakan sebagai substrat, kaedah prarawatan yang berkesan diperlukan untuk 

membebaskan selulosa daripada struktur kompleks kristal. Penghasilan asid laktik 

melalui proses SSF memerlukan keadaan kompromi kerana mikrob dan enzim 

selulolitik bertindakbalas baik pada keadaan operasi yang berbeza. Kajian ini 

menunjukkan penghasilan asid laktik daripada biomas OPT terawat oleh 

mikrogelombang-alkali (Mw-A) dengan menggunakan selulase, 1,4-β-D-glukosidase 

dan Rhizopus oryzae NRRL 395 melalui proses SSF. Biomas OPT telah dirawat 

dengan tiga prarawatan berbeza: teknik Mw-A, stim-alkali-kimia (SAC) dan Mw-A 

+ SAC. Variasi juzuk fizikal dan kimia pada OPT terawat telah dianalisa. Selepas 

prarawatan, keputusan menunjukkan jumlah selulosa yang tinggi ( /100  biomass) 

diperoleh dalam sampel Mw-A, 71.88 berbanding dengan Mw-A + SAC, 56.50 dan 

SAC, 42.70. Pensakaridaan enzim selama 72 jam mendedahkan bahawa 

pengumpulan glukosa (sampel Mw-A) adalah 4.86 kali ganda berbanding dengan 

substrat mentah. Nilai-nilai parameter kinetik enzim: kaedah Lineweaver-Burk 

(  =3.682      ,     =4.750            ) adalah rapat dengan nilai regresi 

bukan linear (  =3.422      ,     =4.710            ), mematuhi model 

Michaelis-Menten. Eksperimen ke atas SSF telah dilakukan dengan menggunakan 

kaedah gerak balas permukaan (RSM) berpusat muka reka bentuk komposit. 

Pengaruh terhadap tiga pembolehubah bebas: suhu (32–42   ), pH (4–6) dan nisbah 

enzim (3:1–7:1) untuk pengeluaran asid laktik telah dikaji. Apabila suhu, pH dan 

nisbah enzim ditetapkan pada 36.11   , 4.56 and 5:1; nilai eksperimen yang 

diperoleh berada dalam persetujuan yang baik dengan ramalan dari model RSM di 

mana pengeluaran asid laktik adalah 6.632 ± 0.032      . Dengan melakukan 

prarawatan Mw-A, substrat OPT terawat lebih mudah digunakan dalam proses SSF 

bagi penghasilan asid laktik.  
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CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

 

 

1.1 Research Background 

 

 

Malaysia, the second world’s largest palm oil industry tycoon possesses an 

oil palm plantation up to 5.076 million hectares (MPOB, 2012). Each year, there is 

an abundance of agricultural waste derived from palm oil industry. The major types 

of these lingocellulosic residues are palm kernel shells (PKS), oil palm empty fruit 

bunch (OPEFB) obtained from the mills, oil palm frond (OPF) obtained during 

routine pruning and oil palm trunk (OPT) derived from the field when the replanting 

is required.  

 

 

The oil palm solid biomass wastes contributed to a total amount of 59 million 

tons annually (Chen and Danapal, 2012). These amounts are significant enough to 

consider the oil palm biomass residues as a complementary source of raw material in 

the production of bioethanol and other biochemical derived products, such as lactic 

acid. Figure 1.1 demonstrates the total projected biomass residue in Malaysia.  

 

 

Converting these tremendous agricultural residues into higher value added 

products would benefit the nation economy. This is because oil palm biomass 

behaves like other lignocellulosic biomaterial which mainly consists of cellulose, 

hemicellulose and lignin. The cellulose and hemicellulose compounds are primarily 

made up of polymeric blocks consisting of hexose and pentose sugars entrenched in 

the phenolic polymer lignin matrix (Mass et al., 2006). 
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Figure 1.1 Total projected annual biomass availability in Malaysia (million tons, wet 

weight) (Tang, 2014) 

 

 

 

The natural existing of pentose and hexose sugars in lignocellulose has made 

this waste residue, a beneficial substrate for a wide application particularly in 

fermentation industry. Therefore, the huge oil palm residue in Malaysia should be 

utilized efficiently. Table 1.1 illustrates the Malaysia scenario of oil palm biomass 

residue which includes oil palm trunk, oil palm frond and oil palm empty fruit bunch 

supplied from 2001 to 2014 and the forecasted supply for year 2015 to 2020.  

 

 

 

Table 1.1: Malaysia scenario of oil palm biomass waste supply from 2001 to 2020 

   Year    

Biomass 

waste 

(tones per 

year, dry 

weight) 

2001- 

2003 

2004- 

2006 

2007- 

2010 

2011- 

2013 

2014-

2016* 

2017-

2020* 

Oil palm 

trunk 

 

3,993,442 

 

4,020,852 

 

3,234,164 

 

4,283,082 

 

3,583,803 

 

2,971,934 

Oil palm 

frond 

 

7,412,074 

 

7,025,525 

 

6,890,233 

 

6,803,260 

 

7,044,853 

 

7,141,490 

Empty fruit 

bunch 

 

2,870,148 

 

2,860,194 

 

2,823,695 

 

2,830,311 

 

2,906,647 

 

2,863,512 

* Projection (Fazlena, 2012) 

81.2 

3.21 

1.63 10.5 
3.46 

oil palm residue

Rice residue

Wood residue

Municipal solid waste

others
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The large quantity of the palm oil wastes causes a disposable problem, as the 

bulk density need to be stored or processed before discharging. The environmental 

health risk such as dengue fever can also occur because farmers tend to leave the cut 

oil palm residues in the plantation site. In most cases, they are burnt; however the 

open burning of bulk quantity of palm oil wastes is prohibited and banned by 

government and environmentalists as this may create serious air-pollution (Ethaya, 

2010).  

 

 

In order to make use of oil palm biomass, one of the promising technologies 

is to convert this abundance and renewable biomass to sugar monomers using 

enzymes. This is then followed by microbes to convert the fermentable sugars into 

desired products. Meanwhile, the processing of lignocellulosic biomass into useful 

bioproducts would require a few steps. First, it usually involves the pretreatment of 

lignocellulosic biomass followed by enzymatic saccarification. The third step is 

normally the fermentation process and finally the product isolated from the 

fermentation broth.  

 

 

Numerous pretreatment methods have been developed since 1970s to pretreat 

the recalcitrant lignocellulosic biomass. The apparent objectives of pretreatment are: 

i) to alter the structure of lignocellulose so as to make cellulose more accessible to 

enzymes that convert the carbohydrate polymers into fermentable sugars 

(monosaccharide) and ii) to break the lignin seal and disrupt the crystalline structure 

of cellulose (Ewanick, 2010). The destruction of cell wall has led to the loosening of 

the lignocellulosic complex and eventually resulted in lesser lignin and hemicellulose 

but increase released of cellulose in treated sample. The pretreated biomass would 

aid in enzymatic saccharification latter.  

 

 

Nowadays, none of the pretreatment protocol is universal and economically 

viable to pretreat different cellulosic biomass. Therefore, the proper pretreatment 

methods should be identified in order to maximize the efficiency of cellulose 

recovery (released from lignocellulosic structure). The most popular used protocol 

such as hydrothermal, thermochemical, solvent fractionation, dilute and concentrated 

acid or alkali treatment, enzymatic hydrolysis and biological treatment have recently 
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been investigated in-depth by research scientists. The pretreated solid biomass is then 

used directly in the fermentation process as a carbon source to achieve the bioprocess 

economic. Nowadays, the interest in lignocellulosic biomass has drawn a great 

attention. From the scientific point of view, the lignocellulose could be used to 

replace the expensive refined carbon source due to its abundance, cheap and 

renewable character (Zheng et al., 2009). Thus, application of the biomass waste as a 

raw material in chemical process has become a new challenge to the researcher in 

industrial sector.  

 

 

Lately, with the state-of-the-art biotechnology technique, there is a growing 

trend in conversion of lignocellulosic biomass into value added products such as 

single cell protein, bioethanol, xylitol, organic acid (such as poly-lactic acid) and etc. 

Figure 1.2 displays the potential products that can be generally produced from 

lignocellulosic biomass. Table 1.2 tabulates the compositions of cellulose, 

hemicellulose and lignin in the different parts of oil palm tree by different 

researchers. According to Table 1.2, highest cellulose content was found in OPT; 

thus bioconversion of OPT into high market demand product such as lactic acid is 

attractive.  

 

 

Recently, scientists have attempted to synthesize lactic acid from various 

wood based or lignocellulosic feedstock in order to replace the expensive pure sugar 

as a result of the increased demand of the lactic acid in the world market. The global 

demand for lactic acid was 800,000 tons in 2013 (NARA, 2013). Generally, lactic 

acid could be produced via fermentation route by using either bacteria or fungus 

strain. The production of lactic acid from cellulosic materials as reported using 

various sources such as wheat straw (Saito et al., 2012), corncob (Shen and Xia, 

2006), corn stover (Garrett et al., 2015) and oil palm empty fruit bunch (Hamzah et 

al., 2009), respectively. Therefore, the objective of this research is to utilize the OPT 

biomass efficiently for the conversion of cellulose into lactic acid. 
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Figure 1.2 Products synthesis from lignocellulosic biomass 

 

 

 

 

Table 1.2: Chemical compositions in oil palm biomass ( ) 

Part of plants Cellulose Hemicellulose Lignin Reference 

Oil palm empty 

fruit bunch 

(OPEFB) 

 

 

44.2 

 

 

33.5 

 

 

20.4 

 

 

Astimar et al. (2002) 

 43.8 35.0 16.4 Hamzah et al. (2011) 

 43.7 28.6 16.2 Aanifah et al. (2014) 

 40.4 20.2 23.1 Zakaria et al. (2015) 

Oil palm frond 

(OPF) 

 

32.7 

 

22.5 

 

15.2 

 

Zakaria et al. (2015) 

 25.1 24.1 18.5 Tan et al. (2011) 

Oil palm trunk 

(OPT) 

 

47.5 

 

31.0 

 

18.4 

 

Chin et al. (2010) 
Note: Minor components are not listed there, these numbers do not sum to 100   

 

 

Lignocellulosic biomass 

Single cell 

protein 

Human or 

animal 

nutrition 

Glucos

e 

Mannos

ee 

Xylos

e 
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 &  
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Xylitol 

Furfur

al 

Fermentati

on 

Biogas 

(Methane) 

Enzyme

Organic Bioethano

Antibioti

cs 

Fuel 

Electricity 

Poly(lactic) acid 
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1.2 Lactic Acid Production   

 

 

In general, lactic acid could be produced by conventional fermentation 

processes which include a few stages where the starchy material usually undergoes 

the gelatinization and liquefaction pretreatment at high temperature (90 – 130   ) for 

a short duration (15    ). It is then followed by enzymatic saccharification which 

mainly produces monosaccharide, i.e. glucose which is then consumed by particular 

microbes to produce lactic acid, cell mass and carbon dioxide formation. This type of 

fermentation path is called separate hydrolysis and fermentation (SHF). Figure 1.3 

illustrates the conventional SHF and simultaneous saccharification and fermentation 

(SSF) approaches for lactic acid production.  

 

 

 

 

 

 

 

 

 

 

 

Figure 1.3 Different fermentation approaches for lactic acid production 

 

 

 

 

The involvement of several SHF steps makes the fermentation of lactic acid 

production unattractive and uneconomically viable (Huang et al., 2005). This may be 

attributed to high energy consumption as two separate stages are involved and 

eventually add-on to the production cost. In contrast, the SSF process as shown in 

Figure 1.3 is able to initiate the fermentation process with the introduction of 

enzymes and microbes simultaneously in a single step. The SSF has been attracting 

much attention recently as it is envisaged to save time, cost of production, low 

contamination risk, reduce the number of reactor vessels and reactor volumes. 

(1) Pretreatment  (2) Saccharification 

(3) Separate Hydrolysis 

and Fermentation (SHF) 

Lignocellulose Oligosaccharide Glucose 

Lactic  

Acid 

Simultaneous 

Saccharification 

Fermentation (SSF) 
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Furthermore, the SSF process can increase the productivity by eliminating the 

inhibition effect caused by glucose accumulation (Satriyo et al., 2014). Recently, 

Zhang et al. (2015) has reported that higher L-(+)-lactic acid titer (60.3      ) was 

obtained in SSF process from corncob waste residue. The finding shows that the 

yield of lactic acid in SSF is 43.6   higher than in SHF.   

 

 

The lactic acid could be produced by either bacteria or fungus strain. 

Generally, the bacteria from Lactobacillus and Lactococcus exhibit fast growing rate 

and high product yield. Current industrial production of lactic acid uses homolactic 

acid bacteria, culture in enriched media with glucose substrate. The supplementation 

of adequate nutrient such as yeast extract to culture broth is also essential. This make 

the overall of lactic acid production suffer from high raw materials and purification 

cost. Although Lactobacillus sp. is able to synthesize lactic acid but the 

concentration was relatively low, i.e. 10–30       (Park et al., 2004). 
 

 

 

Thus, an alternative substitution for lactic acid bacteria has resulted in the use 

of fungus species. For example, the Rhizopus oryzae, a fungus strain is known to 

produce only the pure L-(+)-form lactic acid, unlike bacteria which generate mix 

isomers in either D-(–)- or L(+)-form (Zheng et al., 2009). As reported, the L-(+)-

type lactic acid is an essential component to form the polylactic acid (PLA), which is 

a precursor to mass produce the biodegradable plastic (Yin et al., 1997). Another 

advantage of using R. oryzae for lactic acid production is the ability to utilize various 

carbon sources including pentose and hexose sugars in lignocellulosic biomass and it 

requires low nutrient to grow (Skory et al., 1998). Recent studies have revealed that 

R. oryzae could produce lactic acid for at least 24 – 60.3       in SSF process by 

using paper pulp or corncob as a substrate (Vially et al., 2010; Zhang et al., 2015).  

 

 

Moreover, the ability of self-immobilized character of R. oryzae has enhanced 

the rate of mass transfer. As stated by Liao et al. (2007b), the pelletized R. oryzae 

has produced lactic acid up to 60       as compared to clump morphology, 20       

for 30   fermentation by using pure glucose as a substrate. Besides, the pelletized 

morphology also makes the separation process easier during downstream processing.     
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To best of our knowledge, the lactic acid produced from OPEFB was done by 

Hamzah et al. (2009). Limited data has been reported on lactic acid production from 

other parts of oil palm such as OPF and OPT. For this reason, the OPT biomass was 

selected as a substrate candidate for L-(+)-lactic acid production from Rhizopus 

oryzae via simultaneous saccharification and fermentation.  

 

 

 

 

1.3 Problem Statement  

 

 

The main components of lignocellulosic biomass are composed of cellulose, 

hemicellulose and lignin. Among these, lignin is a major obstacle for efficient 

cellulosic sugars conversion. The existence of lignin impedes the enzymatic 

hydrolysis and affects the sugars yield. This is because lignin acts as a barrier, 

shields the cellulose by preventing it binds to enzyme (Henning et al., 2007). 

Therefore, in cases when the substrate used is lignocellulose, a suitable pretreatment 

method needs to be identified so as to release the cellulose from the complex 

crystalline structure before it can be effectively hydrolyzed by enzyme and 

microorganisms. In view of this, different pretreatment methods (Mw-A, SAC and 

Mw-A +SAC techniques) were used to pretreat OPT so as to determine the most 

efficient one.  

 

 

In SSF process, substrate, enzyme and inoculum are introduced 

simultaneously in a same reactor. The SSF outperformed SHF due to its high product 

yield and less energy consumption (Vially et al., 2010; Saito et al., 2012; Zhang et 

al., 2015). However, the only drawback of using SSF is enzymes and fermentation 

organisms perform best at different operating conditions. It is difficult to preset the 

SSF conditions since saccharification and fermentation required different settings of 

pH and temperature. For instance, lower pH < 5 and high temperature > 40    would 

promote enzymatic hydrolysis but show adverse effect on the lactic acid production 

and fungal cell growth in SSF process (Huang et al., 2005). This leads to low product 

yield at the end of fermentation.  

 



9 

 

On this account, the compromising circumstance between enzyme and 

microbe use in SSF process must be pre-determined in order for maximize product 

yield. In order to overcome this, current study employed the response surface 

methodology (RSM) to identify the best SSF conditions for optimum lactic acid 

production. By analyzing the RSM results, the concession SSF conditions for 

optimizing lactic acid production in between producer, enzymes and those tested 

parameters were established. 

 

 

 

 

1.4 Objectives and Scopes of Study  

 

 

The main aim of this study is to produce L-(+)-lactic acid from microwave-

alkali pretreated OPT biomass via SSF route using cellulase, 1,4-β-D-glucosidase 

and Rhizopus oryzae NRRL 395. In order to ensure its achievement, the objectives 

include the following. 

 

 

1) To investigate the suitable pretreatment methods for OPT.  

 

2) To perform enzymatic saccharification study so as to determine the 

effectiveness of glucose formation. 

 

3) To produce L-(+)-lactic acid from OPT biomass. 

 

4) To determine the optimum conditions for lactic acid fermentation using 

response surface methodology (RSM) method.    

 

 

The scopes of the study are within the following.  

 

 

1) The influence of three different types of pretreatment protocol: i) microwave-

alkali, Mw-A; ii) steam-alkali-chemical, SAC and iii) combination of 

microwave-alkali followed by steam-alkali-chemical, Mw-A + SAC techniques 

on compositional contents of OPT biomass were studied. The morphological 



10 

 

tests such as FESEM, FT-IR and XRD analyses of pretreated OPT samples 

were thoroughly investigated. Finally, the crystallinity index relates to 

crystalline and amorphous region of cellulose for all pretreated OPT were also 

examined.    

 

2) The effectiveness of soluble glucose formation from Mw-A OPT substrate with 

various physiological effects: pH, temperature, enzyme ratio and substrate 

mass were determined. The pre-selected best conditions were used to rerun 

enzymatic saccharification reaction for all treated and raw OPT substrate so as 

to evaluate the comparatively glucose formation.  

 

3) The enzyme kinetics parameters,    and      on single saccharification of 

Mw-A OPT substrate were estimated using linearized and non-linearized 

regression. The enzymatic saccharification on Mw-A treated OPT was fitted 

into Michaelis-Menten model. The Chrastil kinetics equation was employed to 

understand the effect of structural alternation on Mw-A OPT substrate.  

 

4) The pelletized Rhizopus oryzae NRRL 395 was used in L-(+)-lactic acid 

production via SSF process. The preliminary study on 96   of SSF reaction 

was performed in order to ensure the R. oryzae is able to consume Mw-A OPT 

substrate and produces the target product viz. L-(+)-lactic acid. 

 

5) The response surface methodology (RSM) was computed based on three 

independent variables like temperature, pH and enzyme ratio to optimize the 

lactic acid response. All factors were statistically judged using analysis of 

variance (ANOVA). The RSM predicted optimal conditions for lactic acid 

production was validated by confirmation experiments. 

 

 

 

 

1.5 Significant of Study  

 

 

The cost for the production of lactic acid via SSF process is very much 

dependent on the raw materials. This can be achieved by using readily available low 

cost lignocellulose wastes derived from oil palm industry. The utilize of oil palm
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trunk biomass as a substrate in SSF process not only reduce the production cost at 

up-stream level but at the same time also tackles the disposal problem. The OPBC 

(2012) report revealed that bioconversion of oil palm residue into value added 

products would contribute 5   of today’s Malaysian GDP up to RM 663 billion. If 

the oil palm residues can be transformed into lactic acid, this would increase the 

profits and competitiveness of this industry. Besides, the use of lignocellulose waste 

to produce lactic acid is smarter choice than food-based cellulose as its unwanted 

characteristic possesses no compete to any edible food produced.  

 

 

Current industrial production of lactic acid uses homolactic acid bacteria; 

majority uses Lactobacillus sp. through fermentation (Zhang et al., 2015). Also, the 

lactic acid generated from bacteria fermentation was in two isomer forms which 

required further purification steps to obtain pure L-(+)-lactic acid. Hence, the 

alternative is to use fungus strain like Rhizopus orzyae. Reports revealed that lactic 

acid produced from R. oryzae mainly used the refined sugar, i.e. glucose as a main 

substrate (Yang et al., 1995; Liao et al., 2007a and Wu et al., 2011) as well as some 

lignocellulosic biomass such as paper pulp, wheat straw and corncob (Vially et al., 

2010; Saito et al., 2012; Miura et al., 2004). On these accounts, R. oryzae NRRL 395 

was fed with Mw-A OPT substrate as a carbon source during SSF process. 

Throughout state-of-the-art innovation, this research could contribute primary data 

for future investigation particularly for large scale production of commercial 

polylactic acid. The new information and idea were developed as compared to 

bacterial lactic acid fermentation.  

 

 

In short, the novelty of present study is to produce L-(+)-type lactic acid from 

OPT substrate via SSF process. To the best of our knowledge, industrially lactic acid 

production was made using bacteria strains and the substrate used was derived from 

food based sources, refined sugars and starchy materials. The present study 

demonstrates the utilization of OPT as a substrate to substitute the expensive carbon 

source. Also, OPT has no food competing values and can be obtained cheaply from 

local oil palm plantation.  
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1.6 Organization of Thesis 

 

 

This thesis is divided into five main chapters. Chapter 1 outlines the research 

background regarding the Malaysia oil palm industry, pretreatment protocol and 

global lactic acid demand. The lactic acid production using SHF and SSF was also 

discussed. Next, the problem statement, objectives and scopes of study, significant of 

study and organization of thesis were clearly mentioned. 

 

 

Chapter 2 is literature review. It provides a thorough study and related works 

done by previous researchers on the knowledge, ideas and technologies. The related 

topics included lignocellulosic substrate, pretreatment protocols, role of cellulolytic 

enzyme, enzyme kinetics and fungus used in lactic acid fermentation as well as the 

RSM approach were discussed.  

 

 

Chapter 3 details the methodology of the study. This chapter described all 

materials, enzymes, chemicals and reagents as well as instrumentation used in the 

present study. Besides, all the experiment methods were clearly explained in this 

section.  

 

 

Meanwhile the results and discussion section was presented in Chapter 4. 

This chapter is sub-divided into four sections: the pretreatment of OPT biomass, 

enzymatic saccharification study, enzyme kinetics and lactic acid production via SSF 

path. All obtained results include tables and figures were elaborated in-depth.  

 

 

The final chapter provides the summary and conclusion of the whole study. It 

also includes the recommendations for future work. Figure 1.4 shows the overall 

flow of the present study. 
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Figure 1.4 Flowchart of the overall process in present study 
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