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ABSTRACT 

 
 
 
 

Heat Integration (HI) has been a well-established energy conservation 

strategy in the industry. Total Site Heat Integration (TSHI) has received growing 

interest since its inception in the 90’s due to the ample energy saving potential 

available from TSHI implementation. This study assesses the TSHI methodology for 

industrial implementation and extended the TSHI methodology to (a) incorporate 

pressure drop, (b) maximise energy saving and (c) reduce capital cost of heat transfer 

area.  A detailed assessment of the current TSHI methodology for industrial 

implementation has identified five key issues influencing the TSHI solution: (1) 

design, (2) operations, (3) reliability/availability/maintenance (RAM), (4) 

regulatory/policy and (5) economics. By considering these issues in the early stages, 

practical TSHI solutions can be obtained. This assessment has provided a direction 

for future extension of TSHI methodology from the industrial perspective. This work 

has also extended the TSHI methodology to consider pressure drop, one of the key 

design issues for Total Site (TS) due to large distances between plants. Pressure drop 

reduces the amount of steam that can be raised from the Site Source and changes the 

profile of hot utilities at the various levels. The utility circulation pumps have to be 

designed for a higher discharge head to overcome the frictional and elevation head 

loss in the distribution network. Consideration of pressure drop leads to an increase 

of about 4 % to both the heating and cooling utility requirements and significantly 

change the hot utilities profile between -75 % and +54 %. The improved 

methodology provides a more realistic basis for the design of central utility systems 

and the utility circulation pumps.  The second and third extended TSHI 

methodologies complement the individual process analysis by bringing it within the 

TS context. The second methodology adapts the Plus-Minus Principle and applied it 

to TS. It identifies the options to maximise energy savings on site using the Total 

Site Profiles (TSP), the Utility Grand Composite Curve and a new set of heuristics. 

With the proposed process modifications, a case study performed demonstrated that a 

potential saving of 9 % in overall heating and 7 % in cooling utilities can be 

achieved. The third methodology adapts the Keep-Hot-Stream-Hot and Keep-Cold-

Stream-Cold Principles to TS. Together with the TSP, the expanded TS Problem-

Table-Algorithm and a comprehensive set of heuristics, the TSP is favourably 

changed to provide a larger temperature driving force to reduce the capital cost of the 

heat transfer units. The proposed modifications resulted in a modest reduction of 

heating and cooling utilities of between 1 % and 4 %, respectively and a more 

noticeable capital cost saving of about 9 %.  These two methodologies enable the 

plant designers/engineers to pinpoint process modification efforts to improve site HI. 

The proposed changes to the process/streams should be assessed from feasibility, 

practicality and economic perspectives. 
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ABSTRAK 

 

 

 

 

Integrasi Haba (HI) adalah merupakan salah satu strategi pemuliharaan 

tenaga yang mantap di dalam industri. Integrasi Haba Keseluruhan Tapak (TSHI) 

telah menerima minat yang semakin meningkat sejak kaedah ini dicipta pada tahun 

90’an atas sebab potensi penjimatan tenaga yang tinggi yang boleh direalisasikan 

daripada perlaksanaan TSHI. Kajian ini menaksir metodologi TSHI di dalam 

pelaksanaan industri dan mengembangkan metodologi berkenaan untuk (a) 

mengambil kira kejatuhan tekanan, (b) memaksimumkan penjimatan tenaga dan (c) 

mengurangkan kos modal kawasan pemindahan haba (HTA). Penilaian terperinci 

terhadap metodologi TSHI bagi pelaksanaan industri telah mengenal pasti lima isu-

isu utama yang mempengaruhi penyelesaian TSHI: (1) reka bentuk, (2) operasi, (3) 

kebolehpercayaan/ketersediaan/penyenggaraan, (4) peraturan/dasar dan (5) ekonomi. 

Dengan mempertimbangkan isu-isu ini di peringkat awal, penyelesaian TSHI lebih 

dekat kepada kehidupan sebenar boleh diperolehi untuk pelaksanaan. Penilaian ini 

telah menyediakan hala tuju masa depan untuk pengembangan metodologi TSHI dari 

perspektif industri. Metodologi TSHI diperluaskan untuk mengambil kira kejatuhan 

tekanan, salah satu isu yang penting untuk Keseluruhan Tapak (TS) kerana jarak 

yang jauh antara loji-loji. Kejatuhan tekanan mengurangkan jumlah stim yang boleh 

dijanakan daripada Sumber Tapak dan menukar profil utiliti panas di pelbagai 

peringkat. Pam peredaran utiliti perlu direka untuk turus pelepasan yang lebih tinggi 

untuk mengatasi kehilangan geseran dan ketinggian dalam rangkaian pengedaran. 

Kejatuhan tekanan meningkatkan kira-kira 4 % kedua-dua keperluan utiliti panas dan 

sejuk dan mengubahkan profil utiliti panas dengan ketara di antara -75 % kepada +54 

%. Metodologi yang lebih baik ini memberi asas yang lebih realistik untuk mereka 

bentuk sistem utiliti pusat dan pam peredaran utiliti. Pengembangan Metodologi 

TSHI yang kedua dan ketiga melengkapkan analisis proses individu dengan 

mengaplikasikan prinsip berkenaan di dalam konteks TS. Metodologi yang kedua 

menyesuaikan Prinsip Campur-Tolak untuk TS. Metodologi ini mengenal pasti 

pilihan untuk memaksimumkan penjimatan tenaga di tapak dengan menggunakan 

TSP, lengkungan Utiliti Besar Komposit dan satu set baru heuristik. Dengan 

pengubahsuaian yang dicadangkan, potensi penjimatan 9% dan 7% dalam utiliti 

panas dan sejuk boleh dicapai. Metodologi yang ketiga menyesuaikan Prinsip 

Kekalkan-Panas-Aliran-Panas dan Kekalkan-Sejuk-Aliran-Sejuk untuk TS. Bersama 

dengan TSP, TS-Masalah-Jadual-Algoritma berkembang dan satu set komprehensif 

heuristik, TSP boleh diubahsuaikan untuk memberikan suhu penggerak yang lebih 

besar untuk mengurangkan HTA dalam TSHI. Ubah suaian yang dicadangkan 

menghasilkan pengurangan sederhana utiliti panas dan sejuk masing-masing pada 1 

% dan 4 %, dan lebih ketara penjimatan kos modal 9 %. Kedua-dua metodologi 

tersebut membolehkan pereka kilang/jurutera untuk menentukan usaha proses 

pengubahsuaian untuk memperbaiki HI. Perubahan yang dicadangkan kepada proses 

/ aliran perlu dinilai dari perspektif kemungkinan, praktikal dan ekonomi. 
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CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

 

 

1.1 Research Background 

 

 

Global energy demand is ever increasing due to population growth and 

economic development of nations. Figure 1.1 shows the total energy demand, in 

million tonnes of oil equivalent (Mtoe) and the related CO2 emissions in Giga-tonnes 

(Gt) from year 1990 to year 201l as well as projections to 2035 (IEA, 2013).  

 

 

 

 

Figure 1.1 Global energy consumption and related CO2 emission (IEA, 2013) 
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The global energy demand by fuel is given in Table 1.1. Fossil fuel, i.e. coal, 

oil and gas accounts for 82% of the energy demand in 2011. Its share is expected to 

only marginally decline to 80% in 2035 with no change to the current energy and 

climate change policies. Even if new policies were to be introduced to reduce CO2 

emission and improve energy efficiency, the share of fossil fuel is predicted to 

slightly reduce by 4% to 76% (IEA, 2013). In essence, fossil fuel will remain as the 

main resource to meet the global energy demand in the years to come.  

 

 

Table 1.1: World energy demand by fuel (IEA, 2013) 

 

 Energy demand (Mtoe) 

 2000 2011 2020 2035 

Coal 2,357 3,773 4,483 5,435 

Oil 3,664 4,108 4,546 5,094 

Gas 2,073 2,787 3,335 4,369 

Nuclear 676 674 866 1,020 

Hydro 225 300 379 471 

Bioenergy 1,016 1,300 1,472 1,729 

Other renewables 60 127 278 528 

Total 10,071 13,070 15,359 18,846 

Fossil fuel share 80% 82% 80% 80% 

CO2 emission (Gt) 23.7 31.2 36.1 43.1 

 

 

Industrial sector is the main energy end-user. Of the 403 EJ (Exa Joule = 1018 

J) total energy used in 2011, the share of the industrial sector is 51% compared to   

20 % by transportation sector, 18% by residential sector and 12% by commercial 

sector, as depicted in Figure 1.2 (US EIA, 2014).  
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Figure 1.2 Global energy consumption by sector in 2011 (US EIA, 2014) 

 

 

The main fuel source for the industrial sector is fossil fuel, i.e. oil, coal and 

gas and these are non-renewable resources. The world fossil fuel resources by fuel 

type are given in Figure 1.3 (IEA, 2013). 

 

 

 

     Figure 1.3 Fossil energy resources by type (IEA, 2013) 
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sharply from above USD 80 to less than USD 50 per barrel between November 2014 

to January 2015 (Nasdaq, 2015). This is even below the “Low Oil Price” scenario 

forecasted by the US Energy Information Agency (US EIA). Regardless of the crude 

oil price, which can be fairly volatile, the general trend is that crude oil is likely to 

be more expensive than cheaper in the long run.  

 
 

 

Figure 1.4 North Sea Brent crude oil spot prices in three cases, 1990-2040       

(US EIA, 2014) 

 

 

Rising fuel costs, depleting fossil fuel reserves and increased concerned on 

global warming have made energy efficiency a necessity.  Extensive efforts have 

been made to improve energy efficiency in the industrial sector. These include the 

use of recycle or renewable materials as the fuel source, good equipment 

maintenance programme, improved process control, reduced heat loss, efficient heat 

integration, adopting more energy efficient processes, etc. (Tanaka, 2011). Energy 

saving by efficient heat integration remains an essential component of the strategies 

to improve energy efficiency. Reduced energy usage translates directly to lower fuel 

requirement and reduced carbon dioxide emissions.  

 

 

Processes on industrial sites often require large amount of heating, cooling 

and power generation for their operations. To reduce heating and cooling 
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requirements, heat recovery systems are implemented where applicable.  

Traditionally, heat integration has typically been confined to heat recovery within a 

single process. Heat Integration (HI) across different processes is often considered 

impractical for various reasons. These include the need to reduce interdependency 

between processes, requirements of flexibility and operability and the large distances 

between processes.  Note however that, there are ample opportunities for energy 

savings as well as options to overcome constraints, when heat integration potentials 

among processes on a Total Site (TS) scale are explored. 

 

 

Total Site Heat Integration (TSHI) has received growing interest since its 

inception in the 90’s (Klemeš et al, 1997). TSHI is a methodology for integrating 

heat recovery among multiple processes on a manufacturing site. It optimises the 

design of the process and utility systems of the entire site at the same time. The 

methodology has been used to solve models with certain simplifications. In real life 

implementation, these simplifications may steer the TSHI project towards sub-

optimal or non-realistic solutions that can be difficult to fix at the later stage of the 

project. There has been limited published literature and case studies on the practical 

implementation of TSHI. An investigation of the main issues that support practical 

implementation of TSHI is essential to provide a direction for future extension of the 

TSHI methodology from the industrial perspective.   

 

 

Pressure drop is an important consideration in TSHI due to the typically large 

distances between the plants within a TS. Most studies on pressure drop issue are 

related to retrofit or synthesis of heat exchanger network for a single process. The 

studies were typically performed using Mathematical Programming approach 

whereby little insights to the plant designers. The pressure drop factor is addressed 

in terms of pumping costs, distances, allowable heat exchanger pressure drop or 

forbidden matches. None of these studies have addressed the pressure drop issue in a 

TS context which encompasses distance, equipment and utility distribution systems. 

 

 

The minimum energy targets (Klemeš et al., 1997) in TSHI can be altered by 

changes in process and/or utilities operating conditions. The impact of utility system 

changes can be simply deduced as demonstrated in the works of a few researchers 
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(Hackl et al., 2011; Nemet et al., 2012c; Liew et al., 2014c). However, the impact of 

process changes on TSHI cannot be easily inferred. In addition, most process 

modifications are often evaluated within a particular process rather than in TS 

context. The potential benefits from process modifications for a single process is yet 

to be fully exploited for TS to improve HI. 

 

 

 

 

1.2 Problem statement 

 

 

An adequate TSHI design definition is necessary to reduce uncertainty in 

cost estimate, minimise design changes and improve confidence in expected savings. 

The main issues that can lead to the practical implementation of TSHI need to be 

identified and addressed during the early stages of process development. 

 

 

Current TSHI methodologies have not adequately addressed the pressure 

drop factor during the MER targeting stage. Exclusion of pressure drop factor when 

targeting MER may lead to too optimistic energy targets and result in the under-

sizing of central utilities system. Neglecting pressure drops in the heat exchanger 

network (HEN) synthesis may render a proposed design infeasible if the actual 

pressure drop is higher than what is allowable by pumps and compressors.  The need 

to replace the pumps or compressors may outweigh the savings from HI.  It is vital 

that pressure drop factor in addition to the stream’s temperature and heat capacity, 

be considered. 

 

 

The Pinch Analysis strategies of modifying Composite Curves to identify 

process changes to improve HI have been widely practiced for single process but not 

for TS.  The potential of these Pinch strategies for application on TS need to be fully 

exploited. The TSP can be strategically used to evaluate the potential for further HI 

improvement to maximise energy saving or reduce heat transfer area (HTA) and its 

associated capital cost. The TSP can be powerful tool to evaluate potential for 

further improvement of HI on a TS. 
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The problem statement of this research is summarized as follows: 

 

 

Given the process stream temperatures and heat capacities, utility 

temperatures and plant layout information for a Total Site, it is desired to establish 

the MER targets which consider the pressure drop factor in order to provide more 

realistic basis for the design of centralised utility systems. In addition, it is desired to 

strategically use the TSP to evaluate the potential for further HI improvement to 

maximise energy savings and/or reduce capital cost of HTA in TSHI. 

 

 

 

 

1.3 Research objective 

 

 

 The main objectives of this study are to extend the TSHI methodology to 

take into account the pressure drop factor for targeting and design as well as to 

strategically used the TSP to evaluate potential for further HI improvement to 

maximise energy savings and/or reduce capital cost of HTA in TSHI.  The sub-

objectives of this research are to 

 

 

i. perform a detailed assessment of the existing TSHI methodology for 

practical TSHI implementation in industries. 

 

 

ii. develop an improved TSHI methodology which takes into account the 

pressure drop factor for TSHI targeting and design. 

 

 

iii. develop a methodology to identify and target process modification of TS to 

maximise overall site energy savings.  

 

 

iv. develop a methodology to identify and target process modification of TS to 

reduce capital cost of HTA in TSHI. 
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1.4 Research Scope 

 

 

The scope of this work includes: 

 

 

i. A Review of TSHI and identifying the research gap. 

 

 

ii. Assessment of the key issues vital to implementation of practical TSH I 

projects in the industry.  

 

 

iii. Development of a spreadsheet based on Pinch Analysis for use as a tool to 

develop the new methodologies. 

 

 

iv. Development of a new methodology to consider for pressure drop and its 

impacts for TSHI targeting and design. 

 

 

v. Development of a new methodology which applies the Plus-Minus Principle 

to target process modifications to maximise site energy saving in TSHI. 

 

 

vi. Development of a new methodology to identify and target process 

modifications to reduce capital cost of heat transfer units in TSHI. 

 

 

vii. Method testing and analysis.    
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1.5 Research Contributions 

 

 

This research has resulted in the following contributions: 

 

i. A comprehensive assessment of the current TSHI methodology has identified 

five key issues vital to the practical industrial implementation of TSHI 

project. By considering these issues in the early stages, practical TSHI 

solution can be obtained. This assessment has provided a direction for future 

extension of the TSHI methodology from the industrial perspective. 

 

 

ii. The TSHI methodology is extended to consider pressure drop, one of the key 

design issues for TS due to large distances between plants. The improved 

methodology provides a more realistic basis for the design of central utility 

systems and the utility circulation pumps.  

 

 

iii. A methodology which apply the Plus-Minus Principle (Linnhoff et al., 1982) 

to target process modifications maximise site energy saving in TSHI. This 

methodology complements the individual process analyses by bringing it 

within the TS context. 

 

 

iv. A methodology to identify and target process modifications of TS to reduce 

capital cost of heat transfer units in HI. The strategic use of the Total Site 

Profile enables the plant engineers/designers to pinpoint process modification 

efforts to improve site HI.  

 

 

A substantial part of the results contained in this thesis have been published 

in reputable international refereed journals and conferences as listed in Tables 1.2a 

and 1.2b. 
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Table 1.2a: Journal and conference paper publications 

 

 

Title 

 

Type 

 

Status 

Contribution 

towards 

knowledge 

Chew, K.H., Klemeš, J.J., Wan 

Alwi, S.R., Manan, Z.A.  (2013). 

Issues to be considered for Total 

Site Heat Integration - An 

Industrial Perspective. 6th 

International Conference on 

Process System Engineering (PSE 

ASIA). 25-27 June 2013, Kuala 

Lumpur 

International 

conference 

Poster 

presentation 

(i) 

Chew, K.H., Klemeš, J.J., Wan 

Alwi, S.R., Manan, Z.A.  (2013). 

Industrial Implementation Issues of 

Total Site Heat Integration. 

Applied Thermal Engineering, 61, 

17-25. 

ISI journal 

Impact factor: 

2.624 

Published (i) 

Chew, K.H., Klemeš, J.J., Wan 

Alwi, S.R., Manan, Z.A., 

Reverberi, A.P. (2015). Total Site 

Heat Integration Considering 

Pressure Drop. Energies. 8(2), 

1114-1137. 

doi:10.3390/en8021114 

 

ISI journal 

Impact factor: 

1.602 

Published 
(i), (ii) 

Chew, K.H., Klemeš, J.J., Wan 

Alwi, S.R., Manan, Z.A.  (2013). 

Process Modification Potentials for 

Total Site Heat Integration. 16th 

Conference Process Integration, 

Modeling and Optimisation for 

Energy Saving and Pollution 

Reduction (PRES 2013). 29 

September – 2 October 2013, 

Rhodes, Greece. 

Chemical Engineering 

Transactions. 35: 175-180. 

International 

conference 

 

 

 

 

 

Scopus cited  

Oral 

presentation 

 

 

 

 

 

Published 

(iii) 
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Table 1.2b: Journal and conference paper publications 

 

 

Title 

 

Type 

 

Status 

Contribution 

towards 

knowledge 

Chew, K.H., Klemeš, J.J., Wan 

Alwi, S.R., Manan, Z.A.  (2014). 

Process modifications to maximize 

energy savings in Total Site Heat 

Integration. Applied Thermal 

Engineering. 78, 731-739.  

ISI journal 

Impact factor: 

2.624 

Published (iii) 

Chew, K.H., Klemeš, J.J., Wan 

Alwi, S.R., Manan, Z.A.  (2014). 

Process Modification for Capital 

Cost Reduction in Total Site Heat 

Integration. 17th Conference 

Process Integration, Modeling and 

Optimisation for Energy Saving 

and Pollution Reduction (PRES 

2014). 23-27 August 2014, Prague, 

Czech Republic. 

Chemical Engineering 

Transactions. 39: 1429-1434.  

International 

conference 

 

 

 

 

 

Scopus cited 

Poster 

presentation 

 

 

 

 

 

Published 

(iv) 

Chew, K.H., Klemeš, J.J., Wan 

Alwi, S.R., Manan, Z.A.  (2014). 

Process Modification of Total Site 

Heat Integration Profile for Capital 

Cost Reduction. Applied Thermal 

Engineering. 

http://dx.doi.org/10.1016/j.applther

maleng.2015.02.064 

ISI journal 

Impact factor: 

2.624 

Published (iv) 
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1.6 Thesis Outline 

 

 

This thesis comprise of five chapters. Chapter 1 introduces the research 

background, problem statement, research objective, scopes and research 

contributions. A thorough literature review on the development of TSHI is given in 

Chapter 2. Chapter 3 describes the spreadsheet based graphical algebraic TSHI tool 

and the three (3) new TSHI methodologies developed. The findings from the 

detailed assessment of the TSHI methodology for industrial implementation are 

presented in Chapter 4. Chapter 5 presents the results obtained from the application 

of developed techniques on case studies. Chapter 6 summarises the major findings of 

the research and provides recommendations for future research. 
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