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ABSTRACT 

Mercury pollution is a growing concern due to its toxicity, volatility, and 

bioaccumulation in the environment. The main and most problematic source of 

mercury emission comes from the coal-fired power plants and gas processing 

activities. Hence, mercury needs to be removed and adsorption has been proven to be 

an excellent method due to easiness of operation and efficiency. In this study, 

coconut husk such as coconut pith and fiber were used as alternative low-cost 

adsorbents in exchange to the existing conventional elemental mercury (Hg
o
) 

adsorbents. The potential use of coconut based-adsorbents for elemental mercury 

removal from gas streams has not yet been fully explored due to lack of research in 

this regard. This research focused on synthesis and modifications of coconut husk 

such as surface, carbonization and sulfurization treatments in order to enhance 

elemental mercury adsorption performance. The adsorbents were characterized using 

proximate analysis, scanning electron microscope (SEM), Fourier transform infrared 

(FTIR) spectroscopy, nitrogen adsorption/desorption (NAD), carbon-hydrogen-

nitrogen-sulfur (CHNS) analysis and X-ray photoelectron spectroscopy (XPS) 

measurement. The Hg
o
 adsorption experiments were conducted using a conventional 

flow type packed-bed reactor system with nitrogen as carrier gas. The results show 

that the chemical, physical, morphological and spectral properties of the adsorbents 

were greatly influenced by the modification methods used. Adsorbents obtained 

through carbonization and sulfurization treatments produced the best Hg
o
 adsorption 

capacity. The experimental data exhibited that the increase of thermal carbonization 

up to 900 
o
C, resulted in high adsorption capacity of 6067.49 µg/g. The sulfurization 

at lower temperature (i.e. CPS300) resulted in the highest adsorption capacity 

(26077.69 µg/g). Enhancement in Hg
o
 adsorption capacity might due to the higher 

sulfur compounds on the surface which acts as active site towards elemental 

mercury. The adsorption data revealed that the adsorbent with larger equilibrium 

adsorption capacity possessed poor adsorption reaction kinetics and diffusion 

process. This study also revealed that the char adsorbent could sustain Hg
o
 

adsorption capacity over multiple regeneration cycles. However, sulfurized-char is 

non-regenerative adsorbent, which can be utilized for longer adsorption process. 

Finally, the present findings indicate that the coconut husk can be potential low-cost 

elemental mercury adsorbents by applying appropriate modifications such as 

carbonization and sulfurization treatments. In addition, the utilization of coconut 

husks can reduce waste disposal problems and thus improving environmental quality 

and sustainability. 
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ABSTRAK 

Pencemaran raksa semakin mendapat perhatian disebabkan oleh ketoksidan, 

kemeruapan, bioakumulasinya dalam alam sekitar. Sumber utama dan paling 

bermasalah adalah pengeluaran raksa berpunca dari loji kuasa arang batu dan 

aktiviti-aktiviti pemprosesan gas. Oleh itu, raksa perlu disingkirkan dan penjerapan 

telah terbukti sebagai proses yang unggul kerana mudah dioperasi dan cekap. Dalam 

kajian ini, sisa kelapa seperti habuk dan serat sabut kelapa digunakan sebagai 

alternatif penjerap kos rendah kepada penjerap raksa lazim yang sedia ada. 

Keupayaan kegunaan penjerap berasaskan kelapa untuk penyingkiran unsur raksa 

dari aliran gas masih belum diterokai sepenuhnya kerana kekurangan penyelidikan 

dalam hal ini. Kajian ini tertumpu pada sintesis dan pengubahsuaian sabut kelapa 

seperti proses rawatan permukaan, pengkarbonan dan pensulfuran bagi 

meningkatkan prestasi penjerapan unsur raksa. Penjerap dicirikan melalui 

pengukuran analisis hampiran, mikroskop elektron imbasan (SEM), spektrometer 

Fourier transformasi inframerah (FTIR), penjerapan/penyahjerapan nitrogen (NAD), 

analisis karbon-hidrogen-nitrogen-sulfur (CHNS) dan spektroskopi fotoelektron 

sinar-X (XPS). Ujikaji penjerapan Hg
o
 telah dijalankan dengan menggunakan aliran 

lazim reaktor sistem jenis lapisan terpadat dengan nitrogen sebagai gas pembawa. 

Hasil kajian menunjukkan bahawa ciri kimia, fizikal, morfologi dan spektrum 

penjerap banyak dipengaruhi oleh kaedah pengubahsuaian yang digunakan. Penjerap 

diperoleh melalui rawatan pengkarbonan dan pensulfuran menunjukkan keupayaan 

penjerapan Hg
o 

yang terbaik. Data ujikaji menunjukkan kenaikan terma 

pengkarbonan sehingga 900 
o
C menghasilkan keupayaan penjerapan yang tinggi iaitu 

6067.49 µg/g. Pensulfuran pada suhu lebih rendah, (misalnya CPS300) menghasilkan 

keupayaan penjerapan yang paling tinggi (26077.69 µg/g). Peningkatan dalam 

kapasiti penjerapan Hg
o
 mungkin disebabkan oleh sebatian sulfur yang tinggi 

dipermukaan yang bertindak sebagai tapak aktif terhadap raksa. Data penjerapan 

mendedahkan bahawa penjerap dengan keseimbangan keupayaan penjerapan yang 

besar memiliki proses penjerapan kinetik dan resapan yang lemah. Kajian ini juga 

mendedahkan penjerap arang boleh mengekalkan keupayaan jerapan Hg
o
 sepanjang 

kitaran penjanaan semula berganda. Walau bagaimanapun, penjerap sulfur-arang 

adalah penjerap tanpa penjanaan semula, yang boleh digunakan untuk proses 

penjerapan yang panjang. Akhirnya, penemuan ini menunjukkan bahawa sabut 

kelapa berkeupayaan sebagai penjerap unsur raksa kos rendah dengan menggunakan 

pengubahsuaian yang sesuai seperti rawatan pengkarbonan dan pensulfuran. 

Tambahan pula, penggunaan sabut kelapa boleh mengurangkan masalah 

pembuangan sisa, sehubungan itu memperbaiki kualiti alam sekitar dan 

kesinambungannya. 
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CHAPTER 1 

INTRODUCTION 

1.1 Research Background 

Mercury is one of the most toxic heavy metals which could contaminate the 

environment and accumulate in animals and plants (Wang et al., 2009). It is 

transported in the environment by air and water, as well as by biological organisms 

through the food-chains. The exposure to high levels of mercury can permanently 

damage the central nerve system, the brain and kidneys (Merrifield et al., 2004). 

Mercury may exist in three different forms namely metallic mercury (e.g. Hg
o
), 

inorganic mercury compounds (e.g. HgCl2), and organic mercury compounds (e.g. 

MeHg
+
) (Pirrone et al., 2010). 

Mercury enters the environment by natural processes (e.g. volcanic eruptions, 

and geothermic activities) and anthropogenic (e.g. coal-fired power plants, metal 

mining and refining, cement plant, municipal incinerators and wellhead natural gas 

processing) sources. It is well known that the coal fired power plants are the largest 

single source in most countries with high mercury emissions which release more than 

50 tons of mercury annually (US EPA, 2014). At high temperature in the combustion 

zone of the boiler, the elemental mercury was released, and oxidized to Hg
2+

 (Wilcox 

et al., 2012). The Hg
2+

 was tendency to form particulate bound mercury (Hgp) which 

has been reported to be efficiently captured by air pollution control devices (APCD), 

such as electrostatic precipitators (ESP), fabric filters (FF) and flue gas 

desulfurization (FGD) (Wang et al., 2010; Wilcox et al., 2012). However, it is still 

difficult to directly remove Hg
o
 from flue gas with these APCDs due to its high 
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volatility and insolubility in water (Padak et al., 2006). The downstream of APCD 

(stack flue gas) contains major mercury species of Hg
o
 and low concentrations of 

NOx and SO2. The removal of mercury is generally performed by using fixed-bed 

adsorber system under low dust and low temperature process conditions (≈ 50 to 100 

o
C). 

Mercury also presents in natural gas which can cause catastrophic failures of 

aluminium heat exchangers in gas processing plants (Abu El Ela et al., 2008; Abu El 

Ela et al., 2008a). It was reported that the mercury concentration in natural gas is 

between 1 and 200 ng/L (Shafawi et al., 1999) which are sufficiently high to cause 

both safety and health concerns. The natural gas processing typically consists of 

fixed-bed adsorbents to remove elemental mercury carried out, for instance, at 

temperature of 16 - 60
o
C (El Ela et al., 2008; Eckersley, 2010). 

Several techniques have been developed in which adsorption is one of the 

most effective approaches to remove elemental mercury from gas streams. The solid 

materials such as activated carbon (Karatza et al., 2013; Ie et al., 2013), silica-based 

materials (Saman et al., 2015; Johari et al., 2014; Meyer et al., 2007), fly ash (Gao et 

al., 2013; Xu et al., 2013; Xu et al., 2012) and zeolites (Fan et al., 2012; Chen et al., 

2010) have been proved as successful adsorbents for Hg
o
 removal by many 

researchers. However, some limitations towards their applications include their 

complex preparations, high cost and non-renewable sources. Attempts towards the 

new precursors such as agricultural residues which are cheaper have recently been 

explored (Sun et al., 2013). 

Agricultural wastes (AWs) have been gaining increasing attention during 

recent years as new precursors for production of low-cost adsorbents (Chowdury et 

al., 2011; Johari et al., 2013; Johari et al., 2014; Johari et al., 2015; Lim and Aris, 

2013; Song et al., 2013). These agricultural wastes are naturally and abundantly 

available, in which could obtain for free or at a minimal cost. In addition, the AWs 

would be attractive for conversion to high added-value product such as adsorbents 

due to their simple and low-cost preparation process. In addition, their proper 

utilization may improve the environmental quality and sustainability. The common 
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AWs such as oil palm (Elaeis guineensis), rice (Oryza sativa L.) and coconut (Cocos 

nucifera L.) residues have been reported to have a high adsorption capacity of heavy 

metals from water and wastewaters (Bhatnagar et al., 2010; Ahmad et al., 2011; 

Chowdhury et al., 2011; Johari et al., 2013; Johari et al., 2014; Lim and Aris, 2013; 

Song et al., 2013).  

Coconut (Cocos nuciferas L.) is one of the most widely planted tree species 

in tropical region such as Brazil, India, Philippines, Malaysia and Indonesia. It is 

known for its great versatility of its parts such as coconut shell, fibers, and pith for 

commercial and industrial uses. A large amount of coconut processing wastes is also 

generated and becoming an environmental problems. So far, the coconut wastes have 

been used for fertilizer, building materials and automotive components (Sulaiman et 

al., 2010; da Costa Castro et al., 2012; Ucol-Ganiron JR, 2013) or left to decompose 

on the fields. Thus, the development of high value added product from coconut 

wastes is essential to solve their disposal problems. Besides, it helps in improving the 

environment quality and sustainability. In recent years, the use of coconut wastes has 

been extensively studied in adsorbent preparation for specific applications (Johari et 

al., 2013; Johari et al., 2014; Anirudhan et al., 2008). For instances, the coconut 

wastes were reported on the production of carbonaceous adsorbents for the removal 

of mercury (Johari et al., 2015), dye (Foo and Hameed, 2012; Kavitha and 

Namasivayam, 2007; Phan et al., 2006), arsenic (Manju et al., 1998), copper 

(Namasivayam and Kadirvelu, 1997), and chromium (Shen et al., 2012) from water 

and wastewater. However, there is no research on coconut pith except for coconut 

shell as elemental mercury adsorbents (Matsumura 1974; Hu et al., 2009). 

1.2 Problem Background 

Recently, the potential risk of toxic elements emitted from anthropogenic 

sources has become a public concern. Like other elements, mercury is persistent, 

cannot be destroyed by combustion or bacterial degradation and eliminated from 

environment. A great attention has been focused on mercury due to the increasing 

level of bioaccumulation in the environment and food-chain which can cause 



 4

potential risk for human health (Jack, 2010). Among the existing mercury removal 

systems, adsorption process is attractive for coal combustors and 

hazardous/municipal waste incinerators for treatment of mercury from both gas and 

liquid streams. 

Several adsorbents have been commercialized for heavy metal removal 

processes (Sag and Kutsal, 2001; Dias et al., 2007; Shareef, 2009; Park et al., 2010). 

The carbonaceous adsorbents such as activated carbon has proven in their ability as 

adsorbents in aqueous and gas phase treatments due to their excellent thermal 

stability and non-specific adsorption characteristics (Dias et al., 2007). The uses of 

carbonaceous adsorbents are limited by their non-renewable source of coal and high 

cost (Granite et al., 2007). In addition, the preparation of carbonaceous adsorbents is 

complex, the cost is high and the specific surface area is small, limiting on their 

application. Moreover, they are not easily functionalized with mercury functional 

groups because of their surfaces are non-polar in nature.  

Manchester et al. (2008) reported that the sulfur impregnated carbons have 

high adsorption capacities towards elemental mercury. However, it is too costly and 

the adsorption kinetics was observed too slow for some important applications. The 

low-cost methods namely oxidation process have been used for modifying carbon 

surface using reagents that include molecular oxygen, ozone, hydrogen peroxide, 

nitric acid, and permanganate. Despite of activated carbon prolific use in adsorption 

process, the biggest barrier of its application in industries is its high cost and 

difficulties associated with regeneration (Foo and Hameed, 2009). In order to reduce 

the adsorbent cost and thus the cost of treatment, the use of low-cost adsorbent 

precursors such as agricultural wastes namely coconut pith, orange peel, sawdust, 

rice husk, and baggase pith (Sag and Kutsal, 2001; Dias et al., 2007; Shareef, 2009; 

Park et al., 2010) have gained considerable researches recently. The agriculture 

wastes have been widely studied for removal of heavy metals from aqueous 

solutions. In addition, the processing and transformation of these wastes into 

charcoal or activated carbon would solve their disposal problems.  
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Since the last two decades, the development of low-cost adsorbents using 

lignocellulosic agricultural wastes has gained consideration among research 

communities. The agricultural wastes would be attractive as precursors for 

development of adsorbents due to their being abundant and cheap, simple and low-

cost preparation process, possessing no waste disposal problems, and contributing to 

the sustainability of the surrounding environment (Johari et al. 2013; Rahman and 

Khan, 2007). It was previously proven by several literatures on the potential use of 

coconut wastes (e.g. desiccated, pith, fiber and shell) as potential low-cost 

adsorbents (Johari et al. 2013; Sharma et al. 2013; Johari et al. 2014b; Tan et al. 

2008; Namasivayam and Sangeetha, 2004; Parab and Sudersanan, 2010; Igwe et al. 

2008) from aqueous phase. To my knowledge, the use of coconut waste especially 

coconut husk as adsorbents for the elemental mercury (Hg
o
) removal is still limited, 

even though it is in abundance and low-cost. Furthermore, the facile treatments of 

the coconut husk (pith and fiber) for elemental mercury adsorbents has not been 

thoroughly reported. Thus, with proper treatements via mercerization, bleaching, 

carbonization and sulfurization can be very promising adsorbents for Hg
o
 removal 

process from gas streams. This study ultimately demonstrated the potential 

application of coconut husk (fiber and coconut pith) as precursors for elemental 

mercury adsorbent synthesis since they are expected to be good and relatively 

inexpensive adsorbent precursors and thus cheaper than the existing adsorbents. 

1.3 Objectives  

Based on the research background and the problem statement identified, the 

objectives of this study are as follows: 

i. To synthesize and characterize the coconut husk as an elemental 

mercury adsorbents  

ii. To investigate the elemental mercury adsorption process of coconut-

based adsorbents 
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iii. To study the elemental mercury adsorption performances of selected 

adsorbent. 

1.4 Scopes of the Studies 

In this study, the coconut husk such as coconut pith (CP) and coconut fiber 

(CF) was selected as precursor for elemental mercury (Hg
o
) adsorbent. The synthesis 

was carried out by mercerization, bleaching, carbonization and sulfurization 

treatments. The carbonization treatment was done in different environment 

conditions, meanwhile the sulfurization was conducted at various temperatures and 

sulfur ratios. The pristine and treated coconut husk adsorbents obtained were 

characterized by proximate analysis (moisture, volatile matter, and ash content), 

scanning electron microscopy (SEM), nitrogen adsorption/desorption (NAD), X-ray 

photoelectron spectroscopy (XPS) analysis, Fourier transform infrared (FTIR), and 

CHNS elemental analysis.  

The adsorption capability of the coconut husk adsorbents was measured using 

fabricated Hg
o
 adsorption rig at fixed experimental conditions ([Hg

o
] = 200±20 

µg/m
3
, bed temperature = 50

o
C, nitrogen flow rate = 50 mL/min, mass of adsorbent = 

50mg). The Hg
o
 adsorption experimental data were analyzed using the existing 

isotherm (i.e. Langmuir, Freundlich, and Temkin) and kinetic (i.e. pseudo-zero order, 

pseudo-first order, pseudo-second order, Elovich and Fick’s intraparticle diffusion) 

models. These adsorption model analyses were carried out towards understanding the 

mechanism of the Hg
o
 adsorption process. 

The adsorbent with highest adsorption capacity was selected for further Hg
o
 

adsorption performances. Several experimental conditions such as initial mercury 

concentrations (i.e 100 - 500 µg/m
3
) and adsorbent bed temperatures (i.e. 50 – 

200
o
C) were performed. In addition, the adsorption and desorption were also studied 

via thermal desorption method in order to evaluate the regenerability of the 

adsorbents and thus the mechanism of desorption process. 
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1.5 Thesis Outline 

Chapter 1 presents the general introduction of the elemental mercury 

adsorption problems and the utilization of agricultural wastes as high value added 

products. The problem backgrounds of the study are reviewed in Section 1.2, which 

contain on the effect of elemental mercury emission to the environment and the 

limitations of the existing adsorbents. The objective and scopes of this study are 

presented in Sections 1.3 and 1.4. Chapter 2 deals with critical review of mercury in 

the environment, development of numerous agricultural wastes as mercury 

adsorbents and theory of adsorption process. In Sections 2.1 and 2.2, the mercury 

overviews include the mercury toxicity and the adsorbent development for elemental 

mercury removal process. The review in Section 2.3 is intended to provide the 

evident those agricultural wastes (i.e. coconut husk), which is inexpensive and 

abundantly available, could be the potential adsorbents for the heavy metals removal. 

A mathematical model is presented in Section 2.5 including adsorption isotherm, 

kinetic and packed-bed column performances in term of engineering aspects of 

adsorption process. 

Chapter 3 discusses about the research methodology, which comprises of 

research materials and experimental procedures for synthesis, characterization, and 

Hg
o
 adsorption and desorption measurements. The selection of precursors and 

methods of synthesis are justified. The experiment conducted using lab-scale 

mercury adsorption rig in order to collect the experimental data. Chapter 4 presents 

the results and discussions of adsorbent synthesis and characterizations, evaluation of 

Hg
o
 adsorption process onto the adsorbents and Hg

o
 adsorption performances of the 

selected adsorbents. In Section 4.2, the findings based on the adsorbent preparation 

using coconut husk as precursor and adsorbent characterizations are discussed. In 

addition, the experimental data obtained from Hg
o
 adsorption is used to analyze the 

validity of adsorption models and the assumptions made describing the mechanism 

of the adsorbent towards adsorption process. Chapter 5 is a summary of the research 

findings on the elemental mercury removal by coconut-based adsorbents and 

recommendations for extending in the future work. This is followed by list of 

references cited in the thesis.  
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