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ABSTRACT 

 

 

   

 

                 A series of xTeO2-(70-x)B2O3-30MgO samples with 0 ≤ x ≤ 70 mol% and 
doped samples with composition of 100-y(30TeO2-40B2O3-30MgO)-yEu

3+
, 100-

z(30TeO2-40B2O3-30MgO)-zDy
3+

, and 100-y-z(30TeO2-40B2O3-30MgO)-yEu
3+

-
zDy

3+
 with 0.2 ≤ y ≤ 2 mol% and 0.2 ≤ z ≤ 2 mol% were prepared via solid-state 

reaction method. All the samples were characterized by X-ray diffraction (XRD), 
Fourier transform infrared spectroscopy, Raman spectroscopy, energy dispersive X-
ray spectroscopy (EDX), field emission scanning electron microscopy (FESEM) and 
photoluminescence spectroscopy. The XRD results of the samples prepared at 650

o
C 

to 850
o
C showed that the major phase was Mg(Te2O5) while MgTe6O13, Mg2(B2O5) 

and MgB4O7 were observed as a minor phase. The phases of Dy(BO2)3, Dy2Te4O11, 
EuB2O4 and Eu2Te4O11 were observed in the XRD patterns of doped samples. The 
EDX analyses confirmed the presence of boron (B), magnesium (Mg), tellurium 
(Te), oxygen (O), europium (Eu) and dysprosium (Dy) elements. In addition, the 
weight percentage of boron (B) decreases with the increase of x mol%. Based on the 
FESEM images, the xTeO2-(70-x)B2O3-30MgO samples with 0 ≤ x ≤ 70 mol% 
prepared at 750

o
C consist basically of sub-micron size agglomerates of irregular 

shape. The surface morphology of Eu
3+

, Dy
3+

 and Eu
3+

-Dy
3+

 doped samples is more 
agglomerated compared to the 30TeO2-40B2O3-30MgO samples. The grain sizes of 
samples doped with Eu

3+
 (1.91 µm), Dy

3+
 (1.87 µm) and Eu

3+
-Dy

3+
 (2.84 µm) are 

smaller than the grain size of the undoped sample (2.99 µm). There were six main 
regions observed in IR spectra which are due to the B-O-B (400-590 cm

-1
), Te-O-Te 

(550 and 610 cm
-1

), TeO2 (600-800 cm
-1

), TeO3 (757 cm
-1

), BO4 (840-1200 cm
-1

) and 
BO3 (1300-1400 cm

-1
) vibrations. The observed spectra also show greater bands for 

tellurite network with the increase of x mol%. From the Raman spectra, the intensity 
of the peaks due to Te-O-Te, TeO2 and TeO3 groups increases with the increase of x 
from 0 to 30 mol%. The luminescence spectra of 100-y(30TeO2-40B2O3-30MgO)-
yEu

3+
 with 0.2 ≤ y ≤ 2 mol%  showed that there was an increase in the emission 

intensity which results in the enhancement of the red emission from the samples. All 
the spectra of 100-z(30TeO2-40B2O3-30MgO)-zDy

3+ 
samples with 0.2 ≤ z ≤ 2 mol% 

show the main characteristic emission lines of Dy
3+

, which consist of magnetic 
dipole transition,

 4
F9/2→

6
H15/2 at 484.19 nm (blue), and hypersensitive electric dipole 

transition, 
4
F9/2→

6
H13/2 at 578.44 nm (yellow). The observed emission spectra of 

100-y-z(30TeO2-40B2O3-30MgO)-yEu
3+

-zDy
3+

 samples with 0.2 ≤ y ≤ 2 mol% and 
0.2 ≤ z ≤ 2 mol% exhibit three strong bands centered at 483.78 nm, 578.97 nm and 
616.83 nm which correspond to the 

4
F9/2→

6
H15/2 (Dy

3+
), 

4
F9/2→

6
H13/2 (Dy

3+
) and 

5
D0→

7
F2 (Eu

3+
) transition respectively. The yellow emission (

4
F9/2→

6
H13/2) becomes 

a dominant peak in the emission spectra compared to the other emissions. The 
longest decay time was observed from the transition in europium and dysprosium 
ions.  
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 Satu siri sampel xTeO2-(70-x)B2O3-30MgO dengan 0 ≤ x ≤ 70 mol% dan 
sampel berdop dengan komposisi 100-y(30TeO2-40B2O3-30MgO)-yEu

3+
, 100-

z(30TeO2-40B2O3-30MgO)-zDy
3+

, dan 100-y-z(30TeO2-40B2O3-30MgO)-yEu
3+

-
zDy

3+
 dengan 0.2 ≤ y ≤ 2 mol% dan 0.2 ≤ z ≤ 2 mol% disediakan melalui kaedah 

tindakbalas keadaan pepejal. Semua sampel dicirikan menggunakan pembelauan 
sinar-X (XRD), spektroskopi infra merah transformasi Fourier, spektroskopi Raman, 
spektroskopi sinar-X tenaga menyerak (EDX), mikroskopi pengimbasan elektron 
pancaran medan (FESEM) dan spektrokopi fotoluminesens. Keputusan XRD bagi 
sampel yang disediakan pada suhu 650

o
C hingga 850

o
C menunjukkan fasa major 

ialah Mg(Te2O5) manakala MgTe6O13, Mg2(B2O5) dan MgB4O7 dilihat sebagai fasa 
minor. Fasa Dy(BO2)3, Dy2Te4O11, EuB2O4 dan Eu2Te4O11 dilihat dalam corak XRD 
bagi sampel berdop. Analisis EDX mengesahkan kehadiran elemen boron (B), 
magnesium (Mg), tellurium (Te), oksigen (O), europium (Eu) dan dysprosium (Dy). 
Tambahan pula, peratus berat bagi boron (B) berkurangan dengan peningkatan x 
mol%. Berdasarkan imej FESEM, sampel xTeO2-(70-x)B2O3-30MgO dengan 0 ≤ x ≤ 
70 mol% disediakan pada 750

o
C terdiri daripada bentuk bergumpal yang tidak tetap 

bersaiz mikron. Morfologi permukaan bagi sampel berdopkan Eu
3+

, Dy
3+

 dan Eu
3+

-
Dy

3+
 adalah lebih bergumpal berbanding sampel 30TeO2-40B2O3-30MgO. Saiz 

butiran bagi sampel yang didopkan dengan Eu
3+

 (1.91µm), Dy
3+

 (1.87µm) dan Eu
3+

-
Dy

3+
 (2.84µm) adalah lebih kecil berbanding dengan saiz butiran sampel tidak 

berdop (2.99 µm). Terdapat enam kawasan dapat dilihat dalam spektrum IR yang 
disebabkan oleh getaran B-O-B (400-590 cm

-1
), Te-O-Te (550 and 610 cm

-1
), TeO2 

(600-800 cm
-1

), TeO3 (757 cm
-1

), BO4 (840-1200 cm
-1

) dan BO3 (1300-1400 cm
-1

). 
Spektrum yang diperhatikan juga menunjukkan jalur yang lebih besar bagi rangkaian 
tellurite dengan peningkatan x mol%. Daripada spektrum Raman, keamatan puncak 
yang disebabkan oleh kumpulan Te-O-Te, TeO2 dan TeO3 meningkat dengan 
peningkatan x daripada 0 kepada 30 mol%. Spektrum luminesens bagi sampel 100-
y(30TeO2-40B2O3-30MgO)-yEu

3+
 dengan 0.2 ≤ y ≤ 2 mol% menunjukkan wujudnya 

peningkatan dalam keamatan pancaran yang menyebabkan peningkatan pancaran 
merah pada sampel. Semua spektrum bagi sampel 100-z(30TeO2-40B2O3-30MgO)-
zDy

3+ 
dengan 0.2 ≤ z ≤ 2 mol% menunjukkan garis pancaran ciri utama bagi Dy

3+
, 

yang terhasil daripada peralihan dwikutub magnet 
4
F9/2→

6
H15/2 pada 484.19 nm 

(biru), dan peralihan dwikutub elektrik hipersensitif, 
4
F9/2→

6
H13/2 pada 578.44 nm 

(kuning). Pancaran spektrum bagi sampel 100-y-z(30TeO2-40B2O3-30MgO)-yEu
3+

-
zDy

3+
 dengan 0.2 ≤ y ≤ 2 mol% dan 0.2 ≤ z ≤ 2 mol%  mempamerkan tiga jalur kuat 

berpusat di 483.78 nm, 578.97 nm dan 616.83 nm yang masing masing merujuk 
kepada peralihan 

4
F9/2→

6
H15/2 (Dy

3+
), 

4
F9/2→

6
H13/2 (Dy

3+
) dan 

5
D0→

7
F2 (Eu

3+
). 

Pancaran kuning (
4
F9/2→

6
H13/2) menjadi puncak dominan dalam spektrum pancaran 

berbanding pancaran yang lain. Masa pereputan paling lama berlaku daripada 
peralihan dalam ion europium dan dysprosium. 
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CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

 

 

1.1 Introduction 

 

 

This chapter presents the pertinent introduction covering the brief description 

and a review of the materials studied. It includes the problem statement, objectives of 

study, scope of study, significance of study and the outline of the thesis.      

 

 

 

 

1.2 Background of Study 

 

 

Ceramic is defined as inorganic nonmetallic material and the atomic structure 

of ceramic can be crystalline, non-crystalline or partially crystalline. Typically, 

ceramics are very hard, brittle, high melting point materials with low electrical and 

thermal conductivity, good chemical and thermal stability, and high compressive 

strengths (Barsoum, 1997 and Minh et al., 1995). Also, the ceramic can be fabricated 

at lower cost and in much speedy processes in a large variety of sizes and shapes 

(Lupei et al., 2005; Mohr et al., 2008).  
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Ceramics are of tremendous interest primarily because of their wide range of 

applications especially in high temperature environment.  They are also extensively 

used in fuel technology, oxygen sensor (Ciacchi et al., 1994), magnets ceramics 

(Valenzuela, 2005), all electronic equipments including integrated-chips, capacitors 

and digital alarms (Miller et al., 2002), telecommunication (Bhargava, 2005), 

ceramic crystal-glass (Carter and Norton, 2007). Ceramic insulators are widely used 

in the electrical power transmission system (Chowdhury, 2010), ceramic 

superconductors (David and Bruce, 1992) and other pharmaceuticals industries (Rice 

et al., 2002).  

 

 

Ceramic materials can be classified into four main groups (Rajendran, 2004) 

that were the amorphous ceramics, which are generally referred to as glasses, 

crystalline ceramics, which are single phase materials like alumina, or mixtures of 

such materials, bonded ceramics, where individual crystals are bonded together by a 

glassy matrix, such as clay products and the cements, these are crystalline, and also 

amorphous materials.  

 

 

Recently ceramic material has been study for luminescent material 

applications. Ceramics have the potential to become good luminescence material due 

to its opaque characteristic which enhances the absorption efficiency of rare earth 

ions (Yang et al., 2008). Sailaja and Reddy (2011) introduced the luminescence 

properties of Eu
3+

(MgCa)2Bi4Ti5O20 and Tb
3+

(MgCa)2Bi4Ti5O20 ceramic has shown a 

strong red and green emission. Ceramics can be incorporate with high concentrations 

of dopant ions such as rare earth and transition metal ions. The ceramic doped also 

have attracted much for their applications such as cathode ray tubes, lamps, X-ray 

detectors, electroluminescence, laser materials and fluorescent tubes (Yan et al., 

2007 and Sastri et al., 2003).  

 

 

Borate has been the subject of intensive investigations because of their 

technological and scientific importance. It offers promising choice especially for 

thermoluminescence applications due to its high sensitivity, low cost and easy 



3 

 

 

 

preparation (Krongh-Moe, 1969). Borate crystals have been used as optical materials 

for second harmonic generation and fluorescence. The spectroscopy of borates doped 

with Eu
3+

, Pr
3+

 and Er
3+

 has been studied (Ambrosi et al., 1994; Thulasiramudu et 

al., 2007; Pozza et al., 1996). Borate has been incorporated with various types of 

modifier metal oxide in order to obtain the desired physical and chemical properties 

(Yano et al., 2003). In terms of luminescence, borate doped rare earth has more 

attention because it has high luminescence, great color coordinate and low thermal 

degradation (Wang et al., 2008). 

 

 

Over the past years, the use of tellurite as a host material was focused in 

fundamental research and in an optical device fabrication as TeO2 host show 

relatively low phonon energy. The tellurite have lower operating temperature and 

mostly prepared by solid state reaction method with heating temperature of 800-

1000
o
C (Kumar et al., 2002; Lin et al., 2006 and Zambelli, 2004). On the other hand, 

TeO2 have been extensively studied due to good properties such as high refractive 

indices, good transparency, low melting point and high dielectric constant which are 

essential for good UV and IR transmission. Hence, TeO2 is then very attractive and 

interesting for a range of different applications (Mallawany et al., 1992; Babu et al., 

2007). The addition of TeO2 into the samples may result in strong modifications of 

the structure as compared to that of the pure B2O3.  

 

 

Many papers worked based on the silicate and aluminate system with higher 

operating temperature (Srivasta, 2009; Kuang, 2005 and Aitasalo, 2004). For the host 

materials, borate and tellurite also known as boro-tellurite prepared in ceramic have 

not been reported yet. Ceramic based on boro-tellurite host matrices doped with rare 

earth have applications in lasers, optical amplifier, photo sensitivity, optical storage, 

and bio-ceramics materials (Mallawany, 1992; Babu et al., 2007; Joshi et al., 2008; 

Sudhakar, 2008; Rada et al., 2008; Konijnendijk, 1975; Bhargava et al., 1987; 

Pascuta et al., 2008). 
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Meanwhile, adding of alkali oxide (magnesium oxide) into the host can 

increase the stability and chemical strength of the samples (Duverger et al., 1997). 

Also, an addition of alkali oxide has a strong influence on the luminescence 

properties (Dayang et al., 2010). Magnesium oxide doping has effectively 

inhibit grain growth in ceramics and it can improve the fracture toughness (Hussin 

et al., 2009). Also, magnesium oxide is well-known for its luminescent properties 

which are being utilized in sensors (Li et al., 2003). This oxide also can be as a 

network former (Doweidar et al., 2012).  

 

 

Doped rare earth (RE) ions have attracted research interests in the field of 

luminescence. Many researchers have been carried out in order to investigate the 

potential of doped rare earth ion especially Eu
3+

 and Dy
3+

-doped boro tellurite. Eu
3+

-

doped are commonly used as red emitting materials for field emission technology 

and LEDs, which exhibit higher luminescence efficiency compared with other 

luminous materials (Oikawa and Fujihara, 2005). Meanwhile, luminescence materials 

doped with Dy
3+

 have drawn much interest because of its white emission. Dy
3+

 is 

known as a good activator due to the two dominated band in the emission spectra and 

its position depends strongly on the crystal field of the lattice used. Hence, 

luminescence materials doped with Dy
3+

 can produce white emission by adjusting the 

yellow to blue intensity ratio value, which can be used as potential white phosphors 

(Hussin et al., 2009). Doped materials have potential applications for phosphors, 

display monitor, x-ray imaging, and scintillators (Blasse and Grabmaier, 1994). 

Moreover, the luminescence properties of the ceramic could be improved by doping 

with rare earth (RE) ions as an activator.  

 

 

 

 

 

 

 

 

 

http://en.wikipedia.org/wiki/Doping_(semiconductor)
http://en.wikipedia.org/wiki/Grain_growth
http://en.wikipedia.org/wiki/Ceramic_materials
http://en.wikipedia.org/wiki/Fracture_toughness


5 

 

 

 

1.3 Problem Statement 

 

 

 Currently, a great deal of research has been focused on rare earth (RE) doped 

boro-tellurite glasses owing to their extensive applications (Maheshvaran et al., 2011; 

Selvaraju et al., 2011). But, the investigation on the luminescence properties of rare 

earth doped boro-tellurite ceramic is not many. In the meantime, there was limited 

structural information regarding effect in the boro-tellurite as the host that can be 

reasoned to find a good luminescence material. Thus, in this study, magnesium boro 

tellurite doped Eu
3+

 and Dy
3+ 

present to synthesize the ceramic materials by using 

solid state reaction method. The investigation of structural features was important in 

order to study the structures changes in the undoped and doped samples. Also, the 

luminescence emission and decay curve induced by addition of rare earth dopant 

were characterized for developing a new luminescence material.  

 

 

 

 

1.4 Objectives of the Study  

 

 

The objectives of this study are as follows: 

 

i. To synthesize magnesium boro-tellurite ceramic and magnesium boro-

tellurite doped with Eu
3+

 and Dy
3+

 ceramic  

ii. To determine the crystalline phases of magnesium boro-tellurite ceramic and 

magnesium boro-tellurite doped with Eu
3+

 and Dy
3+

 ceramic 

iii. To determine the structural properties of ceramic in term of their vibrational 

band, elemental analysis and surface morphology using the IR and Raman, 

EDX and FESEM spectroscopy. 

iv. To determine the luminescence excitation, emission and decay curve of 

magnesium boro-tellurite doped with various dopant of Eu
3+

 and Dy
3+
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1.5 Scope of the Study 

 

 

 In order to achieve the objectives of the study, magnesium boro-tellurite 

ceramic and magnesium boro-tellurite ceramic doped with Eu
3+

 and Dy
3+ 

ions have 

been prepared using solid state reaction method. The crystalline phase of the obtained 

ceramics was determined using x-ray diffraction (XRD). The surface morphology of 

the ceramics was measured using Field Emission Scanning Electron Microscope. The 

presence of elemental composition in the prepared samples was measured using 

Energy Dispersive X-Ray (EDX). Also, the vibrations mode of the prepared sample 

was measured using FTIR and Raman spectroscopy. The luminescence spectra and 

decay curves of the doped ceramics was measured using photoluminescence 

spectroscopy.  

  

 

 

  

1.6 Significance of the Study 

 

 

 In this research, the significance of the study is to develop a new 

luminescence material that can show an enhancement of the luminescence 

characteristic and have a long decay time. So, this new material can produce a high 

potential application in solid-state lighting devices. 

 

 

 

 

1.7 Outline of the Thesis 

 

 

Chapter 1 gives a brief description related to the magnesium boro-tellurite 

ceramic and magnesium boro-tellurite doped Eu
3+

 and Dy
3+

 ceramic. Chapter 2 

provides an overview of the work done on the magnesium boro-tellurite ceramic with 
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emphasis on its structural and luminescence properties. Chapter 3 presents some 

background materials on the theoretical aspect of the thesis. It also discusses about 

the mechanism of luminescence and the principles of X-Ray Diffractogram (XRD), 

Fourier Transform Infrared (FTIR) and Raman properties. Chapter 4 describes in 

detail the preparation of the magnesium boro-tellurite ceramic and magnesium boro-

tellurite doped Eu
3+

 and Dy
3+

 ceramic. Chapter 5 presents the result, analysis and 

discussion for experiments on XRD, surface morphology, elemental composition of 

the samples, IR and Raman, luminescence and lifetime. The last chapter, Chapter 6 

contains the conclusion of the study and suggestions for future work.  
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