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ABSTRACT 

The growth of the Internet and networking has made securing networks 

against attacks a very challenging task. For high-speed networks, flow meta-data 

inspection can replace conventional Deep Packet Inspection but with the cost of low 

precision of identifying attacks since the former deals with an aggregated version of 

the traffic. The first part of this research addresses the problem of the lack in 

benchmarking datasets for developing new Network Intrusion Detection Systems 

(NIDSs) or comparing existing NIDSs. The aim in the second part is to design a near 

real-time NIDS without degrading the detection accuracy when compared to 

conventional misuse packet-based approaches. To achieve the first objective, a NIDS 

dataset creation framework had been developed. Based on that framework, a flow-

level NIDS dataset had been created. The traces were collected from campus main 

routers in NetFlow format while malicious traffic of different attack scenarios was 

generated by Nmap and BoNesi tools. In the second part a flow-based software-

based system were developed to detect and identify network volume-level attacks in 

near real-time. Attack detection is based on statistical time-aggregated features of the 

exported NetFlow version of the traffic to detect several scan and Denial-of-Service 

(DoS) attacks. A validation for the designed system is done using Defense Advanced 

Research Projects Agency (DARPA) datasets. The timeline performance 

outperformed all relevant software-based systems and suited for up to one gigabit per 

second links with an average detection delay of less than one minute. The proposed 

method achieved 95% True Positive Rate (TPR) and almost zero False Positive Rate 

(FPR). Compared to relevant methods when operated in the same conditions, the 

proposed method improved the TPR by 4% and improved FPR by 1%. In addition, 

the capability of flow-based approach in detecting packet-level attacks was 

experimentally demonstrated. The results against Snort were benchmarked and 75% 

TPR and almost zero FPR were achieved. 
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ABSTRAK 

Pertumbuhan Internet dan rangkaian telah menjadikan keselamatan rangkaian 

terhadap serangan satu tugas yang sangat mencabar. Untuk rangkaian kelajuan 

tinggi, penelitian meta-data boleh mengganti penelitian tahap paket  konvensional 

tetapi dengan kos ketepatan rendah semasa mengenalpasti serangan memandangkan 

tahap-aliran berkait dengan agregasi trafik. Bahagian pertama kajian ini bertujuan 

menyumbang dalam menyelesaikan masalah keperluan set data penandaan aras yang 

piawai untuk membangun Sistem Pengesan Penceroboh Rangkaian (NIDS) baru atau 

membanding dengan yang sedia ada. Tujuan di bahagian kedua adalah untuk 

merekabentuk NIDS masa nyata berhampiran tanpa merendahkan ketepatan 

pengesanan apabila dibandingkan dengan pendekatan konvensional penyalahgunaan 

berasaskan paket. Bagi mencapai objektif pertama satu rangka kerja bagi 

mewujudkan dataset NIDS telah dibangunkan. Berdasarkan rangka kerja tersebut 

dataset tahap-aliran NIDS telah dibangunkan. Surih  dikutip dari penghala utama 

kampus dalam format NetFlow manakala trafik hasad dari senario serangan berbeza 

telah dihasilkan oleh peralatan Nmap dan BoNesi. Dalam bahagian kedua, satu sistem 

berasaskan perisian tahap-aliran telah dibangunkan bagi mengesan dan 

mengenalpasti serangan rangkaian tahap-jumlah dalam masa nyata berhampiran. 

Pengesanan serangan adalah berdasarkan kepada ciri-ciri statistik masa terkumpul 

trafik NetFlow versi yang dieksport bagi mengesan beberapa imbasan dan serangan 

Penafian Perkhidmatan (DoS). Pengesahan sistem yang direkabentuk dibuat 

menggunakan set data Agensi Projek Penyelidikan Termaju Pertahanan (DARPA). 

Prestasi had masa sistem telah mengatasi sistem lain berasaskan perisian dan hanya 

sesuai sehingga kelajuan satu gigabit sesaat dengan purata lengah kurang dari satu 

minit. Kaedah ini berjaya mencapai 95% Kadar Positif Benar (TPR) dan hampir sifar 

Kadar Positif Palsu (FPR). Berbanding dengan kaedah berkaitan apabila beroperasi 

dalam keadaan yang sama, kaedah ini telah memperbaiki TPR sebanyak 4% dan 

memperbaiki FPR sebanyak 1%. Sebagai tambahan, kemampuan kebolehan 

pendekatan berasaskan aliran di dalam mengesan serangan tahap paket telah dapat 

ditunjukkan secara eksperimen. Keputusan berbanding dengan Snort telah ditanda 

aras dan telah mendapat 75% TPR dan hampir sifar FPR.
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CHAPTER 1 

INTRODUCTION 

1.1   Overview and Motivation 

The global growth of the Internet and networking has made securing 

networks and information one of the most challenging tasks in the field of network 

communication. Today, intrusion attacks are generating significant worldwide 

epidemic to network security environment and bad impact involving financial loss. 

Intruders have the capability to infect thousands of hosts and networks within few 

minutes before human action takes place.  

Studies on the field by Dell™ SonicWALL™ Threat Research Team 

demonstrated that network attacks are increasing exponentially every year. For 

example, over 20.1 million unique malware samples were collected in 2013, 

compared to 16 million in 2012 (DellSonicWALL, 2013). In the year 2013 more than 

1.06 trillion intrusion related incidents had been detected and prevented and more 

than 1.78 billion malwares downloads had been blocked. According to the same 

report, there were approximately 4,429 new vulnerabilities reported from Common 

Vulnerabilities and Exposures (CVE) and 3,644 were related with network attacks in 

2013 (DellSonicWALL, 2013). Even a small security breach on commercial dealings 

such as online e-payment and money transactions may cause huge unrecoverable 

losses to companies and individuals. Successful attacks to hijack network-based 

sensitive services in hospitals or airports may lead to disastrous results.  
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In response to those increasing cyber-attacks, the cost of securing networks 

information is also increasing. According to the industry survey on cyber security 

conducted by New York State Department of Financial Services (Andrew M. 

Cuomo, 2014), 77% of institutions involved in the survey experienced an increase in 

their total information security budget in the past three years. Almost no institutions 

reported a reduction in spending in the past three years. 

In order to cope with the enormous increasing security threads that face 

network communication, various third party techniques or middle-boxes techniques 

have evolved such as firewalls, Network Intrusion Detection Systems (NIDSs). 

Network Intrusion Detection Systems (NIDS) proved to be an efficient technique that 

can process large volume of networks traffic and detect intrusions in their early 

stages in order to limit their catastrophic damages.  

Intrusion can be defined as any activity that violates confidentiality, 

authority, integrity or availability of information system (Lazarevic et al., 2005). 

Although in the field of information security, intrusion and attack are used 

interchangeably, there is a little difference between the two terms. An attack is an 

intrusion attempt, and an intrusion results from an attack that has been (at least 

partially) successful (Barrus and Rowe, 1998). Intrusion Detection is defined by The 

National Institute of Standards and Technology (Bace and Mell, 2001) as “the 

process of monitoring the events occurring in a computer or network and analyzing 

them for signs of intrusions”. An Intrusion Detection System (IDS) can be defined as 

a combination of software or/and hardware components that monitors computer and 

network systems and raises an alarm when intrusion happens (Lazarevic et al., 2005).  

There are two main categories of IDSs; host-based IDSs (HIDS) which are 

designed for single host, and network-based IDSs (NIDS) which monitor the whole 

traffic of a network. Generally, the concepts of IDS is more related to NIDS than 

HIDS since the latter can be considered as an ordinary antivirus system limited to 

one host whilst the prior is an entity that can monitor a whole enterprise network or 

even an ISP network. 
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1.2   Background 

 

1.2.1.  A Simple NIDS Architecture 

In general, the components which make up any NIDS can be viewed as 

shown in Figure 1.1 (Lazarevic et al., 2005).  

Data Acquisition Module – Monitored System

Feature Generation 

Module

Incident Detection Module Response Module

Reference Data Module

Event

Raw Data

Actions

Alarms

 

Figure 1.1 Simple architecture of NIDS (Lazarevic et al., 2005) 

The purpose of each module is as follows: 

i. Data Acquisition Module: Responsible for collecting network traffic data. 

ii. Feature Generation Module: Responsible for extracting a set of selected 

traffic features (packet header features, payload features, flow features) 

iii. Incident Detection Module: Responsible for identifying intrusion and 

generating alarms by comparing the data generated from the feature 

generation module with that of the reference module. Generally there are 

two methods of this detection; misuse-based detection and anomaly-based 

detection. 

iv. Response Module: Once an alert is received, this module is responsible for 

initiating actions in response to a possible intrusion. 

file:///C:\Users\arffat\Desktop\Ahmed%20Abdullah\Thesis%20Final%20Ahmed\Thesis%20Final%20Ahmed\CH1_6.docx%23_ENREF_8
file:///C:\Users\arffat\Desktop\Ahmed%20Abdullah\Thesis%20Final%20Ahmed\Thesis%20Final%20Ahmed\CH1_6.docx%23_ENREF_8


4 

 

 

 

v. Reference Data Module: This module contains the reference data that is to be 

used by the incident detector to compare with. If the detection method is 

misuse-based then this data would be based on the description of all known 

intrusion (intrusion database), and if the detection method is anomaly-based 

then it would be based on description of normal attack free network 

operation (network profile).  

1.2.2. IDS Taxonomy 

Several taxonomies had been proposed for categorizing NIDS, but the most 

common and acceptable one is that one used by Axelsson (2000) and Debar et al. 

(1999). This classification categorizes IDSs according to the following aspects: 

i. Information source: NIDS can be packet-level based or flow-level. Packet-

level NIDS can be further divided to packet header-based or payload-based. 

ii. Analysis Strategy (Detection Method): This categorization distinguishes 

NIDS according to the nature of reference data used for identifying 

intrusions which is either misuse-based or anomaly-based. 

iii. Architecture (Locus of Detection): NIDS can be centralized when it is placed 

in single position or distributed when there are several points for 

monitoring. 

iv. Response to intrusion: NIDS can be either passive when it is just to raise an 

alarm on detecting intrusion or active when a further action is to be done in 

response to that intrusion. 

v. Time Aspects: NIDS can work in real-time and detect intrusions while they 

are taking place or by batch (non real-time). 

file:///C:\Users\arffat\Desktop\Ahmed%20Abdullah\Thesis%20Final%20Ahmed\Thesis%20Final%20Ahmed\CH1_6.docx%23_ENREF_2
file:///C:\Users\arffat\Desktop\Ahmed%20Abdullah\Thesis%20Final%20Ahmed\Thesis%20Final%20Ahmed\CH1_6.docx%23_ENREF_6
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Figure 1.2 NIDS classification aspects 

 

1.2.3. NIDS Required Characteristics 

The required NIDS characteristics had been specified by many researchers 

(Lazarevic et al., 2005, Catania and Garino, 2012). These characteristics are required 

from NIDS to achieve security goals. We can summarize these characteristics as 

follows: 

i. High Detection Performance: Detection of all attacks without false alarms 

ii. Low Processing time: Attack is to be detected as soon as possible 

iii. Adaptability: NIDS should be able to readapt itself to deal with novel attacks 

and changing environments 

iv. Fault tolerance: robustness, resistance to attacks, quick recovery from 

successful attacks 

v. Minimum Resource consumption: storage resources and processing 

capabilities needed.  
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1.3   Problem Statement 

As stated in the previous section, NIDS have a wide range of approaches to 

be categorized accordingly (Figure 1.2). However, there are two main different 

approaches now for NIDS. The conventional and most common implemented 

approach nowadays is the misuse-based NIDS with deep packet inspection (DPI), 

which tries to detect attacks based on previously prepared database of all known 

intrusion signatures. This approach proved to be efficient and accurate for detecting 

known intrusions but cannot detect novel and new attacks or even new variants of 

known attacks. Another drawback of misuse-based NIDS is that it uses DPI. This 

approach of auditing data by inspection inspects every incoming packet in the traffic. 

Hence, it cannot cope with high speed networks. Besides, it seems that researches on 

misuse-based NIDS have reached a saturation point making it harder to make further 

enhancements. 

The other approach is the anomaly-based NIDS, which is based on detection 

of deviations of a normal attack-free model of the protected network and flagging 

these deviations as intrusions. This approach can detect known and novel attacks as 

well. Although this latter approach seems promising and in spite of lot of researches 

on it, it is still immature and suffers from serious problems that makes it impractical 

for real life situations. The major problem of anomaly-based NIDS is that it suffers 

from high false alarm rates. This problem arises from the difficulty of specifying 

normal and abnormal thresholds for any network and which itself can be considered 

as a second problem. A third problem of that approach is the limited capacity and 

precision of identifying an attack when an alarm is raised.  This problem is a 

consequence of anomaly-based detection nature which reacts with any network event 

as either normal or abnormal (anomaly) and nothing else. If we consider the fact that 

there are lots of network anomalies that are neither attacks nor intrusions, then 

definitely there would be a high rate of false alarms.  

With respect to the information inspected (audit data), some NIDS inspect the 

complete traffic (Deep Packet Inspection) for known attack signatures (byte patterns) 

whilst others consider data from packets headers for attacks that violates network 
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protocols rules. Meanwhile, other NIDSs depend on extensive summaries and 

aggregations of traffic flow (flow-level) for intrusion that attack network resources. 

Each of these levels of audit data inspection concentrates on particular category of 

intrusive attacks and, therefore, is strong on some parts but may be poor on other 

parts. Since flow-level NIDS deals with aggregations and summarization of traffic, it 

can inspect high speed traffic in a near real-time mode. However, it suffers from low 

precision of specifying attacks in the traffic. This problem is a result of the absence 

of the actual data in the detection and the use of metadata instead. The whole flow is 

to be flagged when an attack is detected. The exact malicious packet(s) cannot be 

specified nor the exact attack time nor any other further information that can help to 

describe the attack.  

Any NIDS needs to go through a knowledge acquisition process to build a 

reference model in the system before the actual detection process can take place. To 

build this reference model, the system must be supplied with previously known 

categorized dataset so that the system would acquire the necessary information to 

detect attacks and differentiate between malicious and non-malicious incidents in 

network traffic. Unfortunately, creation of optimum NIDS dataset that would acquire 

all required characteristics is very hard and costly. In addition, some of these 

required characteristics seem to be contradicting with each other. Hence, combining 

these characteristics in a dataset is almost impossible. There are a number of 

challenges and difficulties in creating ideal datasets. For all that, researchers on 

NIDS generally suffer from a lack of standard datasets for developing and training 

new systems. The problem is even severe when looking for benchmarking common 

public datasets for validating, evaluating and comparing between existing systems 

and methods.  

Most NIDS in the research community today have achieved a very high 

degree of accuracy in detecting intrusions. However, the majority of these systems 

face difficulties when they are to be deployed and implemented in real world. With 

the growing connection speed by the establishment of end users broadband Internet, 

the data volumes in the backbone networks has increased steadily. Monitoring of 

links that may reach few gigabits per second capacities by NIDS may require more 
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computational resources than that available on commodity computer hardware. This 

problem of resource demand is commonly solved by engineering dedicated hardware 

platforms such as on Field-Programmable Gate Array (FPGA) that can process 

detection tasks more efficiently. However, specially crafted hardware comes at a 

significant higher cost and may not be worthwhile in every situation.  

Our research problem is divided into two main parts. The first part aims to deal 

with the problem of the lack in standard benchmarking datasets for developing and 

training new systems or comparing existing ones. The second part tries to find software-

based solutions for flow-level NIDS to achieve accurate near real-time detection.  As 

a part from the second problem, the research tries to answer some questions 

concerning the capability and efficiency of flow-level attributes to detect network 

traffic attacks in spite of the absence of actual monitored data, and to find its 

efficiency in terms of accuracy and timeline performance.  

1.4   Research Objectives  

The objectives of this research can be summarized as follows: 

1. To create a labeled flow-level dataset for anomaly-based NIDS using a 

general framework that would be available publicly. 

A labeled flow-level NIDS dataset is a set of flow records with each flow 

record labeled as either benign or malicious. A flow record is the set of 

attributes that abstracts and summarizes all the information which concerns a 

single session between two communicating entities in a network.  The dataset 

is to satisfy a set of conditions and guidelines in order to acquire validity for 

anomaly detection.   

 

2. To design an effective near real-time anomaly-based NIDS to detect 

brute-force attacks based only on software solutions. 
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Effective here means the proposed solution will not degrade the detection 

accuracy and will not increase the false alarm rate compared to existing 

conventional DPI or relevant flow-based methods. The system is supposed to 

detect network intrusion attacks when they are taking place not more than few 

minutes after the attack has commence. Detection scope of the system consists 

of all attacks that consume significant network bandwidth in any phase of the 

attack. The detection system is a set of developed software that does not need 

special hardware platform to run on and meant to be placed in the 

ingress/egress point of Universiti Teknologi Malaysia (UTM) campus 

network. Hence, it has to cope with high speed traffic of possibility to few 

hundreds megabit per second. 

3. To investigate the efficiency of flow-level traffic inspection to detect 

packet content-based attacks. 

The capability, accuracy and timeline performance of flow-level features to 

detect attack contained in payload packets will be investigated and evaluated. 

1.5   Research Scope 

This research focuses on developing a system that can monitor the traffic of 

server farm in UTM campus network in real-time and setting alarm when observing 

intrusive activities. Hence, the research deals with traffic bandwidth not exceeding 

one gigabit per second, as this is a little higher than the core bandwidth of UTM 

campus backbone. 

All proposed solutions are software-based and are to be run within general 

purpose computer machines that are commercially available in the market. No 

special hardware platform such as FPGA would be considered. 

Although the study includes misuse detection approach, it will limit 

inspection level to flow features and will not consider any of payload inspection or 
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pattern signature as information source for intrusion detection. Inspection of flow-

level data is limited to network and transport layers. Hence, attacks and techniques in 

lower layers (physical layers) and upper layers (application layers) will not be 

considered.  

All proposed solutions and systems are passive with respect to the detected 

intrusions. Their role is solely to flag an alarm when any intrusive activity is detected 

with no further action to be performed. 

The study is about Network IDS. Hence, all techniques reviewed, studied or 

analyzed will depend only on network traffic data (packets and flow data). Host IDS 

is out of scope of this study. Intrusions would be considered an attack when it uses 

network resources to scan, propagate, or penetrate network information resources. 

Intrusions affect information sources through other means (e.g. physical access) will 

not be considered as network attack.  

1.6   Significance of the Research 

The most significant contribution of this study is the development of a 

general framework to create NIDS datasets. That framework would be available 

publicly for research community. This would help other researchers to develop their 

own systems and methods and ease the comparison and validations for these new 

systems and methods.  

Another outcome of the study is a cost effective solution to the problem of 

real-time traffic monitoring in any enterprise networks with up to one gigabit per 

second bandwidth. It provides a user-friendly NIDS that make the security task easier 

and provide an early alarm security system for the monitored network through 

developing an efficient NIDS as a step to replace other costly commercial software 

products that are currently being used. 
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1.7   Thesis Organization 

The rest of this thesis is organized as follows. In Chapter 2, an overview on 

the evolution of NIDS and its state-of-the-art that highlights gaps and defines future 

trends is given. This is followed by an overview on network traffic generating, 

capturing and processing tools and the significant theories and methods used in 

NIDS in general. A deep flow-level NIDS literature review is done followed by 

another review on NIDS datasets. 

Chapter 3 shows the overall research methodology, explains and discusses 

general dataset creation framework, the framework of flow-level detection of brute-

force attacks, explains the framework of flow-level detection of packet-level attacks. 

It also discusses with details all experimental setups, dataset creation steps, 

validation methods and rational constructions behind the selected methodology. 

Chapter 4 presents the implementation details of creating brute-force attacked 

dataset from captured traffic traces, statistics and various distributions of the created 

dataset and discusses the corresponding results. 

Chapter 5 presents the implementation details of designing flow-level NIDS 

to detect brute-force attacks and all partial and final results concerning evaluation of 

accuracy and performance and validation of the detection method and discusses 

results.  

Chapter 6 presents the implementation details of investigating the efficiency 

of flow-level data to detect packet-level attacks and a discussion to justify the results. 

Chapter 7 concludes all the study and states the degree of objective 

fulfillment, highlights research contributions and makes suggestion for future work. 
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https://www.wireshark.org/
http://www.wireshark.org/

	AhmedAbdallaMohamedaliAbdallaPFKE2015ABS
	AhmedAbdallaMohamedaliAbdallaPFKE2015TOC
	AhmedAbdallaMohamedaliAbdallaPFKE2015CHAP1
	AhmedAbdallaMohamedaliAbdallaPFKE2015REF



