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ABSTRACT

In this thesis the design and implementation of a control strategy for interfacing a 

hybrid wind and ultracapacitor energy system is presented. The proposed system consists of 

a Permanent Magnet Synchronous Generator (PMSG)-based wind turbine and an 

ultracapacitor storage element. The PMSG-based wind turbine is connected to a DC (direct 

current) bus through an uncontrolled rectifier and a DC-DC boost converter; the 

ultracapacitor is interfaced to the DC-bus using a bidirectional DC-DC converter. In a wind 

energy system, because of the unpredictable nature of wind speed, a Maximum Power Point 

Tracking (MPPT) algorithm is essential for determining the optimal operating point of the 

wind turbine. This work proposes a new and simple MPPT algorithm based on hybridization 

of the Optimum Relation Based (ORB) and Particle Swarm Optimization (PSO) methods. 

The proposed MPPT is advantageous in being sensorless, converging quickly and requiring 

no prior knowledge of system parameters. In addition, a Linear Quadratic Regulator (LQR) 

strategy has been applied in designing the DC-DC converter controllers because of its 

systematic procedure and stability advantages and simplicity. Two controllers based on the 

LQR method have been designed and implemented. One controller forces input current of 

the boost converter to track the optimal reference current generated by the proposed MPPT 

algorithm. The other regulates the DC-bus voltage at a desired level. The regulation is 

accomplished by controlling the bidirectional converter interfacing the ultracapacitor and the 

DC-bus. The proposed energy system and its controllers have been simulated in 

MATLAB/Simulink and implemented using a TMS320F2812 eZdsp board. Simulation 

results indicate that the proposed PSO-ORB MPPT algorithm average efficiency is 99.4%, 

with harvested electrical energy 1.9% higher than the conventional OTC and ORB MPPT 

algorithms. The simulation results also demonstrate the effectiveness of the proposed LQR 

controllers in obtaining good tracking and their ability to quickly restore the system to its 

nominal operating point when it is exposed to a disturbance. The simulation results are 

highly comparable with the experimental results that have successfully verified the 

functionality of the proposed control techniques.
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ABSTRAK

Dalam tesis ini reka bentuk dan pelaksanaan strategi kawalan untuk 

pengantaramukaan angin dan tenaga ultrakapasitor sistem hibrid dibentangkan. Sistem yang 

dicadangkan terdiri daripada Penjana Segerak Magnet Kekal (PMSG) - berdasarkan turbin 

angin dan unsur penyimpanan ultrakapasitor. Turbin angin berasaskan PMSG disambungkan 

kepada bas DC (arus terus) melalui penerus tak terkawal dan DC-DC penukar rangsangan; 

ultrakapasitor itu saling berkait bagi DC-bas menggunakan dwiarah DC-DC penukar. Dalam 

sistem tenaga angin, kerana sifat kelajuan angina yang tidak menentu, Pengesanan Titik 

Kuasa Maksimum (MPPT) algoritma adalah penting untuk menentukan titik operasi 

optimum turbin angin. Keija ini mencadangkan algoritma MPPT baru dan mudah 

berdasarkan penghibridan Berdasarkan Perhubungan yang Optimum (ORB) dan kaedah 

Optimasi Kumpulan Zarah (PSO). MPPT yang dicadangkan adalah berfaedah dalam menjadi 

sensorles, menumpu dengan cepat dan tidak memerlukan pengetahuan terlebih dahulu untuk 

parameter sistem. Di samping itu, (LQR) strategi Linear Kuadratik Pengawal Selia telah 

digunakan dalam mereka bentuk penukar pengawal DC-DC kerana kelebihan prosedur yang 

sistematik dan kestabilannya dan kesederhanaan. Dua pengawal berdasarkan kaedah LQR 

dirancang dan dilaksanakan. Satu pengawal memaksa arus input daripada rangsangan 

penukar untuk mengesan rujukan semasa optimum dihasilkan oleh algoritma MPPT yang 

dicadangkan. Yang lain mengawal voltan DC-bas di tahap yang dikehendaki. Peraturan itu 

dicapai dengan mengawal penukar dwiarah antara muka ultrakapasitor dan DC-bas. Sistem 

tenaga yang dicadangkan dan pengawalnya telah disimulasi di dalam MATLAB/Simulink 

dan dilaksanakan menggunakan papan TMS320F2812 eZdsp. Keputusan simulasi 

menunjukkan bahawa PSO-ORB MPPT algoritma kecekapan purata dicadangkan adalah 

99.4%, dengan tenaga elektrik yang dituai 1.9% lebih tinggi daripada konvensional OTC dan 

ORB MPPT algoritma. Keputusan simulasi juga menunjukkan keberkesanan pengawal LQR 

dicadangkan dalam mendapatkan pengesanan yang baik dan keupayaan mereka untuk segera 

memulihkan sistem untuk titik operasi nominal apabila ia terdedah kepada gangguan. 

Keputusan simulasi amat setanding dengan keputusan uji kaji yang telah beijaya 

mengesahkan fungsi teknik kawalan yang dicadangkan.
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CHAPTER 1

INTRODUCTION

1.1 Background

Wind-energy systems have gained vast popularity as a renewable energy 

source in the past decade. This is because of the possibility of the depletion of 

conventional energy sources that have negative effects on the environment and also 

have high costs. Wind-energy is preferred because it is clean, pollution-free, 

inexhaustible, and secure. Therefore, a wind-energy generation system could become 

one of the significant candidates for a future alternative energy source.

However, based on the Betz limit [1], there is no wind turbine that could 

convert more than 59.3% of the kinetic energy of the wind into mechanical energy 

for turning a rotor. Unfortunately, modern wind turbines, in practice, generally fall 

only into the 35% to 45% efficiency range. Equations that express the fraction of 

power that the wind turbine obtains from wind include a power coefficient ( C p ). For

a wind turbine with a fixed blade pitch, this power coefficient is usually expressed as 

a function of the tip speed ratio ( X ). X is the ratio of the blade's tip speed (com) to the 

actual wind speed ( Vn ). The Cp (A) curve has only one maximum point occurring at

a certain optimum X . In a varying wind speed environment, a maximum power point 

tracking (MPPT) algorithm must be included in the system. The MPPT algorithm is 

used for adjusting the rotational speed of the turbine in order to reach this optimal X 

for all wind conditions.
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Including the MPPT algorithm in the wind energy conversion system 

(WECS) allows for operation of the system at its maximum efficiency; however, the 

output voltage of the WECS becomes instantaneously variable in proportion to the 

turbine rotational speed. Because the WECS is directly connected the DC-bus, the 

DC-bus voltage itself will be variable. In order to maintain the DC-bus voltage at a 

constant value, a hybrid power system combining WECS and an energy storage 

system could be used. The storage system consists of a storage device and a power 

conditioning circuit. The storage device is used to filter the power fluctuation during 

wind energy generation and the power conditioning circuit is controlled to regulate 

the DC-bus voltage.

The hybrid power system proposed in this thesis is shown in Figure 1.1. It 

consists of a WECS and an ultracapacitor-based energy storage system. Both the 

wind generator and the ultracapacitor are interfaced to a common DC-bus by using 

conditioning circuits to supply a resistive load.

DC-Bus

Load

Ultracapacitor Bidirectional DC-DC Converter

Figure 1.1 Schematic for the proposed hybrid energy conversion system

For small- to medium-scale wind turbines, the permanent magnet 

synchronous generator (PMSG)-based direct-drive fixed-pitch wind turbine is a 

preferred structure [2], This structure is simple, with high reliability and efficiency, 

gearless construction, light weight, and with self-excitation features. The PMSG is 

controlled by a boost rectifier converter to maximize the output power from the wind

Wind Turbine

Uncontrolled Rectifier Boost DC-DC Converter
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turbine. The combination of the PMSG and boost converter offers lower cost and is 

simple to implement and easy to control. For a PMSG, the generated torque is 

proportional to the machine’s output current. Consequently, if  the PMSG output 

current is controlled to track the generated reference current from the MPPT 

algorithm, maximization of the energy extracted from the wind turbine will be 

ensured.

According to the literature [3-5], ultracapacitors are able to provide fast 

dynamic response to load power changes. They are also capable of very fast charging 

and discharging. Therefore, they are suitable for filtering rapid fluctuations in wind 

power. Interfacing the ultracapacitor to the DC-bus requires a power electronic 

converter that allows reversible current conduction; accordingly, a bidirectional DC- 

DC converter is used in the circuit described in this thesis. By controlling the 

bidirectional converter switches, the DC-bus voltage is regulated and the fluctuating 

wind power is either delivered to or harvested from the ultracapacitor.

1.2 Problem Statement

The low efficiency of wind turbines, as well as the intermittent and 

unpredictable nature of wind, are major challenging issues of the wind-energy 

generation systems. For a WECS to operate efficiently, an MPPT algorithm is 

required. The MPPT algorithm should have the advantages of being sensorless, 

dependent, simple, and fast in tracking. Although the existing optimum-relation- 

based (ORB) MPPT algorithm is simple and fast in response to wind speed changes, 

it relies on the pre-existing knowledge of system parameters [6], The perturbation 

and observation (P&O) technique, conversely, is a sensorless algorithm and does not 

require prior system knowledge. However, it is slow in response and has the 

probability of losing its tracking ability under rapid wind speed changes [7], The 

response speed as well as the tracking efficiency can be improved significantly using 

the particle swarm optimization (PSO) MPPT algorithm considering its automated 

step size adaptability. Considering the benefits and drawbacks of each MPPT 

algorithm, a better or improved version of MPPT for wind energy systems should be
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formulated. The new idea is to overcome the drawbacks of each MPPT algorithm, by 

combining the available MPPT algorithms. By hybridizing MPPT algorithms, the 

outcome could be attractive and promising.

As previously mentioned, because of continuous changes in wind speed, the 

operating points of WECS are expected to vary with time. Consequently, the power 

electronics converters involved in the WECS should have simple, robust, and stable 

controllers. Conventionally, proportional-integral (PI) controllers are designed to 

control these converters around a specific operating point. However, because of the 

continuous movement of the operating points and disturbances, adequate transient 

performance cannot be guaranteed using PI controllers [8], Consequently, it is 

desirable, in this work and in general, to investigate the application of the linear 

quadratic regulator (LQR) control technique to designing the control system of the 

power electronic converters integrated into the hybrid wind/ultracapacitor energy 

conversion system.

1.3 Research Objectives

The objectives of this research are as follows:

(i.) To develop an effective solution to avoid system parameter

dependency when obtaining the optimal curve in an ORB MPPT 

algorithm by incorporating a PSO algorithm

(ii.) To verify the effectiveness of the PSO-ORB MPPT algorithm through

simulation by comparing it with a conventional ORB MPPT algorithm

(iii.) To formulate and implement LQR controllers for the power electronic

converters interfacing the WECS and ultracapacitor storage device to 

a DC-bus
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(iv.) To test the functionality of the developed hybrid wind/ultracapacitor

energy conversion system incorporating the proposed MPPT 

algorithm and LQR controllers.

1.4 Research Scope

This research study has the following limitations and assumptions:

(i.) The wind turbine is a fixed- pitch variable speed type.

Depending on the speed control criterion, WECSs can be classified 

into two types: fixed speed and variable speed. Because of the 

regulation of rotor speed within a larger range, for better aerodynamic 

efficiency, the variable speed wind turbines are more widely used [8], 

Controlling the pitch angle of the wind turbine blade is one possibility 

for extracting the maximum power from the wind. However, in small- 

scale wind turbines (less than 10 kW), this strategy becomes 

impractical because of their mechanical structure. For small power 

applications, the power converter is controlled for wind power 

optimization [9],

(ii.) The wind turbine is working in the MPPT region.

Assuming speed and power capture constraints are respected, the 

controller aims to limit the wind power captured when the wind speed 

is greater than the nominal speed and maximize the wind power 

harvested in the partial load region [8], However, this work focuses 

only on the control of wind turbines in the partial load region (region 

2), which generally enables MPPT by adjusting the electrical 

generator’s output current. The working regions of wind turbines are 

further explained in section 3.2.

(iii.) The proposed hybrid system is stand-alone and it supplies a resistive

load.
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WECSs could be operated in stand-alone or grid-connected mode. For 

stand-alone operation the small-scale WECSs are used. The stand

alone WECS configuration can operate with either resistive or 

inductive loads. However, there is no effect of the L component on 

the generated DC power of the system [10], Because the MPPT 

algorithm implanted in this study only depends on the DC power and 

seeking for the simplicity, this thesis focuses only stand-alone WECS 

supplying a resistive load. This configuration is similar to the one 

used in the studies [6] and [11], The storage system is assumed to be 

sufficient for storing the excess power from the wind or delivering the 

shortage power into the load for all wind speeds.

1.5 Research Methodology

In order to achieve the objectives of the research, the following work 

methodologies have been followed:

(i.) A literature review of hybrid wind/ultracapacitor energy conversion 

system was carried out.

Advantages, working concepts, and electrical models of the system 

components were reviewed. The small-scale variable speed PMSG-based 

horizontal-axis wind turbine working in the MPPT region was selected. 

Then, the open-loop models of the boost and bidirectional converters 

were derived. The ultracapacitor model was also obtained.

(ii.) A critical and strategic literature review of MPPT methods was 

performed.

To propose a new MPPT algorithm, the common algorithms have been 

studied and summarized. Their strengths and drawbacks, based on several 

evaluation factors, were highlighted. Besides giving the overview of the 

existing MPPT algorithms, the objective of the review was to look for a 

gap in their coverage. Two of the best available algorithms were selected
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to be combined and implemented as a new algorithm. The combination 

exploits the advantages of each method in order to overcome the 

drawbacks of the other.

(iii.) A new MPPT algorithm has been proposed.

A sensorless, simple, and efficient MPPT algorithm based on 

hybridization of the PSO and ORB MPPT algorithms was developed. Its 

performance was tested under different wind speed changes. The 

proposed MPPT algorithm has been compared with some conventional 

MPPT methods.

(iv.) The power converter controllers were designed.

In this step, the controllers for the DC-DC converters interfacing the 

hybrid wind/ultracapacitor energy system to the DC-bus were designed. 

The LQR method is positively characterized in literature as being robust, 

simple, and stable. Therefore, the LQR method was selected for designing 

the converter controllers for this research. The LQR controllers are 

formulated to minimize the cost function through changes in the duty- 

cycle in the converter models. A built-in function in MATLAB was used 

to solve the Riccati equation and calculate the state feedback gains.

(v.) Analysis and verification of the proposed control method effectiveness 

through computer simulations was performed.

To verify the performance of the designed controllers, a complete 

simulation model of the hybrid wind/ultracapacitor energy conversion 

system and its controllers was developed. The computer simulation 

package used was MATLAB/Simulink. In order to significantly reduce 

the simulation time, the average models of the rectifier-PMSG and DC- 

DC converters were used for simulation.

(vi.) The converters with their controllers for interfacing ultracapacitor energy 

storage to WECS were developed and built.

To validate the feasibility of the proposed control techniques, a hardware 

prototype was constructed. The tasks included selecting the appropriate
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digital processor, designing the power circuit, gate drivers, feedback and 

signal conditioning circuits, and implementing the control algorithms. 

The selected digital processor was the TMS320F2812 eZdsp board.

(vii.) Verification, through hardware implementation, of the proposed control 

method’s effectiveness and the converter performance was performed. 

Laboratory experiments were carried out on the hybrid proposed system 

under changes in wind speed, DC-bus reference voltage, and load. The 

experimental results confirmed the effectiveness of the power electronic 

converter controllers and MPPT algorithm.

1.6 Thesis Organisation

This thesis is organized into seven chapters. An outline of their contents is as 

follows:

(i.) In chapter 2, an extensive review of MPPT techniques used to track the 

MPP (maximum power point) of WECS is provided. The merits and 

drawbacks of each method are highlighted. In addition, this chapter 

presents several control techniques that are typically used for DC-DC 

converters.

(ii.) In chapter 3, the mathematical modelling of the different components of 

the system under study is described. Firstly, the wind turbine 

characteristics are presented. Then, the simplified model of the rectifier- 

PMSG is discussed. Thereafter, circuit topologies of the boost and 

bidirectional converters are depicted, state-space averaging technique 

theory is presented, and linearized and small signal models are developed. 

Finally, the electrical circuit for the ultracapacitor is provided.

(iii.) In chapter 4, the proposed PSO-ORB MPPT algorithm for tracking the 

MPPs of WECS is described. System simulation and performance
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evaluation for different wind speed conditions are elaborated upon. The 

simulation results are compared to conventional ORB MPPT methods. 

The effects of hybridization are also analysed.

(iv.) In chapter 5, the application of the LQR method in optimizing the closed- 

loop performance for boost and bidirectional converters is discussed. 

Performance of the proposed controllers is compared with PI controllers. 

The LQR controllers design for a hybrid wind/ultracapacitor energy 

conversion system is explained, and the whole system is simulated in the 

MATLAB/Simulink simulation package.

(v.) Hardware design and implementation are presented in chapter 6. The 

laboratory experimental setup for the hybrid wind/ultracapacitor energy 

system is described. An explanation is given for the power converter 

circuits, gate drive circuit, feedback circuits, the TMS320F2812 eZdsp 

board and PMSG- based wind turbine emulator.

(vi.) In chapter 7, the simulation and experimental results of the proposed 

MPPT algorithm and LQR controllers are compared and discussed.

(vii.) In chapter 8, conclusions from the work undertaken are given and 

suggestions that may be considered as possible directions for future work 

are highlighted.
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