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ABSTRACT 

The pattern classification problem in machine learning algorithms is the task of 

assigning objects to one of a different predefined group of categories related to that 

object. Among the successful machine learning methods are Artificial Neural 

Networks (ANNs), which aim to minimize the error rate of the training data and 

generate a simple network architecture to obtain a high classification accuracy. 

However, designing the ANN architecture is difficult due to the complexity of the 

structure, such as the network structure, number of hidden nodes and adjustment of 

weights. Therefore, a number of Evolutionary Algorithms (EAs) has been proposed 

to improve these network complexities. These algorithms are meant to optimize the 

connection weight, network structure, network error rate and classification accuracy. 

Nevertheless, these algorithms are implemented to optimize only one objective, 

despite the importance of executing many objectives simultaneously. Therefore, this 

study proposes simultaneous learning and structure optimization for designing a 

Three-term Backpropagation (TBP) network with four variants of Elitist Multi-

objective Evolutionary Algorithms (EMOEAs). These include the Elitist Multi-

objective Genetic Algorithm (EMOGA), Hybrid Elitist Multi-objective Genetic 

Algorithm (HEMOGA), Memetic Adaptive Elitist Multi-objective Genetic 

Algorithm (MAEMOGA) and the Elitist Multi-objective Differential Evolution 

(EMODE). The proposed methods are developed to evolve towards a Pareto-optimal 

set that is defined by multi-objective optimization consisting of connection weight, 

error rate and structural complexity of the network. The proposed methods are tested 

on binary and multi-class pattern classification problems. The results show that the 

proposed MAEMOGA and EMODE are better than EMOGA and HEMOGA in 

obtaining simple network structure and classification accuracy..  
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ABSTRAK 

Masalah pengkelasan pola dalam algoritma pembelajaran mesin merupakan suatu 

tugas pengkelasan objek kepada salah satu kategori kumpulan yang berkaitan dengan 

objek itu. Rangkaian Neural Buatan (ANN) merupakan salah satu kaedah pembelajaran 

mesin yang berjaya mengurangkan kadar ralat data pengujian dan menjana senibina 

rangkaian mudah untuk menghasilkan kadar ketepatan pengkelasan yang tinggi. Walau 

bagaimanapun, merekabentuk suatu senibina ANN adalah rumit kerana ia melibatkan 

penentuan struktur seperti struktur rangkaian, bilangan nod tersembunyi dan pelarasan 

pemberat. Sehubungan dengan itu, beberapa Algoritma Evolusi (EA) telah dicadangkan 

bagi menambahbaik penyelesaian kepada kerumitan rangkaian ini. Algoritma ini adalah 

bertujuan untuk mengoptimumkan pemberat hubungan, struktur rangkaian, kadar ralat 

rangkaian dan ketepatan pengkelasan. Walau bagaimanapun, algoritma ini umumnya 

dilaksanakan untuk mengoptimumkan satu fungsi objektif sahaja, walaupun ia 

berkepentingan dalam melaksanakan kesemua objektif secara serentak. Oleh itu, kajian 

ini mencadangkan pembelajaran serentak dan pengoptimuman struktur untuk 

merekabentuk rangkaian Tiga Istilah Perambatan Balik (TBP) dengan empat varian 

algoritma-Algoritma Evolusi Elitis Multi-objektif (EMOEAs). Ini termasuk Algoritma 

Genetik Elitis Multi-objektif (EMOGA), Algoritma Genetik Hibrid Elitis Multi-objektif 

(HEMOGA), Algoritma Evolusi Penyesuai Memetic Elitis Multi-objektif (MAEMOGA) 

dan Pembezaan Evolusi Elitis Multi-objektif (EMODE). Kaedah yang dicadangkan telah 

dibangunkan untuk mengevolusi set Pareto yang optimum yang ditakrifkan 

pengoptimuman multi-objektif yang terdiri daripada pemberat penghubung, kadar ralat 

dan kerumitan struktur rangkaian. Kaedah yang dicadangkan telah diuji ke atas masalah 

pengkelasan pola binari dan pelbagai. Keputusan menunjukkan bahawa teknik 

MAEMOGA dan EMODE yang dicadangkan adalah lebih baik daripada EMOGA dan 

HEMOGA dalam memperoleh struktur rangkaian yang mudah dan ketepatan 

pengkelasan.  
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CHAPTER 1 

INTRODUCTION 

1.1   Overview  

Machine learning is an important sub field of artificial intelligence (AI) that 

is applied in the development of computational algorithms and allows computers to 

include patterns and rules from a priori data. It involves adaptive mechanisms. 

Hence, it enables computers to learn by example and from experience. The machine 

learning can be accomplished by supervised or unsupervised learning. 

Among the common machine learning methods are artificial neural networks 

(ANNs). Recently, ANNs have been widely used in different areas with different 

applications (Cheok et al., 2012; Khosrowshahi, 2011; Kuo and Lin, 2010; Melesse 

et al., 2011; Yaghini et al., 2012). ANNs are considered to be information processing 

systems that are largely influenced by the way in which biological neurons process 

information in the brain. The processes present the form of learning that enables the 

brain to think and learn something. When the signals received are strong enough 

(surpasses a certain threshold), the neuron is activated and emits a signal though the 

axon. This signal might be sent to another synapse, and might activate other neurons. 

The phenomenon of learning that happens in the brain has inspired ANNs to adapt 

the learning concept and translate it into a mathematical model of human cognition. 

It clearly happens since the learning concept becomes the major concern of ANN in 

order to generate the intelligent system that can learn the pattern and generate the 

desired output.  
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The backpropagation algorithm (BP) was introduced by Rumelhart et al. 

(1986), as an ANN, it is also known as the two-term BP algorithm. BP is a 

supervised learning algorithm used by multilayered neural networks for learning 

purposes. Moreover, the BP algorithm uses a gradient descent (GD) technique 

(gradient search based learning algorithm), which calculates the error and propagates 

it back to the weights of the connections of the network. It is the most famous 

training algorithm for multilayer  perceptions, and it is the most widely used to train 

the feed forward ANN (Cui et al., 2012; Ding et al., 2011a; España-Boquera et al., 

2007; Melesse et al., 2011; Miguez et al., 2014; Nawi et al., 2013; Wu et al., 2010; 

Xiao et al., 2009). On the other hand, the three-term backpropagation (TBP) was 

proposed by  (Zweiri et al., 2003). The TBP network introduced a third parameter 

called the proportional factor (PF), which has proven successful in fastening the 

weight adjustment process through the increase in the convergence rate of the 

algorithm and reduction in learning stalls. 

Recently, there has been a remarkable increase in the use of evolutionary 

algorithms (EAs) for solving optimization problems as well as optimizing the ANN 

learning (Dragoni et al., 2013). The design and optimization of ANNs is considered 

to be one of the most important problems that need to be solved using these kinds of 

algorithm. The earlier approaches tackled the single objective optimization problems 

in some of the previous works, such as particle swarm optimization (PSO) (Zhang et 

al., 2000), genetic algorithms (GA) (Ding et al., 2011a) and differential evolution 

(DE) (Ilonen et al., 2003), and others, that were considered for optimizing ANNs.  

These EAs are population-based algorithms, which allow for simultaneous 

exploration of different parts in the Pareto-optimal set. As an alternative to dealing 

with a single optimal solution, a set of optimal solutions called Pareto-optimal sets 

exist for such problems. The corresponding objective functions, whose non-

dominated solutions in the Pareto-optimal set are called a Pareto front, in which each 

of the Pareto-optimal solutions signifies a different balance between the objectives, 

and with a lack of preferred information, none of them can be considered better than 

the others. Therefore, EAs are good candidates for multi-objective optimization 

problems (MOOPs) because of their ability to search for multiple Pareto-optimal 
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solutions and better performance in global search space. Therefore, Pareto-optimal 

solutions are used to evolve ANNs that are optimal both with respect to classification 

accuracy and architecture complexity.  

1.2   Problem Background 

The backpropagation (BP) algorithm is one of the most popular ANNs. It has 

good self-learning, self-adapting, robustness and generalization ability. Despite the 

general success of BP in learning, it has major limitations, such as slow convergence 

speed, long training time and is easily trapped at a local minima. In addition, the 

choice of a proper network structure (number of hidden nodes) and design of a 

proper network are considered to be among the most important problems of the BP 

algorithm. Hence, there is a real necessity to develop solutions to overcome these 

problems, and several major deficiencies still need to be solved or improved (Chun-

Dong et al., 2012; Miguez et al., 2014; Tang et al., 2011; Xue and Ma, 2011). 

Recently, many methods have been tried to overcome the slow convergence (Ren et 

al., 2012; Yu and Peng, 2012), while other methods tried to avoid the local minima 

problems (Bari et al., 2011; Burse et al., 2011; Hamid, 2012; Yi et al., 2014). Some 

studies have tried designing ANNs by determining the optimal structure (number of 

hidden nodes) and the optimal connection weights and architecture design (Qasem 

and Shamsuddin, 2011; Sagar et al., 2011; Yu and Peng, 2012).  

The TBP network is one of the improved BP algorithms. It was proposed to 

speed up the weight adjusting process and has outperformed BP in terms of 

convergence speed and the ability to escape from local minima. According to Zweiri 

(2007) optimization is required to facilitate the application of the TBP network. 

Recently, there have been many studies in the literature associated with TBP 

network learning for different applications. These include, TBP network for moisture 

prediction (Abdulkadir et al., 2012a; Abdulkadir et al., 2012b), classification 

problems (Mashinchi and Shamsuddin, 2009; Saman, 2006; Shamsuddin et al., 

2009), XOR and parity problems (Burse et al., 2011), which have been applied to the 
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problem of service selection in ubiquitous computing (Cai et al., 2006). Despite the 

success of these applications, improvement is still required to the network topology 

and accuracy results. Furthermore, it is an ANN and also needs optimization and 

design for final error output and good architecture. Therefore, a good network design 

needs to be tried for a simple network and better performance.  

The performance of ANNs is sensitive to the number of the hidden nodes, in 

that a network with less hidden nodes gives poor approximation, while a network 

with more hidden nodes may contribute to over-fitting problems. In addition, it may 

perform better in training data, but it may not give a good generalization on testing 

data. However, the success of ANNs mostly depends on the network design. 

Therefore, the design of an ANN is a difficult task as it depends on human 

experience (Ding et al., 2013; Garro et al., 2010). Therefore, many researchers are 

concerned about the problems of determining the optimal architecture design of the 

ANNs and improving the generalization of the network. These problems have been 

addressed using evolutionary algorithms (EAs) (Chang et al., 2012; Han et al., 2011; 

Irani et al., 2011; Tang et al., 2011; Wang et al., 2011; Wang and Qian; Yi et al., 

2014; Yu and Peng, 2012).  They have proved that these kinds of algorithm are 

feasible and effective for this task. This is because the evolutionary algorithms (EAs) 

provide a robust and efficient approach to explore a massive search space. However, 

these optimization techniques only optimize one factor, such as hidden nodes, 

connection weights or network error rates. The limitation of these kinds of algorithm 

is that they can only produce a single optimal solution. In ANNs optimization, there 

is more than one parameter that needs to be optimized.  In this case, a set of optimal 

solutions or Pareto-optimal solutions are required for such problems. Therefore, 

multi-objective optimization algorithms are preferred because of their ability to 

optimize more than one objective simultaneously.  

However, the trend of implementing multi-objective evolutionary algorithms 

(MOEAs) for optimizing ANN network structures has increased in recent years. 

MOEAs, also known as multi-objective optimization (MOO), is the process of 

simultaneously optimizing two or more conflicting objectives subject to certain 

constraints (Cruz-Ramírez et al., 2012b). Therefore, MOEAs are suitable for 



5 

 

producing and designing appropriate and accurate ANNs with the optimization of 

two conflicting objectives, namely, the minimization of ANNs structure complexity 

and the maximization of network capacity. Hence, recently, MOEAs have been 

applied successfully to optimize the ANNs. It has been demonstrated that MOEAs 

have a significant advantage over the conventional BP method because of their low 

computational requirement when searching in a large solution space (Fernández et 

al., 2012; Qasem et al., 2013). MOEAs for the learning problem were applied to 

improve the generalization of the training and unseen data. These kinds of algorithm 

have been used to evolve ANNs for different kinds of problem, such as classification 

problems (Ou and Murphey, 2007; Qasem and Shamsuddin, 2011; Qasem et al., 

2013), some of its key exponents being Abbass (2002a) and Jin and Sendhoff (2008).  

Various methods and techniques have been developed to find better 

approaches to evolve ANNs in trying to design networks with good generalization 

capability. In the same way, the issue of finding a good ANN architecture has also 

been debated in the field of ANNs. In addition, some works have used multi-

objective genetic algorithms (MOGAs) for optimizing ANNs. One of the most 

successful applications in this area, is a hybrid method that uses ANNs with 

evolutionary Pareto-based algorithms (Jin and Sendhoff, 2008). In Pettersson et al. 

(2007) multi-objective genetic algorithm optimization for training a feed forward 

neural network was effectively constructed by minimizing the training error and the 

network size using noisy data from an industrial iron blast furnace. The work 

presented by Liu and Kadirkamanathan (1999) highlighted the benefits of multi-

objective genetic algorithms for the selection and identification of nonlinear systems, 

while optimizing the size of neural networks. (Garcıa-Pedrajas et al., 2004) 

presented a method based on the generalized multilayer perceptron (GMLP) with 

two hidden layers, which improved the performance of the evolutionary model for 

real world classification problems. Another major study by Delgado et al. (2008) 

proposed a hybrid MOGA method based on the SPEA2 and NSGA2 algorithms to 

optimize the training and topology of the recurrent neural network (RNN) 

simultaneously for time-series prediction problems. Fernandez Caballero et al. 

(2010), introduced multi-objective and considered a memetic Pareto evolutionary 

approach based on the NSGA2 evolutionary ANN algorithm to optimize two 
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conflicting main objectives: a high correct classification rate and a high classification 

rate for each class. The recent work by Ak et al. (2013) used a non-dominated 

sorting genetic algorithm-II (NSGA-II) to train the neural network and optimize their 

weights and biases with respect to maximum accuracy and minimum dimension to 

provide the prediction intervals of the scale deposition rate. 

In addition, there are a limited number of studies using multi-objective 

differential evolution (MODE) algorithms to train a population of multi-objective 

ANNs, which are commonly used to minimize the error in the training set and the 

complexity of the network. One of the first works in this field, by Abbass and Sarker 

(2001), presented a multi-objective method that includes the PDE algorithm to train 

the ANN and to optimize the number of hidden nodes and connection weights 

simultaneously. Moreover, Abbass offered various works using the multi-objective 

idea for design and training ANNs using accuracy and complexity as objectives 

(Abbass, 2002a; Abbass, 2003; Abbass et al., 2001). Another study, by Ilonen et al. 

(2003), analysed DE as a candidate global optimization technique for feed-forward 

neural networks as compared to gradient approaches, and designed ANNs using the 

mean square error as the objective function. Likewise, Fieldsend and Singh (2005) 

used the Pareto-optimal approaches to train a multilayer perceptron network. They 

achieved a Pareto-optimal evolutionary neural network as a parallel evolution of a 

population and considered multiple error measures as objectives. Similarly, 

(Fernández et al., 2009) suggested MODE based on the Pareto dominance concept 

and multilayer perceptron (MLP) for multi-classification problems using models. 

The hybrid local search algorithm also offered to optimize two conflicting 

objectives. The work in Cruz-Ramírez et al. (2010) presents the optimization 

technique for two objectives to determine the growth limits of two pathogens 

simultaneously. 

However, many works concerning optimization and design of ANNs have 

been conducted (Ak et al., 2012; Cruz-Ramírez et al., 2012a; Cruz-Ramírez et al., 

2010; Qasem et al., 2011; Ramesh et al., 2011), which demonstrated that EAs, such 

as the genetic algorithm and its upgraded derivatives are feasible for optimal design. 

The main advantage of the evolutionary approach over traditional learning 
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algorithms, like BP, is its ability to escape a local optimum. Its robustness and its 

ability to adapt itself to a changing environment (Cruz-Ramírez et al., 2012b; 

Fernandez Caballero et al., 2010; Qasem et al., 2013; Qasem et al., 2011). On the 

other hand, the main disadvantage of the evolutionary approach is the high 

computation, as the evolutionary approach is usually slow. To overcome the slow 

convergence of the EAs, hybrid techniques have been used to speed up convergence 

by enhancing EAs with a local search algorithm, such as BP (Fernandez Caballero et 

al., 2010; Yan et al., 1997). 

An additional possible advantage of the Pareto-based learning approach is 

that using multi-objective techniques may help the learning algorithm to escape from 

local optima, thus improving the accuracy of the learning model. Therefore, this 

study, proposes elitist multi-objective evolutionary algorithm (EMOEA) methods, 

which include the elitist multi-objective genetic algorithm (EMOGA), the hybrid 

elitist multi-objective genetic algorithm (HEMOGA), memetic adaptive elitist multi-

objective genetic algorithm (MAEMOGA) and the elitist multi-objective differential 

evolution (EMODE) to optimize the TBP network structure, error rates and 

connection weight of the network simultaneously.    

1.3   Problem Statement 

From the problem background, it can be claimed that further works are still 

required to develop new methods of BP network with multi-objective evolutionary 

algorithms (MOEAs), such as an elitist multi-objective genetic algorithm (EMOGA), 

hybrid elitist multi-objective genetic algorithm (HEMOGA), memetic adaptive elitist 

multi-objective genetic algorithm (MAEMOGA) and elitist multi-objective 

differential evolution (EMODE) to optimize the TBP network parameters 

simultaneously. The proposed methods aim to achieve a better network performance 

and network architecture simultaneously. In other words, the intention is to design an 

appropriate and accurate TBP network and enhancement of the learning process 

simultaneously. 
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This study raises several challenges, which include developing a TBP 

network using EMOEAs to reduce the network complexity in terms of the number of 

hidden nodes and weights of the TBP network. In addition, it aims to design an 

appropriate and accurate TBP network and enhance the learning process 

simultaneously. 

 

Based on the above issues, the main research question is:  

Are the proposed methods, which include EMOGA, HEMOGA, MAEMOGA and 

EMODE, beneficial and efficient for evolving TBP network learning?  

Thus, these challenges will be addressed by providing answers to the following 

questions: 

 Is the proposed hybrid scheme of EMOEA capable of optimizing the 

TBP network?  

 Are the proposed methods capable of optimizing the TBP network 

structure (reduce the Complexity) in terms of the number of hidden 

nodes and weights? 

 Are the proposed improved methods able to achieve a better network 

performance and network architecture simultaneously?  

 Are the proposed methods able to improve the classification accuracy 

in the classification problems?  

 

 

  

1.4   Goal of the Study 

The aim of this research is to improve the weight and structure of the TBP 

network simultaneously, and to achieve a better optimized network performance, 

optimal architecture and simple and accurate TBP network using an elitist multi-

objective genetic algorithm (EMOGA), hybrid elitist multi-objective genetic 

algorithm (HEMOGA), memetic adaptive elitist multi-objective genetic algorithm 

(MAEMOGA) and elitist multi-objective differential evolution (EMODEN). 
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1.5   Objective of the study 

To achieve the aim of this study, the objectives of this research are stated as 

follows: 

1. To propose a hybrid scheme of TBP network with elitist multi-

objective evolutionary algorithms (EMOEAs) for optimizing the 

network structure, connection weights and error rate simultaneously. 

2. To improve the generalization and network accuracy of the proposed 

hybrid scheme of TBP network with an elitist multi-objective genetic 

algorithm (EMOGA) technique. These include: 

 

i. Hybrid elitist multi-objective genetic algorithm (HEMOGA) 

to enhance the proposed EMOGA.  

 

ii. Memetic adaptive elitist multi-objective genetic algorithm 

(MAEMOGA) to enhance the proposed HEMOGA.  

3. To propose a hybrid scheme using a TBP network with an elitist 

multi-objective differential evolution algorithm (EMODE), to achieve 

a simple structure and more accurate classification results. 

1.6 Scope of the Study  

To  achieve  the  above  objectives of this research,  the  scope  of  this  study  

is:  

 Binary, multi-class and complex real problem datasets for classification 

tasks to validate the proposed methods. 
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 A focus on multi-objective optimization and the TBP network with MOEA 

methods (EMOGA, HEMOGA, MAEMOGA and EMODE) for the training 

and testing in pattern classification problems. 

 Performance is measured based on convergence towards error, the structure 

of the network, 10-fold cross validation, sensitivity, specificity, 

classification accuracy and statistical test. 

 The programs are customized, developed and applied to the TBP network 

and MOEAs using Microsoft Visual C++ 2010. 

1.7   Significance of the study 

The significance of this research is to optimize the structure (reduce the 

Complexity) in terms of the number of hidden nodes and weights of the TBP 

network using EMOEAs methods, for better accuracy in classification problems, and 

accelerate the artificial neural network. The proposed methods are investigated using 

various parameter measurements. These include the number of hidden nodes, MSE, 

sensitivity, specificity and classification accuracy.   

1.8   Organization of Thesis  

This section describes the organization of the thesis. There are six chapters in 

this thesis, as follows:  

Chapter 1, Introduction: this chapter presents a general introduction to the 

topic of the proposed research work. Brief overviews of some of the issues 



11 

 

concerning the research are also mentioned in this chapter. Besides the problem 

background, this chapter also includes the problem statement, objectives of study, 

research scope, significance of the study and the expected contribution. 

Chapter 2, Literature Review: in this chapter, we explain some principles of 

artificial neural networks (ANNs) and multi-objective evolutionary algorithms 

(MOEAs). The relevant works of artificial neural networks (ANNs) are elucidated. 

Since this research proposes a multi-objective evolutionary algorithm based solution, 

the chapter also reviews the types and approaches of EMOEAs. Moreover, it reviews 

and discusses the state of the art related works on EMOEAs and ANNs. Next, we 

highlight the many studies in the literature that have designed artificial neural 

networks using evolutionary algorithms. Finally, we clarify the concept of multi-

objective optimization techniques that relate to this study, such as EMOGA, 

HEMOGA, MAEMOGA and EMODE.   

Chapter 3, Research Methodology:  this chapter illustrates the methodology 

adopted in this research to achieve the study objectives. A methodology is generally 

a guideline for solving a research problem. This includes discussion on the research 

components, such as the phases, techniques and describes the overall solving-tools 

adopted. 

Chapter 4, three-term backpropagation (TBP) network optimizing by elitist 

multi-objective genetic algorithms (EMOGAs): this chapter presents the TBP 

network based on elitist multi-objective evolutionary algorithms. The EMOEA 

algorithms used in this chapter include an elitist multi-objective genetic algorithm 

(EMOGA), HEMOGA by hybrid local search algorithm and (MAEMOGA) utilized 

self-adaptive simulated binary crossover. The methods are compared with each other 

and against “state of the art” methods that are similar systems based on GA. 

Chapter 5, Hybrid TBP Network and elitist multi-objective evolutionary 

approach of differential evolution algorithm (DE) based on elitist non-dominated 

sorting differential evolution (NSDE): the  main  goal  of  this  chapter  is  to  
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improve  the TBP network based on EMOEA, which is a DE algorithm for 

optimizing the network to achieve a simple structure and more accurate classification 

results.  

Chapter 6, Conclusion and Future Work: this chapter concludes the research 

work and attempts to give an overall discussion regarding all the contributions 

presented in this research, and, finally, it presents recommendations and suggestions 

for future work. 
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