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ASTRACT 
 

 

The existing palm oil mill effluent (POME) treatment is often still difficult to 
adhere to the effluent standards. One of the most promising novel technologies in 
wastewater treatment system is the membrane bioreactor (MBR). The aim of this 
study is to treat POME using aerobic submerged membrane bioreactor (ASMBR) 
system to improve the effluent quality before biofouling reducer (BFR) is applied to 
reduce the membrane fouling. Diluted POME was treated with a 20 L lab-scale 
ASMBR equipped with a single microfiltration flat sheet membrane module.        
The ASMBR systems with mixed liquor suspended solids (MLSS) from 3000 to 
12,000 mg L-1 and solids retention time (SRT) from 20 days and above were used to 
investigate the best operating condition of the system without BFR. The finding 
shows ASMBR continuous system operated at MLSS of 9000 mg L-1 and SRT of   
20 days to produce good quality effluent, less microbial products, and moderate 
membrane fouling rate. Since membrane fouling is the main obstacle in the 
membrane system, powdered activated carbon (PAC), granulated activated carbon 
(GAC) and zeolite (ZEO) were added to the ASMBR as BFR. Batch tests with BFR 
concentrations from 1 to 10 g L-1 were used to determine the best BFR dose. It can 
be concluded that 4 g L-1 of PAC, GAC, and ZEO is the best BFR dose to produce 
good residual organic contents and colour of final products. Furthermore, the 
performance of ASMBR without BFR (called BFR0) and coupled with BFR were 
compared by assessing the removal efficiencies of organic and colour, the fouling 
phenomenon propensity, and the critical flux (Jc) enhancement. The systems were 
subjected to two batches of organic loading rate (OLR), equal to about 1000 and 
3000 mg COD L-1. Each system with BFR showed distinct performances by 
producing higher effluent quality as compared with BFR0. On both OLR, the 
ASMBR systems with BFR removed organic constituents with more than 96%, 
produced effluent with average residual colour of less than 55 ADMI and 
significantly increased Jc up to 42 L m-2 h-1. It can be concluded that PAC is the best 
BFR for ASMBR system to treat POME by producing the highest quality of effluent, 
distinct changes in the concentrations of soluble microbial products (SMP) and 
extracellular polymeric substances (EPS), formed lowest operational trans-membrane 
pressure (TMP), and produced highest Jc. Finally, the experimental results were 
verified using activated sludge models no. 1 (ASM1) by also conducting the COD 
fractionation and respirometric analysis. The stoichiometry and kinetic parameters 
were determined to describe the bioprocess of the system. The COD fractionation of 
POME indicated dominant fraction of slowly biodegradable matters (42-56%). 
Oxygen utilization rate (OUR) of the ASMBR systems was found to fit well with 
ASM1 results. Compared with BFR0, the addition of BFR increased the 
stoichiometry parameter of YH up to 0.49 mg cell COD mg-1 COD, increased the 
kinetic parameters of µmaxH, and µmaxA up to 1.6 and 0.48 d-1, respectively, and 
increased KO,H and KO,A up to 0.59 and 0.82 mg COD L-1, respectively. The value of 
bH and KS were decreased to 0.32 d-1 and 0.89 mg COD L-1, respectively. These sets 
of model parameters were verified describing the enhancement of bioprocess in the 
ASMBR system coupled with BFR. 
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ABSTRAK 

 

Rawatan efluen kilang kelapa sawit (POME) yang sedia ada seringkali sukar 
untuk mematuhi efluen piawai. Salah satu daripada teknologi baru yang berpotensi 
dalam sistem rawatan air sisa ialah bioreaktor membran (MBR). Kajian ini bertujuan 
untuk merawat POME menggunakan sistem bioreaktor membran paras tenggelam 
aerobik (ASMBR) untuk menambah baik kualiti efluen yang kemudiannya 
menggunakan pengurang kekotoran bio pada membran (BFR) untuk mengurangkan 
kekotoran membran. POME cair dirawat dengan sebuah ASMBR 20 L pada skala 
makmal yang dilengkapi dengan satu kepingan rata modul membran penurasan 
mikro. Sistem ASMBR dengan campuran cecair pepejal terampai (MLSS) daripada 
3000 - 12,000 mg L-1 dan masa penahanan pepejal (SRT) dari 20 hari dan lebih telah 
digunakan untuk mengkaji keadaan terbaik bagi operasi ASMBR tanpa BFR. Hasil 
kajian menunjukkan sebuah sistem ASMBR berterusan yang dijalankan pada MLSS 
9000 mg L-1 dan SRT 20 hari menghasilkan kualiti efluen yang baik, produk-produk 
mikrob yang kurang dan kadar kekotoran membran yang sederhana. Oleh sebab 
kekotoran membran adalah halangan utama bagi sistem membran, serbuk karbon 
teraktif (PAC), granul karbon teraktif (GAC) dan zeolit (ZEO) ditambahkan kepada 
ASMBR sebagai BFR. Kajian kelompok dengan kadar BFR daripada 1 - 10 g L-1 
digunakan untuk menentukan dos terbaik BFR. Kesimpulannya, 4 g L-1 PAC, GAC 
dan ZEO menghasilkan produk akhir dengan kandungan sisa organik dan warna yang 
baik. Seterusnya, prestasi ASMBR tanpa BFR (disebut BFR0) dan berganding BFR 
telah dibandingkan dengan menilai kecekapan penyingkiran organik dan warna, 
kecenderungan fenomena kekotoran membran, dan peningkatan fluks kritikal (Jc). 
Sistem-sistem tersebut dijalankan dengan menggunakan dua kelompok kadar beban 
organik (OLR), masing-masing bersamaan dengan 1000 dan 3000 mg COD L-1. 
Setiap sistem dengan BFR menunjukkan prestasi yang berbeza dengan menghasilkan 
kualiti efluen yang lebih tinggi berbanding dengan BFR0. Pada kedua-dua OLR, 
sistem ASMBR dengan BFR masing-masing menyingkirkan COD lebih daripada 
96%, menghasilkan efluen dengan purata sisa warna kurang daripada 55 ADMI, 
meningkatkan Jc kepada 42 L m-2 h-1. Disimpulkan bahawa PAC adalah BFR terbaik 
untuk sistem ASMBR yang merawat POME kerana menghasilkan efluen dengan 
kualiti tertinggi, perubahan nyata dalam kepekatan produk larut mikrob (SMP) dan 
bahan polimerik luar sel (EPS), membentuk tekanan operasi antara membran (TMP) 
terendah, dan menghasilkan Jc tertinggi. Akhir sekali, keputusan-keputusan 
experimen disahkan menggunakan model lumpur teraktif no. 1 (ASM1) dengan 
menjalankan juga analisis pemecahan COD dan respirometri. Parameter-parameter 
stoichiometri dan kinetik ditentukan untuk menggambarkan proses bio dalam sistem. 
Pemecahan COD POME menunjukkan pecahan dominan bahan organik yang 
terbiodegradasikan secara perlahan (42-56%). Kadar penggunaan oksigen (OUR) 
bagi sistem ASMBR didapati sepadan dengan keputusan ASM1. Berbanding dengan 
BFR0, penambahan BFR meningkatkan parameter stoikiometri YH sehingga 0.49 mg 
sel COD mg-1 COD, meningkatkan parameter kinetik µmaxH dan µmaxA masing-
masing sehingga 1.6 and 0.48 d-1, dan meningkatkan KO,H dan KO,A masing-masing 
sehingga 0.59 and 0.82 mg COD L-1. Nilai bH dan KS masing-masing berkurang 
sehingga 0.32 d-1 and 0.89 mg COD L-1. Kumpulan parameter model ini 
mengesahkan adanya peningkatan proses bio pada sistem ASMBR berganding BFR. 
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CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

 

 

1.1 Research Background 

 

 

The oil palm is the most important agricultural crop in Malaysia, covering 

more than 5 million hectares, equivalent to almost 75% of total agricultural land and 

about 12% of the country's total land area (Ahmad et al., 2005; Mukherjee and 

Sovacool, 2014). In 2009, the production of crude palm oil (CPO) has reached 17.76 

million tonnes and increased to 18.5 million tonnes in 2013 (Mukherjee and Sovacool, 

2014). This made Malaysia as one of the largest producers, covering about 43% of the 

world's total palm oil production, and as the largest exporters in the world, accounting 

about 49% of total palm oil (Ujang et al., 2011). Indigenous from Africa, the oil palm 

(Elaeis guineensis Jacq.) has been domesticated from the wilderness and transformed 

to become a plantation-based oil industry. The oil palm takes 11-15 months in nursery 

period. The first harvest carried out after 32-38 months of planting. The oil palm tree 

takes 5-10 years to reach peak yield. For every hectare of plantation, 10 - 35 tonnes of 

fresh fruit bunches (FFB) are produced every year. The fleshy mesocarp and the kernel 

of the fruit are used to obtain oil, yielding about 45-56 % and about 40-50%, 

respectively. Both mesocarp and fruit kernel produce about 17 tonnes per hectare per 

year of oil (Rupani et al., 2010). Recently, there are 418 crude palm oil mills, 59 
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refineries, 57 downstream industries and 18 oleo-chemical plants in Malaysia (Ujang 

et al., 2011). 

 

 

However, the oil palm sector also generates an enormous amount of liquid 

wastewater, known as Palm Oil Mill Effluent (POME) (Borja and Banks, 1995). It has 

been reported that for every metric tonnes of crude palm oil (CPO) produced, about 0.9 

– 1.5 m3 of POME is generated (Vijayaraghavan et al., 2007). About 0.5 – 0.7 m3 

POME will be discharged from every metric tonnes FFB processed (Yacob et al., 

2006). It was recorded since 2004 more than 40 million tonnes of POME annually was 

generated from 372 mills in Malaysia (Wu et al., 2010; Yacob et al., 2006). This 

means that nowadays, some 400 palm oil mills will produce more than 44 million 

metric tonnes of POME annually. The palm oil mill has been identified as the one that 

produces the largest pollution load into the rivers throughout Malaysia (Wu et al., 

2007).  

 

 

In general, POME is came from three major sources, i.e. sterilizer condensate, 

wastewater of hydrocyclone and separator sludge. Despite it is non-toxic colloidal 

suspension, Fresh POME contains high amounts of BOD5 (25,000 mg/L), COD 

(50,000 mg/L), total solids (40,500 mg/L), oil and grease (4000 mg/L), and total 

nitrogen (750 mg/L) (Ahmad et al., 2003; Wu et al., 2010). Typically with very high 

content of organics and oil, the resulting POME is a thick brownish colour liquid and 

discharged at a temperature between 80 and 90 oC. It is also fairly acidic with pH 

ranging from 4.0 to 5.0. The raw or partially treated POME has an extremely high 

content of degradable organic matter, which is mostly due to the presence of 

unrecovered palm oil. This highly polluting wastewater could consequently cause 

severe pollution of streams due to oxygen depletion and other related effects (Wu et 

al., 2010). 

 

 

The regulation of effluent standard stated by the government of Malaysia under 

the Environmental Quality Act 1974 providing the legal  source  for environmental 

management and water pollution control. Since 1978, the regulator has endorsed 
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standards for POME effluent and palm oil mills required to treat their POME prior to 

discharging it into watercourses. In the latest amendment, the effluent standards are 

BOD5 100 mg/L, suspended solids 400 mg/L, oil and grease 50 mg/L, ammonia 

nitrogen 150 mg/L, total nitrogen 200 mg/L, pH 5-9 and a temperature of 45oC, 

respectively (DOE, 2010). 

 

 

Various treatment combinations are currently used to treat POME in Malaysia, 

including tank digestion and mechanical aeration, tank digestion and facultative ponds, 

decanter and facultative ponds, physico-chemical and biological treatments 

(Vijayaraghavan et al., 2007). Prior to biological treatment, POME is treated in 

physical pre-treatment in order to remove the suspended solids and residual oil using 

air flotation, coagulation-flocculation, and sedimentation. The application of 

coagulation and activated carbon as a pre-treatment on POME treatment removed 

COD, BOD and turbidity by 56%, 71% and 97.9%, respectively. When the pre-treated 

POME was further treated using membrane ultra-filtration and reverse osmosis, the 

removal efficiencies COD, BOD, and turbidity were as high as 98.8%, 99.4%, and 

100%, respectively (Ahmad et al., 2003). The combination of ponds and sequencing 

batch reactor (SBR) has also been used to degrade POME, as well as evaporation 

technology and a clarification system coupled with filtration and aeration 

(Vijayaraghavan et al., 2007). Today, 85% of POME treatment systems are essentially 

composed of anaerobic and facultative ponds due to lower capital and operating costs. 

After the pond system, the effluent is further treated using other biological system, 

including an open tank digester coupled with extended aeration pond (Abdurahman et 

al., 2011). Due to the green house related issue, these open types of digesters are 

currently being converted into closed digesters to contain the biogas. A series of ponds 

with low maintenance produces a low rate of contaminant degradation. Often, the final 

discharge does not comply with the effluent standard. 

 

 

Even though membrane bioreactor (MBR) are still considered as a new 

technology, the development of this filtration and “clarifier-less” activated sludge 

system was already initiated in the 1960s. An MBR system can be operated with high 

concentration of mixed liquor suspended solids (MLSS), and can produce high quality 
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of treated effluent, low quantity of excess sludge, small footprint and can promote 

water reclamation (Meng et al., 2009). The first generation of MBR was operated with 

organic or inorganic tubular membranes placed in external recirculation loops. Aerobic 

submerged membrane bioreactors (ASMBR) specifically for wastewater treatment 

have been developed at the end of 1980s in order to simplify the use of these systems 

and to reduce operating costs (Yamamoto et al., 1988). In this configuration, the 

membranes are directly immersed in the tank containing the biological sludge and the 

permeate water is extracted. The MBR technology for wastewater treatment 

experienced rapid development from the early 1990s onwards. The world MBR market 

is expected to experience sustainable growth as a result of drivers like more stringent 

legislation, local water scarcity, increased funding, decreasing investment cost and 

increasing confidence in accepting this technology (Judd, 2006). To date, more than 

2200 MBR are installed worldwide. Zenon is the largest installation followed by 

Kubota and Mitsubishi (Mutamim et al., 2012) 

 

 

However, in most cases, membrane fouling is considered as the most serious 

problem affecting system performance of membrane processes, leading to the 

limitation of extensive application of MBR (Wang et al., 2007). Membrane fouling is 

the deposition of a layer onto the membrane surface or the blockage or partial blockage 

of the pores leads to the declining flux and or the increasing of membrane pressure. 

For decades, researchers conducted various studies to avoid or minimize of these 

complex phenomena (Zuthi et al., 2012).  

 

 

The various factors affecting membrane fouling in MBRs have been reviewed 

(Judd, 2004; Le-Clech et al., 2006). Factors such as the type of wastewater, sludge 

loading rate, MLSS concentration, mechanical stress, solid retention time (SRT), food-

to-microorganism ratio (F/M) and microbial growth phase, are known to affect the 

concentration of foulant and in turn encouraging the development of membrane fouling 

(Chang and Judd, 2002; Li et al., 2005). Various techniques have been used to limit 

membrane fouling, including manipulating bioreactor conditions, modifying 

hydrodynamics and flux and improving module design (Böhm et al., 2012; Drews, 

2010; Field and Pearce, 2011). 
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In the ASMBR system, air bubble sparking can help to prevent the deposit 

forming on the membrane surface (Chang and Judd, 2002; Ujang et al., 2005). 

Periodic backwashing improves membrane permeability and reduces fouling, 

producing optimal, stable hydraulic operating conditions (Bouhabila et al., 1998; Lim 

and Bai, 2003). Adding flocculation–coagulation agents limits membrane fouling by 

aggregation of the colloidal fraction, thus reducing internal clogging of the membranes 

(Bhatia et al., 2007a; Guo et al., 2010; Iversen et al., 2009). Several materials have 

been added to the submerged MBR to reduce bio-fouling.  

 

 

Several studies have shown that the addition of BFR or flux enhancer, which 

are mostly flocculants or adsorbent, is one of the strategies to lower the fouling 

propensity in an MBR (Guo et al., 2010; Guo et al., 2008; Koseoglu et al., 2008; 

Ujang et al., 2002). Meanwhile, the direct addition of activated carbon into the 

submerged MBR can maintain or improve the organic removal efficiency without the 

need for the membrane to be cleaned for longer operation time (Munz et al., 2007; 

Ujang et al., 2002; Ying and Ping, 2006). Akram and Stuckey (2008) concluded that 

the addition of PAC might improve the flux and organic removal efficiency of a 

submerged anaerobic MBR. Lee et al. (2001) reported that the addition of zeolite to a 

MBR produced more rigid, stable and strong sludge flocs that can reduce the 

membrane fouling by forming a less compressible cake layer on the membrane surface.  

 

 

Recent studies have considered another two important factors to membrane 

fouling propensity, i.e. bound extracellular polymeric substances (EPS) and soluble 

microbial products (SMP) (Feng et al., 2012; Jeong et al., 2007; Pan et al., 2010). 

Studies have also pointed out positive relation between the membrane fouling reducing 

process and the increase of critical flux and production flux (Le-Clech et al., 2006; Le-

Clech et al., 2003). The addition of natural material, i.e. Moringa oleifera seed, as a 

coagulant for pre-treatment has significantly reduced the SS and organic content of 

POME (Bhatia et al., 2007b). Damayanti et al. (2011) reported that Moringa oleifera 

seed has also been proven successful in increasing the critical flux value of a hybrid 

MBR treating POME, leading to the potential of Moringa oleifera as a natural BFR.  
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1.2 Problem Statement 

 

 

The extensive production of palm oil produced a huge amount of POME. 

Treatment of POME, besides of the fulfilling the effluent standard, also offers the 

potential of water reclamation and reuse. The use of membrane processes in 

wastewater treatment are considered as a key option of advanced water reclamation 

and reuse schemes (Pulefou et al., 2008; Wintgens et al., 2005). Therefore, it is 

necessary to take effort to emphasize on the application of MBR technology in POME 

treatment and make efforts to enhance the potential for water reclamation and reuse. 

 

 

The major obstacle on MBR system is membrane fouling. Fouling leads to a 

decline in permeate flux, requiring more frequent membrane cleaning, which actually 

increases the operating costs. Finally, membrane fouling leads to the increased total 

membrane life-cycle cost.  Membrane fouling in MBR may be in term of physical, 

inorganic, organic or biological form. Physical fouling refers to the plugging of 

membrane pores by colloidal species, such that a certain proportion of the membrane 

surface is effectively blocked (Judd, 2004). Inorganic and organic fouling usually refer 

respectively to scalants and macromolecular species (Jiang et al., 2003). Organic 

fouling in MBR, on the other hand, has been much more widely studied and 

characterized, as well as biofouling. It has been estimated that almost half of all 

fouling deposits in membrane systems comprised or involved biofilm (Wang et al., 

2007).  

 

 

Many researchers have been exploring the application of materials which could 

be used to prevent membrane fouling. As mentioned before, flocculation–coagulation 

agents, activated carbon, PAC, Zeolite, even natural Moringa oleifera has been added 

to the MBR system and reduce the membrane fouling. Not only for membrane fouling 

mitigation, several studies stated that the addition of fouling-retarding materials 

showed improvement on organics removal (Dizge et al., 2011; Li et al., 2011; Ngo and 

Guo, 2009; Satyawali and Balakrishnan, 2009). Higher quality of final effluent could 

assist in promoting the water reclamation and reuse in palm oil industry. 
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The MLSS concentration is a crucial operating factor for MBR system. The use 

of high concentrations of biomass, which resulting a smaller footprint bioreactor is 

stated as one of the big advantages of MBR technology. Yet, studies about the 

influence of MLSS on fouling are sometimes inconsistent (Lousada-Ferreira et al., 

2010). Although MBR systems can be operated more effective with higher 

concentration of biomass (Melin et al., 2006; Meng et al., 2007), several studies 

concluded that higher biomass population has resulted in higher fouling to the system 

(Damayanti, et al., 2011; Lousada-Ferreira et al., 2010) . Yet, it is not clear which 

factors determine the resulting of decreasing flux. The higher MLSS concentration, the 

higher the production of EPS and SMP (Liu and Fang, 2003). It is widely understood 

that the EPS generated by micro-organisms are largely responsible for organic fouling 

of membranes (Jeong et al., 2007), whereas, SMP is considered as the soluble part of 

EPS release into the solution from substrate metabolism and biomass decay (Judd, 

2004; Yuniarto et al., 2013). 

 

 

 

 

1.3 Objectives of the Study 

 

 

The aim of this study is to study the biotransformation of organic components, 

mitigation of membrane fouling and enhancement of the flux production of an aerobic 

submerged membrane bioreactor (ASMBR) for POME treatment.  

 

 

Specific objectives of this study for achieving the main aim are as follows: 

 

1. To determine the effect of various biomass populations in treating POME on 

membrane filterability and organic compound concentration using a short term 

operation of the ASMBR systems; 

 

2. To investigate the best concentration of various BFR in the ASMBR system for 

treating POME on a batch system; 
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3. To assess the performance of the ASMBR system with and without the addition 

of various BFR in treating POME on a long term operational period and 

various organic loading on the biofouling phenomenon mitigation, 

biodegradation of organic and residual organic colour; 

 

4. To determine the COD fractionation of POME using respirometry analysis and 

to estimate biokinetic parameters and coefficients using activated sludge 

modelling in order to describe the biomass performances in the ASMBR 

system coupled with and without BFR. 

 

 

 

 

1.4 Scope of the Study 

 

 

A significant work has been conducted on the application of ASMBR system 

for treating POME. The research was initiated by conducting a thorough literature 

review on the generation and characteristic of POME, the application of MBR systems 

on various types of wastewater, the obstacles in the application of MBR systems, and 

the various effort has been done to overcome the obstacles and enhancing the 

performance of MBR systems. Operational factors that affect the process, biomass 

characterisation, the rate of removal efficiencies, and the membrane fouling 

phenomenon and its mitigation are some issues have been extracted from literature 

study. This review found out unanswered questions related to the application of 

ASMBR for treating POME, as well as the mitigation of possible membrane bio-

fouling in the ASMBR system. The following task was setting up and developing a lab 

scale ASMBR system to conduct the study. The system consisted with a 20 L aerobic 

reactor with single flat-sheet Kubota MF membrane module and equipped with several 

supporting systems. Diluted POME of about 1000 and 3000 mg L-1 of COD were fed 

to the ASMBR systems during the course of this study. 

 

The work started with the determination of best concentration of biomass in the 

ASMBR, since biomass is one of the factors that influence the bioprocess and 
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membrane fouling in MBR system. Moreover, the best SRT, which is a very important 

role in biomass population, was also determined. The continues system of ASMBR 

system was subjected with 3,000 to 12,000 mg L-1 of MLSS and SRT of 20 days and 

above, before organic solids removal rate, the concentration of residual colour, the 

development of biofoulant, and critical flux methods were used as the approach to 

determine the best biomass concentration and SRT. 

 

 

To enhance the performance of ASMBR system and mitigate the biofouling, 

powdered activated (PAC), granulated activated carbon (GAC) and powdered zeolite 

(ZEO) were used as BFR. Hence, batch adsorption experiments with various 

concentrations of BFR from 0 – 10 g L-1 were used to determine the best concentration 

of BFR. The adsorption capacity and isotherm of each BFR were also obtained to 

describe the process occurred in the system.  

 

 

The performance of the ASMBR system with and without the addition of 

various BFR to treat POME on a constant-flux and long term operational period are 

assessed. The ASMBR systems are subjected to the variation of organic loading rate to 

study the behaviour of the system. Besides the effect of BFR on reduction of organic 

compounds, colour, SMP, EPS and the critical flux enhancement are also monitored. 

During long term operation of the ASMBR systems, respirometric analysis was also 

done to obtain oxygen uptake rate (OUR) and COD fractionation. International water 

association’s activated sludge models no. 1 (ASM1) is used in calibrating the ASMBR 

system for estimating biokinetic parameters, describing the effect of BFR on 

bioprocess in ASMBR system. The whole experiment is conducted in the laboratory of 

Institut Pengurusan Alam Sekitar dan Sumber-sumber Air (IPASA) Universiti 

Teknologi Malaysia (UTM). In this study, all analytical measurements are performed 

according to Standard Methods for the Examination of Water and Wastewater (APHA, 

1998) and legitimate related standard methods. 
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1.5 Significance of Research 

 

 

This study could improve the understanding of optimizing the 

biotransformation of soluble organics and flux enhancement in the MBR system 

treating agricultural wastewater. Although the MBR treatment has been proven to have 

prominent advantages over other conventional treatment system, none of the recent 

studies have been devoted to the development of ASMBR as a treatment for POME. 

 

 

Direct treatment of high organic concentration of POME is not viable using 

ASMBR. Therefore, the treatment of diluted POME is explored by exposing the 

reactor system with and without BFR using the various organic loading rate and the 

various types and concentration of BFR. The application of BFR in ASMBR treating 

POME is new based on the literature review, except the study done by Damayanti et 

al. (2011b) on hybrid MBR. The effect of BFR in the ASMBR system is studied base 

on their performance to reduce biofouling and enhancing the final effluent quality. 

Furthermore, the activated sludge model is used to obtain stoichiometry and biokinetic 

parameters of each process describing the performances of the ASMBR system 

coupled with and without BFR. The stoichiometry and biokinetic parameters obtained 

from the models can be used in the design of the similar system in the future. 

 

 

The operation technique and the maintenance method of ASMBR system 

coupled with BFR in this study would be a valuable information for rectifying or 

upgrading similar system. This study may also lead to a new generation of ASMBR 

application for high strength wastewater, specifically POME, to produce better quality 

of final effluent, enhancing process capacity, prolonging the membrane maintenance 

cycle and reducing the operating cost.  
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1.6 Organization of the Thesis  

 

 

This thesis consisted of five chapters. First chapter presented an introduction 

and the research background, as well as research aim and objectives and scope of the 

study. Chapter 2 covered the literature reviews, including general information on 

POME namely generation, the amount and the characteristics. Review of the 

wastewater treatment system existing for treating POME, MBR system and related 

literature is also presented in this chapter.  Chapter 3 consisted of a framework and 

experimental setup, detailed listing of the material as well as detailed experimental 

procedures used in this study. Chapter 4 presents the comparative study on four types 

of BFR used in batch and continuous reactor system, along with the assessment of the 

ASMBR system's performance using various operating systems and various organic 

loadings of POME. The latter sections of this chapter discussed the COD fractionation 

of the wastewater as well as the calibration of activated sludge model on ASMBR 

without and with BFR for treating POME. Chapter 5 presented the conclusions derived 

from this study and the recommendations for future studies. 
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