
ALL OPTICAL PACKET ROUTING TIME WAVELENGTH DIVISION 

MULTIPLEXING PASSIVE OPTICAL NETWORK

MOHD SHAHRIL BIN SALLEH

A thesis submitted in fulfilment o f the 

requirements for the award of the degree of 

Doctor o f Philosophy (Electrical Engineering)

Faculty o f Electrical Engineering 

Universiti Teknologi M alaysia

OCTOBER 2015



VI

ABSTRACT

Time Wavelength Division Multiplexing (TWDM) Passive Optical Network (PON) 
is a combination o f both Time Division Multiplexing (TDM) and Wavelength-Division 
Multiplexing (WDM) technologies. The TWDM PON system can provide scalable and 
efficient wavelength management in WDM-PON network and at the same time can reduce 
numbers o f aggregation node in metro network level. In this study, a new All-Optical Packet 
Routing (AOPR) TWDM PON system is designed to provide more flexibility o f data 
delivery for each PON port and more bandwidth to each subscriber at multiple PON Optical 
Distribution Network (ODN) link. By proposing broadcasting, multicasting, and 
multiplexing technique in downstream signal, the system is capable to support full degree of 
flexibility in managing efficient dynamic bandwidth allocation. To achieve flexible packet 
routing between multiple PON ports and multiple PON ODN links TWDM PON 
architecture, most o f the proposed system used tunable transceiver in optical line terminal. 
This design w ill cause the attractiveness o f the PON system, which is able to broadcast and 
multicast packet within the entire PON system limited only at single PON link. The 
proposed AOPR module was designed to incorporate fixed-type wavelength Optical Line 
Terminal (OLT) transmitter with Continuous Wave (CW) Pump Probe Signal (PPS) 
module. This design used high-speed wavelength selective switch (WSS) or ALL ON 
method to support high speed wavelength switching or all broadcast signal to replace a 
wavelength tuning feature in tunable OLT transmitter. The proposed architecture has been 
designed using the multicasting cross-gain modulation (XGM) method. In this proposed 
design. XGM function located in the OLT system becomes a part o f the AOPR OLT 
transmitter. The arrangement o f this design aims to generate single or multiple wavelengths 
in a downstream direction in each OLT PON port. The system is designed and simulated 
using VPI photonic software followed by experimental verification in the laboratory. This 
design showed the ability o f the system to perform flexible packet routing function by using 
WSS method with 38 dB allowable link loss margin in the system at 10 Gbps at Bit Error 
Rate (BER) o f 1 O'3. By using I6X. lOGbps downstream bandwidth can serve up to 2000 
users at 20km. In regard to handling the broadcasting or multicasting flexible function with 
ALL ON method in the system, the result revealed that the proposed system can support 
160Gbps broadcast downstream bandwidth to serve up to 16 PON links using I6X. The 
proposed architecture shows this method will minimise an inventory issue and reduce point 
o f error caused by different OLT PON port transmitter wavelength during system 
installation and maintenance. The proposed AOPR OLT module has high potential to be 
used in the future extended TWDM PON access network.



ABSTRAK

Pembahagian Kombinasi Masa dan Panjang Gelombang (TWDM) Rangkaian 
Optik Pasif(PON) adalah gabungan teknologi Pembahagian Kombinasi Masa (TDM) dan 
Pembahagian Kombinasi Panjang Gelombang (WDM). Sistem TWDM PON berupaya 
memberikan skalabiIiti dan amat berkesan dalam fungsi pengurusan panjang gelombang 
dalam rangkaian WDM-PON serta pada masa yang sama boleh mengurangkan bilangan 
pengagregatan nod di peringkat rangkaian metro. Dalam kajian ini, sistem Aliran Paket 
Optik Menyeluruh (AOPR) TWDM PON direka untuk memberi fleksibiliti dan jalur lebar 
tambahan dalam penghantaran data dari setiap liang PON kepada setiap pelanggan dalam 
berbilang Rangkaian Agihan Optik (ODN). Dengan mencadangkan teknik siaran, siaran 
terpi I ill dan penggabungan isyarat halaan menurun dari Terminal Talian Optik (OLT) ke 
Unit Rangkaian Optik (ONU), sistem ini mampu untuk memberikan fleksibiliti dalam 
pengurusan peruntukan jalur lebar yang lebih dinamik dan berkesan. Kebanyakan sistem 
TWDM PON yang dicadangkan mengunakan pemancar boleh laras pada OLT untuk 
mencapai fleksibiliti pada aliran data diantara setiap liang PON dan ODN. Namun, reka 
bentuk ini akan menghadkan kelebihan kepada sistem PON, di mana ia tidak mampu 
melaksanakan fungsi siaran secara sepenuhnya di dalam keseluruhan sistem PON. Modul 
AOPR yang dicadangkan telah direka untuk menggabungkan panjang gelombang bernilai 
tetap pada pemancar OLT bersama modul Gelombang Berterusan (CW) Isyarat Pam Kuar 
(PPS). Reka bentuk ini menggunakan kaedah suis pilihan panjang gelombang pada kelajuan 
tinggi (WSS) atau SBMUA AKTIF untuk menyokong pensuisan panjang gelombang pada 
kelajuan tinggi serta semua isyarat siaran untuk menggantikan fungsi pelarasan panjang 
gelombang pada pemancar OLT. Seni bina yang dicadangkan ini menggunakan kaedah 
siaran terpilih modulasi gandaan silang (XGM) di mana fungsi ini menjadi sebahagian 
daripada pemancar AOPR OLT. Susunan reka bentuk ini bertujuan menghasilkan panjang 
gelombang tunggal atau berbilang mengikut arah aliran isyarat menurun dari setiap liang 
PON OLT. Sistem ini direka dan disimulasi dengan menggunakan perisian VPI dan diikuti 
oleh pengesahan melalui ujikaji di dalam makmal. Keputusan menunjukkan keupayaannya 
untuk melaksanakan fungsi aliran paket yang fleksibel dengan menggunakan kaedah WSS 
dengan nilai kehilangan kuasa optik dalam talian sebanyak 38 dB pada kelajuan 10 Gbps 
dengan Kadar Ralat Bit (BER) sebanyak 10" . Dengan menggunakan 16̂ ., isyarat jalur lebar 
dari OLT ke ONU dengan kelajuan lOGbp boleh memberi perkhidmatan kepada pengguna 
seramai 2000 orang dalam jarak 20km. Merujuk kepada pengendalian fungsi fleksibel pada 
siaran penuh dan terpilih dengan menggunakan kaedah SEMUA AKTIF. hasilnya 
menunjukkan sistem ini boleh menyokong siaran penuh aliran menurun dengan kelajuan 
l60Gbps untuk memberi perkhidmatan kepada 16 PON dengan menggunakan 16).. 
Daripada hasil yang diperolehi, sistem yang dicadangkan ini mampu mengurangkan 
kelambatan masa yang disebabkan oleh pelarasan panjang gelombang dari OLT ke ONU. Di 
samping itu. kaedah ini akan mengurangkan isu inventori dan dapat mengurangkan 
kesilapan yang disebabkan oleh perbezaan panjang gelombang pada liang PON OLT yang 
boleh berlaku semasa proses pemasangan clan penyelenggaraan. Modul AOPR OLT yang 
dicadangkan mempunyai potensi yang tinggi untuk digunakan sebagai nilai tambah kepada 
sistem TWDM PON dalam rangkaian capaian pada masa akan datang.
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CHAPTER 1

INTRODUCTION

1.1 Background of the study

With the demand for higher bandwidth and high quality of services expected 

to increase in the next few years (Cisco System, 2011; Cisco System, 2013; 

Middleton, 2010), network operators are starting to migrate their system from legacy 

system to new technology that is capable to support more bandwidth and offer more 

reliable network. This system upgrade will affect the entire network from access, 

metro to the core network. The migration o f system must also consider the 

integration o f new and legacy system to ensure smooth upgrade planning and to 

support the current as well as the future network demands. However, most 

telecommunication service providers invest multimillion dollars to deploy passive 

optical network (PON) system such as (Ethernet Passive Optical Network (EPON)/ 

Gigabit Passive Optical Network (GPON)) in their network. In order to maintain the 

investment of the current network, the evolution of PON towards next-generation 

PON must be able to coexist with the current EPON/GPON. This initiative was 

further studied by Andrade et al. (2011); Kani et al. (2009); Kramer, (2009) and 

Teixeira, (2010). It was found that the main factor that contributes to the coexistence 

o f the network and system, is using the existing optical distribution network (ODN) 

and avoiding the usage o f the same wavelength allocated by current PON 

technology.
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Full Service Access Network (FSAN) group has been studying next- 

generation solutions to facilitate high bandwidth provision, large split ratio, and 

extended reach (Kani and Nakamura, 2012). In addressing next generation passive 

optical network 1 (NG-PON1), whose main focus is to develop a PON that is 

compatible with an operational GPON, International Telecommunication Union- 

Telecommunication (ITU-T) with FSAN has defined XG-PON1 as part of the NG- 

PON1 standardization path, with its features elaborated in the ITU-T G.987 

recommendations (Wong, 2012). There are two types o f NG-PON1 developed by 

ITU-T standard. This technology is based on the upstream line rate: XG-PON1 and 

XG-PON2, featuring a 2.5 and a 10 Gbit/s upstream path, respectively. After 

finalizing the XG-PON1 basic specifications, which are being successfully adopted 

by ITU-T and standardized in G.987 document series, the group is now focusing on 

the additional features and tools for extending the applicability of the XG-PON 

technologies. Moreover, under the generic term NG-PON2, the task group has 

started an investigation on the upcoming technologies which are able to (i) increase 

bandwidth further and (ii) solve the issues faced in the “1G” and “ 10G” PON 

technology deployments. In 2010, FSAN began investigating such NG-PON2 

technologies to address the user, services, and network requirements. NG-PON2 also 

considers new fibre architectures to harness the benefits of the maturing WDM 

technologies and their necessary adaptations for the access network (Andrade et al., 

2011; Kani et al., 2009; Kani and Nakamura, 2012; Luo et al., 2012; Wong, 2012)

Operators provide a general set of NG-PON2 requirements. The 

requirements to support NG-PON2 come from several aspects including user 

requirements, services requirements, and network requirements (Chanclou et al., 

2012; Effenberger et al., 2009; Effenberger et al., 2010; Kani et a l,  2009; Luo et 

al., 2012). To support higher bandwidth demand in the future, telecommunications 

companies expect NG-PON2 system to support at least 40 Gbit/s aggregate capacity 

per feeder fibre in the downstream, and at least 10 Gbit/s in the upstream. On top of 

that, to support a longer reach o f fibre distance between optical line terminal (OLT) 

and optical network unit (ONU), the maximum fibre reach for NG-PON2 should be 

at least 40 km, and a maximum differential fibre distance o f up to 60 km should also 

be supported. Optical distribution networks (ODNs) that are typically deployed in 

GPON today range between 16 and 128 ONUs. NG-PON2 should be (Chanclou et
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al., 2012) capable to operate in available spectrums that are not used by legacy 

PONs to allow coexistence, smooth migration network, and provide high level of 

flexibility that makes the coexistence of GPON, XG-PON, and NG PON2 possible. 

The legacy ONU and OLT must remain unchanged and do not require an additional 

filter to protect against interference from NG-PON2 signals in any migration 

scenario with coexistence. On the basis of the general requirements gathered from 

major telco operators, there have been many different system configurations 

proposed by research institutes and vendors to support aggregate data rate beyond 40 

Gbit/s. In April 2012, FSAN selected TWDM PON system as a primary solution to 

be deployed in NG-PON2 (Luo et al., 2013), supported with P2P WDM PON to 

support mobile backhaul system.

1.2 Problem Statement

The main challenge of the architecture is to have the flexibility and 

scalability of the time and wavelength division multiplexed passive optical network 

(TWDM) PON to support more numbers o f users and manage the burst and 

fluctuation o f low and high bandwidth traffic in access network. There are many 

approaches used to support high numbers o f users and long-reach system (Shea and 

Mitchell, 2009; Taguchi et al., 2010; Talli and Townsend, 2006). One of the 

approaches is to design the system by managing multiple PON link interconnects 

with multiple PON ports within a single TWDM PON system (Feng et al., 2011; 

Taguchi et al., 2013; Cheng et al., 2013). Nevertheless, the problems of this 

architecture are the following:

• Flexibility o f the system to handle full function of broadcasting or 

multicasting and at the same time to handle multiplexing o f multiple 

wavelengths with different PON ports at different PON links within a single 

TWDM PON system decreases.

• High cost of fibre deployment to support an existing ODN and fibre 

infrastructure.
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• Complex design of the system to handle multiple access technologies thereby 

GPON, XG-PON, and TWDM PON at different PONs.

In designing a flexible TWDM PON system, most o f the proposed 

architectures use tunable laser source (TLS) (Bock et al., 2005; Nakamura et al.,

2013) or multiple fixed multi-wavelength (FMW) (Cheng et al., 2013; Cheng et al.,

2014) transmitter in OLT PON port that allows flexible wavelength routing (WR) 

and multiplexing of the signal in downstream signal. However, tunable laser source 

(TLS) signals have the following limitations:

• In providing full broadcast or multicast within entire TWDM PON system as 

TLS will transmit only single wavelength and this signal will be routed only 

to a certain single PON link.

• To re-route certain packet at a different PON link, TLS requires certain time 

to tune the wavelength (Buus and Murphy, 2006; Fabrega et al., 2011), 

which will cause wavelength tuning delay in the system, thereby affecting 

the performance of the system.

However, adopting a multi-channel wavelength transmitter, the following problems 

are encountered:

• High numbers o f OLT transmitter connected to a single PON port, which 

will incur an additional cost to the system.

• Different types of transmitter will introduce inventory issues and will add the 

possibility o f human error during the system installation or maintenance.

1.3 Motivation

Motivated by the benefit of flexible TWDM PON system architecture, this 

study discusses the development of flexible TWDM PON system to support multiple 

PON link interconnects with multiple PON ports. This will allow the scalable 

system to support high numbers o f users and large coverage area in the access 

network. In addition this will support full degree of flexibility to manage highly 

efficient dynamic bandwidth allocation and to support burst and fluctuation traffic at
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low- and high-bandwidth demand in the access network. Subsequently, to reduce the 

capital expense and operational expense, by leveraging an existing fibre cable and 

maintaining the optical splitter in the remote node, a service provider is able to use 

the existing fibre and ODN deployment in access network, which will reduce the 

cost of system and the deployment time in brown field network. This method will 

allow coexistence of TWDM PON system with legacy GPON and XG-PON systems 

and provide a smooth migration from legacy to TWDM PON. Besides maintaining 

an existing infrastructure, pay-as-you-go (PAYG) design concept will reduce an 

initial investment of the service provider by allowing the system to work with 

minimum numbers of PON ports and making it scalable to increase the number of 

PON ports according to the demand of the users. Meanwhile, using fixed 

wavelength and minimum number of PON port transmitters in OLT system will 

reduce the system cost, inventory issue, and chances o f error in the system during 

fibre installation. In addition, to support green system initiative, the capability of the 

OLT system to turn OFF certain OLT PON ports while the total bandwidth usage is 

low will allow power-saving mode to be implemented in the OLT module. 

Moreover, the flexible design of TWDM PON architecture to integrate with 

aggregation and routing functions in PON system will reduce the numbers of 

aggregation ports in the metro network, which will reduce the capacity of layer 2 

metro switch that turns to power saving for overall system in the network.

1.4 Research Objectives

The main objectives of this research was to design an all-optical packet 

routing (AOPR) TWDM PON system architecture to support full degree of flexible 

function in TWDM PON system to support flexible packet routing, packet 

multiplexing, packet broadcasting and multicasting functions, and to combine both 

multiplexing and broadcasting functions.
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There are several goals to achieve this objective.

1. To design and develop AOPR OLT module using all-optical wavelength 

conversion with cross-gain modulation (XGM) and multicasting XGM to 

support up to 2000 users with 160Gbps downstream bandwidth

2. To design and develop 3R (re-routing, re-convert, and re-amplified) function 

in AOPR OLT module to support high allowable link loss margin in the 

system

3. To design free (zero) wavelength tuning delay in the downstream system by 

implementing the high-speed wavelength select switch as a pump probe 

signal (PPS) in AOPR OLT module

1.5 Scope of Works

The objective o f this work is to concentrate at PON system technology for 

hybrid TWDM PON. Figure 1.1 shows the scope of work to be carried out in this 

study. The previous work of flexible design of TWDM PON will be reviewed and 

investigated to support and align it with NG-PON2 system requirements. Two 

designs o f proposed TWDM PON architecture have been reviewed in this study: the 

first is static and the second is dynamic TWDM PON system architecture. To 

support flexible and scalable system design architecture, the study will focus and 

exploit dynamic-type PON architecture supported with multiple PON links 

interconnected with multiple PON ports in the TWDM PON system; this design will 

be used as a base design in this proposed system architecture. On the basis of the 

literature review, flexible multiple PON links are classified into four categories of 

flexible TWDM PON system architecture: (i) broadcast and select (B&S), (ii) 

wavelength-routed (WR) and B&S (W&R and B&S), (iii) wavelength multiplexing
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and routing and broadcast and select (WM&R and B&S), and (iv) W&R system 

architecture. This work will focus on WM&R and B&S system design architecture. 

Two types of transmitter were used in OLT PON port to support full flexible design 

in TWDM PON architecture,: TWLS and fixed-wavelength laser source (FWLS). In 

this proposed design, the system applies single OLT transmitter FWLS in OLT PON 

port to eliminate the problems discuss earlier. This proposed system architecture had 

full degree of flexibility to support four functions o f wavelength multiplexing 

(WM), WR, wavelength broadcasting and multicasting (WB&M), and hybrid WM 

and WB&M functions. To design all-optical WR and WB&M, it is suggested that 

XGM technique instead o f XPM or FWM should be used to reduce the complexity 

of the system design to support the required function. In managing single or multiple 

wavelengths to support WR and WB&M functions, WSS PPS and All ON PPS 

modules were design in this study. All the experimental and simulation analyses of 

the system will be focused on downstream signal in this study, and physical 

performance will be examined.
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Figure 1.1 Scope of work to be carried out in this thesis
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1.6 Research Methodology

This section will cover all the issues and approach considerations towards 

this project. To address the research objectives, a work flow diagram of the research 

is constructed and presented in Figure 1.2.

Figure 1.2 Flow chart o f the research methodology



10

This work is basically divided into three main stages, and each stage 

addresses all the issues encountered in completing this research. This flow-chart 

shows the development o f the system and covers all the issues that have to be 

considered throughout this project. At the initial stage, investigation on the current 

research and technology of selection in NG-PON2 system is conducted. This 

involves studying the literature on TWDM PON system as well as all the related 

research works. It is important to study and comprehend the concept o f TWDM 

PON system to support future requirement o f PON system. This stage also covers 

the investigation on the architecture of the enhanced TWDM PON, which is called 

flexible TWDM PON system, to support more users with more dynamic and flexible 

design architecture. In this literature, the system architecture is differentiated from 

the previous works proposed by the other research institutions including the 

university, telecommunication vendors, and telecommunication providers. In the 

second stage, the proposed AOPR TWDM PON system architecture with different 

flexibility is designed. In this stage, the proposed design focuses on developing 

AOPR OLT module to support packet routing and packet multicasting and 

broadcasting. This phase provides the detail about the design scenario and event 

trace flow of both flexible functions. In this stage, the proposed AOPR TWDM PON 

system architecture is also designed. This architecture consists of subsystem of OLT, 

ONO, and ODN systems. In OLT system, a new module, called AOPR OLT 

module, is designed to integrate with semiconductor optical amplifier (SOA), multi­

wavelength PPS, and cyclic arrayed waveguide grating (AWG). The main 

components involved in supporting the proposed design such as SOA and AWG will 

be discussed.

The third stage is the system characterization and performance study. In this 

stage, the best correlation between OLT PON port transmitting power and multiple 

wavelength PPS to support packet routing and packet multicasting and broadcasting 

is obtained. Each component is characterized and each parameter is obtained to get 

the best performance to support the proposed system. Using the (VPIphotonics) 

simulation result as a reference design, each o f the subsystem of OLT, AOPR and 

ONU, and ODN will be constructed. Each subsystem has a different design and 

parameter, and results o f simulation performance and experimental characterization
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are compared. Using subsystem characterization result as a reference, each 

subsystem is integrated for a complete end-to-end system testing. Result analysis is 

the last phase in this study. This phase provides results to support the physical layer 

performance study. Physical performance of the system is measured by analyzing 

the quality o f signal through bit-error rate (BER) optical signal-to-noise ratio and 

ONU-received sensitivity. This stage is the most crucial stage because it is where the 

entire study is analyzed thoroughly. It is important to get the best input parameter 

setup so that an optimum design can be determined. In addition, should there be any 

problems or limitations on the design, it will then be rectified and further 

implications, suggestions, and possible recommendations will be given.

1.7 Thesis Outline

In Chapter 1, an overview o f the research, aims, motivation, problems, and 

reasoning of the study are discussed. The objectives of the research work are also 

presented accordingly. Methodology of the research work that covers the matters in 

completing the work is thoroughly discussed.

Chapter 2 broadens the discussion and provides more detailed background 

and reviews of the optical access technology focusing on PON system technology. 

Each PON evolution will be reviewed and the requirements to support future PON 

are identified. Technology selection to support NG-PON2 is reviewed and studied 

based on its pros and cons. As proposed by FSAN and ITU-T standardization, 

TWDM PON technology has been selected by most of the major telecommunication 

companies and vendors for deployment in NG-PON2. In this study, the enhanced 

TWDM PON system (called flexible TWDM PON system), which was proposed to 

support more users and more flexible in allocating bandwidth to all users in all ODN 

links, gains the main focus in the literature. In this chapter, the development of the 

AOPR TWDM PON system is also proposed and each of the main module and 

components to support the proposed architecture will be discussed in detail.
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In Chapter 3, system design of the proposed architecture to support different 

functions in AOPR TWDM PON system is elaborated, with algorithm o f each 

function proposed and discussed. The chapter focuses at the first and second flexible 

functions, which are flexible packet routing and flexible multicast and broadcasting 

functions. This chapter also presents the developments of subsystem module to 

support AOPR OLT. The characterization of SOA as main components to support 

AOPR used in XGM module is studied in detail. The design of multi-wavelength 

pump probe signal module is proposed to reduce the wavelength tuning delay in the 

system by using high-speed wavelength select switch PPS design and Always ON 

design. The performance of the fundamental method used in each sub module design 

is assessed using simulation design and the effect of performance parameter on each 

of the input parameter is measured.

Chapter 4 presents the simulation setup and performance study of the 

proposed AOPR TWDM PON system. On the basis of the subsystem reference 

result in Chapter 3, the overall performance o f the proposed architecture is 

measured; each o f submodules will be integrated and BER performance to support 

maximum total link loss and ONU-received sensitivity is measured. To achieve the 

research objective o f supporting high-power budget to enhance the number of users 

and area o f system coverage, system optimization and signal amplification are 

introduce in AOPR OLT module design. All these activities are measured using 

commercial VPI simulation tools.

Chapter 5 presents the development o f AOPR OLT module in the proposed 

system; design consideration and experimental setup. The effect o f different input 

power from two input signals on the performance of the model is also highlighted. 

Later, the performance of wavelength-tuning-free design module using fixed type of 

wavelength in OLT transmitter to support both WSS and All ON method is 

discussed and compared with the conventional method using TLS to support 

wavelength conversion. Also, the development of high-performance AOPR TWDM 

PON system is presented by integrating each sub module such as OLT AOPR, 

multiple ODN link, and ONU module. This model acts as a whole proposed system 

that emulates functions in AOPR TWDM PON system. The physical performance
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studies such as BER, optical signal-to-noise ratio, and ONU-received sensitivity of 

the system are also obtained. Finally, analysis results based on the simulation and 

measurement are compared, discussed, and concluded.

Finally, in Chapter 6, concluding remarks and recommendations for future 

prospects for this work are given and the original contributions are highlighted.
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