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ABSTRACT 

 

 

 

Mathematical programming is one the most used techniques in process 

integration, especially in water and energy network designs. Unlike conceptual and 

graphical approaches, mathematical programming is a better option in dealing with 

complex industrial water and energy systems, involving multiple contaminants and 

mass transfer based and non-mass transfer based operations. This thesis presents the 

development of a mathematical model for minimum water and energy networks 

considering direct heat transfer. The approach optimizes a superstructure which 

represents a set of all potential water minimisation arrangements together with direct 

heat transfer options and water and energy network configurations in a process 

system. The model has been set to minimize fresh water and energy consumption, 

cost applied to the system and wastewater discharged from the system. The model 

formulation is a mixed integer nonlinear program (MINLP) that is used to optimize 

an existing design. It considers all stages of water management hierarchy (i.e. 

elimination, reduction, reuse, outsourcing and regeneration) and operating cost 

factors simultaneously to bring about the lowest total cost. In this work fresh water 

contaminant concentration can be assumed as either zero or non-zero. The constraint 

for waste water temperature has been considered in the model. The model has been 

tested with a case study of a paper mill plant for retrofit case. The results show a 

minimization of 20.3% in annual operating costs which is roughly a 5 million dollar 

savings per year for the plant. The model showed that 97.96% reduction in 

wastewater generation and 60.2 % in utility consumption is achievable in compare 

with the previous graphical method. This shows that the model is very beneficial for 

the retrofit of industrial water and energy networks. 
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ABSTRAK 

 

 

 

Pengaturcaraan matematik adalah salah satu teknik yang paling banyak 

digunakan dalam proses integrasi, terutamanya dalam reka bentuk rangkaian air dan 

tenaga. Berbeza dengan pendekatan konsep dan grafik, pengaturcaraan matematik 

adalah pilihan yang lebih baik dalam berurusan dengan system air dan haba industri 

yang kompleks dan, yang melibatkan pelbagai bahan cemar dan operasi berasaskan 

pemindahan jisim dan bukan berasaskan pemindahan jisim. Tesis ini 

membentangkan pembangunan model matematik untuk rangkaian minimum air dan 

tenaga mergambil kira pemindahan haba terus. Pendekatan ini mengoptimumkan 

superstruktur yang mewakili satu set bagi semua pengaturan pengurangan air yang 

berpotensi bersama-sama dengan pilihan pemindahan haba terus dan konfigurasi 

rangkaian air dan tenaga dalam sistem proses. Model ini telah ditetapkan untuk 

mengurangkan penggunaan air bersih dan.tenaga, kos yang digunakan untuk sistem 

dan air sisa yang dilepaskan dari sistem. Pembentukan model adalah program linear 

integer campuran (MINLP) yang digunakan untuk mengoptimumkan reka bentuk 

yang sedia ada. Ia mengambil kira semua peringkat hierarki pengurusan air (iaitu 

penghapusan, pengurangan, penggunaan semula, penyumberan luar dan perjanaan 

semula) dan kos operasi serentak untuk memperoleh jumlah kos terendah. Dalam 

kajian ini kepekatan pencemar air bersih boleh dianggap sebagai sama ada sifar atau 

bukan sifar. Kekangan untuk suhu air sisa telah diambil kira dalam model. Model ini 

telah diuji dengan satu kajian kes loji kilang kertas untuk kes retrofit. Keputusan 

menunjukkan pengurangan sebanyak 20.3% dalam kos operasi tahunan iaitu kira-

kira satu 5 juta simpanan dolar setiap tahun untuk kilang. Model ini menunjukkan 

bahawa pengurangan 97,96% dalam penjanaan air kumbahan dan 60.2% dalam 

penggunaan utiliti boleh dicapai di bandingkan dengan kaedah graf sebelumnya. Ini 

menunjukkan bahawa model ini adalah sangat bermanfaat untuk retrofit rangkaian 

air dan tenaga industri. 
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CHAPTER 1 

 

 

 

1 INTRODUCTION 

 

 

 

1.1 Introduction 

 

This chapter delivers an overview of the current world water and energy 

issues. Next parts come with problem background and problem statement. Then 

objective and scope of the study is discussed which involves the progress of a new 

methodology and technique to design water and energy networks based on 

mathematical programming and hierarchical approaches. 

 

1.2 World Water Outlook 

 

During the last decades, professionals have talk about the Earth’s capability 

to sustain constantly growing human populations. It now appears that water will be 

one of the fundamental factors limiting forthcoming industries, agriculture and 

community areas. This inadequate supply is facing intense and unsustainable request 

from users of all kinds, and clients more and more have to compete for water with 



2 

 

other sectors. Ecological uses of water, that may be the answer to guarantee the 

Earth’s water supply sustainability in the future, often get little notice. 

World water possessions are passing through a phase of changeover. This 

changeover is, possibly, an outcome of express economic growth process, tied with 

other human activities in various parts of the globe. A world water disaster seems 

likely to emerge during the current century as demand for water is increasing at a 

quicker rate. In the 20th century, the world population became tripled while the 

resourced of renewable water has increased six-fold (Rosegrant et al., 2002). It is 

predicted that within the next fifty years, the world population will increase by 

another 40 to 50 %. This growth amount in population, beside industrial 

development and urbanization will cause a larger than ever claim for water and 

which will have strict influences on the environment (Rosegrant, et al., 2002). 

An increase in fresh water consumption results in higher waste water 

production. There is further more waste water generation and spreading today 

compared to our planet history. About one human out of six require access to secure 

water for drinking, that is 1.1 billion people, and further than one out of three, don’t 

have access to adequate sanitation that is to say 2.6 billion people. As a result of 

water transmitted diseases, 3900 kids pass away every day (WHO and UNICEF, 

2005).  

As for global water consumption, agriculture consumes 70% of all water 

consumption, compared to 22% for manufacturing and 10% for urban use. In 

developed nations, however, industries consume more than half of the water existing 

for human use. Belgium, for instance, uses 80% of the available water for industry 

(World Water Council, 2010). 

According to an article on BBC (Kirby, 2003), the water quantity on Earth is 

constant. From 1.4 billion cubic kilometres out of our planet, less than 0.01% of it is 

fresh water in lakes and rivers (Fig. 1.1). 
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Figure 1.1: Earth's water sources (UNEP, 2006) 

World water usage has increased by three times since 1950 and has been rising faster 

than the world's population. A large amount of the exploited fresh water becomes 

waste water (Fig. 1.2). 

 

Figure 1.2: Earth's water sources (UNEP, 2006) 
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Figure 1.3: Water scarcity in 2025 (UNEP, 2006) 

Asia and Africa are already facing water scarcity. Rising populations will 

impose more pressure in the approaching decades (Fig. 1.3).The important point here 

is that the world cannot add to its supply of fresh water. All it can do is changing the 

manner it uses it. 

 

1.3 World Energy Outlook 

 

According to British Petroleum statistical review of world energy (British 

Petroleum, 2011), world energy consumption in 2010 increased heavily, as a result of 

financial developments. The rise in energy utilization was multinational, with grown-

up OECD which is the Organization for Economic Co-operation and Development, 

economies uniting in non-OECD countries is increasing at more than average speeds. 

With expansion in fossil fuels, all types of energy increased quickly, which resulted 

in such an increase in energy expenditure that made carbon dioxide emissions from 

energy use become at the greatest growing rate after 1969. 

Energy price increases were diverse. For much of the year 2010, before going 

up in the fourth quarter, Oil prices stayed in a range of $70-$80.Typical oil costs for 

the whole year were the second-highest on record as the OPEC production cuts 

putted into action in 2008/09 which is still in place. As for the price of Natural Gas, it 
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roared vigorously in the UK and in indexed markets’ oil prices (as well as a great 

deal of the world’s LNG). 

World main energy expenditure that for the first time in 2010 includes 

renewable energies, increased by 5.6% in 2010, resulted in the highest increase (in 

percentage terms) after 1973. Energy expenditure in OECD countries amplified by 

3.5% which is the highest expansion rate since 1984, while the level of OECD 

consumption leftovers around in line with that seen 10 years ago. Non-OECD 

consumption enlarged by 7.5% and was 63% higher than the year 2000 level. 

Consumption expansion amplified in 2010 for all regions, and increase was over 

average in all regions. Chinese energy consumption rose by 11.2%, and China left 

the US behind as the world’s foremost energy consumer. Oil stays the world’s most 

important fuel, at 33.6% of universal energy expenditure, but oil continued to lose 

market share for the 11th consecutive year (British Petroleum, 2011). 

After declining for second consecutive year, global oil consumption increased 

by 2.7 million barrels per day (b/d), or 3.1%, to reach a record point of 87.4 million 

b/d. This was the highest percentage raise since 2004 but still the weakest global 

growth rate between fossil fuels. By an increase by 1.8 million b/d, or 2.2% in world 

oil production, it still did not go with the fast consumption growth. The most rapid 

increase since 1984 happened to world natural gas consumption by 7.4%. Except the 

Middle East, consumption growth was over average in all regions. The world’s 

largest increase in consumption (volumetric) was for the US by rising 5.6% and to a 

new top record. The highest global growth since 2003 happened for coal 

consumption to be about 7.6% in 2010. Nowadays, coal is used to produce 29.6% of 

the global energy consumption, compared to 25.6% for ten years ago (British 

Petroleum, 2011). 

The highest increase for world main energy expenditure since 1973take place 

in 2010 by an increase of 5.6%. growth was above average for oil, natural gas, coal, 

nuclear, hydroelectricity, as well as for renewable in power generation. Oil remains 

the dominant fuel (33.6% of the global total) but has lost share for 11 consecutive 

years (BritishPetroleum, 2011). The share of coal in total energy consumption 

continues to rise, and the share of natural gas was the maximum on record (Fig. 1.4). 



6 

 

 

Figure 1.4: World Energy Consumption (1985-2010) 

It is obvious that world energy consumption has been always increasing and 

in a close future when fossil fuels are going to be consumed, an energy crisis will 

occur. Global warming is another added problem which is today global issue. Since 

much of the produced energy is wasted, technologies which help to increase energy 

efficiency and energy conservation are vital. According to an article in NY Times, as 

an example 56% of all energy in the United States economy is wasted (Revkin, 2008) 

which the percentage for industrial and urban is 20% that makes developing new 

technologies to reduce and manage energy consumption an inevitable matter. 

 

1.4 Problem Background 

 

Among the process industries, water and energy are two main requirements. 

Substantial amounts of water require to be heated in some of them. As a result, in 

these types of processes, both the quality and temperature of the water are crucial. 

Accordingly, managing water and energy consumption have to be considered 

simultaneously. 

Operations that water and energy are impacting each other or water systems 

which are heat-integrated, are very common chemical manufacturing plants. These 
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types of plants consume energy which comes from fossil fuels and water for their 

operations. There is a call for efficient use of energy and water as a result of fresh 

water shortage, fast reduction of energy resources and harsher ecological laws. 

Diverse studies have been accomplished in order to reduce water and energy which is 

consumed in chemical manufacturing plants throughout the past three decades. These 

studies mostly are concentrating on either minimization of energy (Morar and 

Agachi, 2010) or minimization of fresh water requirements (Alva-Argáez et al., 

2007; Bagajewicz et al., 2000; Bandyopadhyay, 2006; Takama et al., 1980). These 

studies paved the way for competent design of heat exchanger networks (HENs) and 

water allocation networks (WANs). Nonetheless, it is vital to remind that in a 

chemical manufacturing plant with heat-integrated water systems, water and energy 

are closely related and dependent to each other. It is found that the minimization of 

manufacturing fresh water expenditure consequences in both the minimization of 

wastewater generation and reduction in the crucial energy requirements for heating 

and cooling processes. Accordingly, energy and water management matters in 

process plants need to be noticed simultaneously, rather than separately. 

To achieve the optimal water and energy network design separately and 

simultaneously, different kinds of approaches has been tested by scientists. Among 

these, two methods are the most practiced ones which are graphical methods and 

mathematical methods. Heuristics and graphical methods (Bandyopadhyay, 2006; 

Dunn and Wenzel, 2001; El-Halwagi et al., 2003; Hallale, 2002; Manan et al., 2009; 

Wan Alwi and Manan, 2008, 2010; Wan Alwi et al., 2008) which are based on 

thermodynamic rooted concept of pinch technology, at first has been introduced for 

heat integration purposes and then developed and has been used in water 

minimization and other materials e.g. hydrogen and carbon. Graphical approaches 

are quick, interactive and easy to understand methods, but they become tedious and 

less accurate in large scale and complex processes. In the other hand, mathematical 

models (Bagajewicz, et al., 2000; Bagajewicz and Savelski, 2001; Papalexandri and 

Pistikopoulos, 1993; Teles et al., 2008) are more accurate and comprehensive for 

using with large scale processes. Cost effectiveness of the water and/or energy 

networks design has been discussed in several works (Ahmad et al., 1990; 

Gundepsen and Naess, 1988; Linnhoff and Ahmad, 1990; López-Maldonado et al., 

2011; Wan Alwi, 2007; Wan Alwi and Manan, 2006). Simultaneous optimal water 
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and energy network design has also been studied here and there in recent years 

especially in the last three years (Dong et al., 2008; Feng et al., 2009; George et al., 

2011; Ismail et al., 2011; Jian et al., 2003; Leewongwanawit et al., 2004; Manan, et 

al., 2009; Polley et al., 2010; Savulescu et al., 2005a, 2005b; Wan Alwi and Manan, 

2010). The research gap which remains here that is the aim of this study is 

developing a new model which uses cost factors and heuristics to design optimal 

simultaneous minimum water and energy networks. 

 

1.5 Problem Statement 

 

Given a series of water using processes which have different temperature 

constraints for various sources and demands, it is desired to design a network which 

minimizes the use of fresh water, waste water, energy and cost. The system will, 

consider all of the water management hierarchy options and non-isothermal heat 

transfer to meet the aforesaid objectives using mathematical programming. 

 

1.6 Objective of the Study 

 

The main objective of this study is to develop a new mathematical model to 

design a water and energy network which simultaneously minimizes the fresh water 

and energy utilization, waste water generation and utility cost to the system using 

mathematical programming approach considering water management hierarchy and 

direct heat transfer.  

 

1.7 Scope of the study 

 

To achieve the objective, some major milestones have been defined in this 

study. The scope of this study is inclusive of: 
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1. Reviewing state-of-the-art techniques on simultaneous water and 

energy network design which include mathematical and heuristic approaches. 

 

2. Performing an optimization model on water-energy systems that 

considers Water Management Hierarchy options and non-isothermal mixing to attain 

the minimum heat integrated water network resulting in minimum operating cost for 

the system.  

 

4. Applying the optimization model on case studies to check the accuracy and 

effectiveness of the approach. 

 

1.8 Research Contributions 

 

The key specific contributions of this work are summarized as follows: 

1. A new optimization model for synthesis of minimum water and energy networks 

for multiple contaminant problems and indirect heat transfer. 

The model has been developed to obtain minimum water and energy 

utilization network that considers all process change options in WMH (i.e. 

elimination, reduction, reuse/recycle, outsourcing and regeneration) and non-

isothermal heat transfer simultaneously. 

2. The model can be employed to the cases with pure fresh waters and multi 

contaminant streams. 

3. The model can be applied to different urban and industrial sectors since it is 

capable of solving systems with mass transfer based (MTB) and non-mass 

transfer based (NMTB) streams. 
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1.9 Overview 

 

This thesis is inclusive of four chapters. Chapter 1 reveals an overview of the 

global water and energy issues, problem background, problem statement, objective 

and scope of the study. 

Chapter 2 gives the fundamental theory behind water, waste water and energy 

minimization. 

Chapter 3 gives a review on literatures relevant to the subject of this study. 

The development of the science on water and energy network design techniques 

using pinch technology, heuristic approaches and mathematical programming are 

reviewed. 

Chapter 4 describes the methodology of the research to achieve defined 

objectives.  

Chapter 5 is about the results achieved and a discussion about them. 
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