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ABSTRACT 

Diffusion-weighted magnetic resonance imaging plays an increasingly 

important role in the diagnosis of several brain diseases by providing detailed 

information regarding lesion based on the diffusion of water molecules in brain 

tissue. Conventionally, the differential diagnosis of brain lesions is performed 

visually by professional neuroradiologists during a highly subjective, time-

consuming process. Within this context, this study proposes a new technique for 

automatically detecting and classifying major brain lesions of four types: acute 

stroke, chronic stroke, tumor and necrosis. An analytical framework of the brain 

lesions consists of four stages which are pre-processing, segmentation, features 

extraction and classification. For segmentation process, adaptive thresholding, gray 

level co-occurrence matrix, region splitting and merging, semi-automatic region 

growing, automatic region growing and fuzzy C-means were proposed to segment 

the lesion region. The algorithm performance was then evaluated using Jaccard 

index, Dice index, and both false positive and false negative rates. Results 

demonstrated that automatic region growing offered the best performance for lesion 

segmentation while acute stroke gave the highest rate with 0.838 Dice index. Next, 

statistical features were extracted from the region of interest and fed into the rule-

based classifier designed to the best suit to the lesion’s features. The performance of 

the classifier was evaluated based on overall accuracy, sensitivity and specificity. 

The overall accuracy for the classification was 81.3%. In conclusion, the proposed 

automated brain lesion classification method has the potential to diagnose and 

classify major brain lesions. 
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ABSTRAK 

Pengimejan magnetik resonan pemberat-resapan memainkan peranan yang 

semakin penting dalam mendiagnosis beberapa penyakit otak dengan memberikan 

maklumat terperinci berkenaan perbezaan jelas lesi ke atas resapan molekul air di 

dalam tisu otak. Secara konvensional, perbezaan diagnosis lesi otak dilaksanakan 

secara visual oleh pakar neuroradiologi profesional dengan proses subjektif serta 

memakan masa yang lama. Dalam konteks ini, kajian ini mengusulkan teknik terbaru 

untuk mengesan dan mengkelaskan lesi otak utama yang terdiri daripada empat jenis: 

strok akut, strok kronik, tumor dan nekrosis. Analisis rangka kerja bagi lesi otak 

terdiri daripada empat peringkat iaitu pra-pemproses, pengsegmenan, pengekstrakan 

ciri dan pengkelasan. Untuk proses pengsegmenan, teknik ambang adaptif, matrik 

gray level co-occurrence, rantau pemisahan dan penggabungan, rantau berkembang 

separa automatik, rantau berkembang automatik dan fuzzy C-means dicadangkan 

untuk mensegmen rantau lesi. Prestasi algoritma kemudiannya dinilai menggunakan 

indeks Jaccard, indeks Dice, dan kedua-dua kadar palsu positif dan negatif. 

Keputusan menunjukkan teknik rantau berkembang automatik memberikan prestasi 

terbaik untuk pengsegmenan lesi sementara strok akut memberikan kadar indeks 

Dice tertinggi iaitu 0.838. Kemudian, ciri-ciri statistik diekstrak daripada rantau 

tarikan dan diinputkan kepada pengelas berasaskan peraturan yang telah direka untuk 

disesuaikan dengan ciri lesi. Prestasi pengelas dinilai berdasarkan kejituan 

keseluruhan, kepekaan dan kekhususan. Kejituan keseluruhan untuk pengkelasan 

adalah 81.3%. Sebagai kesimpulannya, teknik klasifikasi automatan lesi otak yang 

dicadangkan mempunyai potensi untuk mendiagnosis dan mengklasifikasi lesi otak 

utama. 
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CHAPTER 1 

INTRODUCTION 

1.1 Introduction 

Diffusion-weighted magnetic resonance imaging (DW-MRI or DWI) is 

increasingly having an important role in the diagnosis of many brain diseases. This 

medical imaging technique provides higher pathologic or lesion contrast based on 

diffusion of water molecules in brain tissues, compared to conventional MRI. This 

unique information of diffusion properties plays a key role in evaluating multiple 

neurologic diseases, especially for stroke detection (Mukherji et al., 2002, 

Holdsworth and Bammer, 2008). It also gives additional information for cerebral 

diseases such as stages in neoplasm (cancer, tumor, and necrosis), infections, and 

others.  

DWI is considered as the most sensitive technique in detecting acute 

infarction and is useful in giving details of the component of brain lesions (Mukherji 

et al., 2002). In DWI, image intensity and contrast only depend on the strength of 

diffusivity of tissue. Tissue with altered diffusion rates may appear with either 

hyperintense or hypointense on a pixel basis, which is absent in healthy tissue. Such 

information forms vital image characteristics that may lead to the classification of 

several brain-related diseases.  

Automatic brain lesion detection and classification is necessary to implement 

successful therapy and treatment planning. Computer-aided detection and diagnosis 

system (CAD) has become a major research subject in diagnostic radiology to assist 
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visual interpretation of the medical images. Medical imaging techniques have helped 

radiologists in diagnosing the brain lesions (Ain et al., 2010). With CAD, 

radiologists used the computer output as a second opinion in making the final 

decisions (Doi, 2007, El-Dahshan et al., 2014). Novel image processing techniques 

are allowing CAD to spread and become an indispensable tool for early diagnosis 

and image guided therapy. 

Recently, many different techniques were used for detecting and classifying 

the brain lesions. Various image processing techniques such as image segmentation, 

feature extraction, feature selection and classification are essential in developing a 

brain computer aided detection methods and for the detection of various lesions in 

medical images. As brain imaging techniques continually evolve, new and more 

powerful image processing techniques are required in the CAD system to meet the 

challenges imposed by modern medical imaging (Ruiz-Alzola et al., 2013). This 

research work proposed an automatic lesion detection and classification system for 

DWI. Image analysis techniques are implemented in each stage of analysis, which 

aim to detect and classify the lesions. 

 

1.2  Problem Statement 

Early and accurate diagnosis of brain lesion is vital for determining accurate 

treatment and prognosis. However, the diagnosis is a very challenging task and can 

only be performed by specialists in neuroradiology. There are at least two specialists 

required to examine and confirm of each medical report on imaging investigations 

(El-Dahshan et al., 2014). Any difficulty may necessitate invasive tests such as 

biopsy and surgery. Currently, the standard lesion pathological classification is based 

on histological examination of tissue samples through biopsy (Barnathan et al., 

2008). Therefore, radiologists are continuously seeking for greater diagnosis 

accuracy by modern medical imaging system. According to quantitative analysis of 

CAD, it may aid radiologists in the interpretation of the medical images. Recent 

studies showed that CAD can help to improve diagnostic accuracy of radiologists, 
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lighten their increasing workload, reduce misinterpretation due to fatigue or 

overlooked and improve inter- and intra-reader variability (Porz et al., 2014, El-

Dahshan et al., 2014). The development of automatic and accurate CAD in 

characterizing brain lesions are essential and it still remains an open problem (El-

Dahshan et al., 2014) . 

Lesion detection, segmentation or separation of specific ROI is an essential 

process for diagnosis. Computer aided surgery also requires prior analysis of lesion 

area inside the brain  (Ain et al., 2010). This process is a challenging process due to 

the complexity and large variations in the anatomical structures of human brain 

tissues, the variety of the possible shapes, locations and intensities of various types of 

lesions. For example, brain tumor segmentations in conventional MRI performed by 

radiologists have approximately 14–22 % differences (Barnathan et al., 2008). The 

current manual segmentation or semi-automated frameworks have impeded the 

system from becoming fully automated, objective and efficient. On the other hand, 

computerized segmentation allows the extraction of certain regions to provide further 

information during other stages of quantitative assessment. Accurate segmentation is 

the basis for calculating important features of brain lesion such as size, density, 

compactness, and volume of the lesion. However, the computerized method is still 

evolving and far from being perfect because of the instability of the system in 

achieving autonomous property (Hum et al., 2014).  

A large number of approaches have been proposed by various researchers to 

deal with MRI images. Commonly, the target is the detection of only one disease on 

a specific organ via conventional MRI (Kobatake, 2007, Fujita et al., 2010). Well-

known and widely used techniques are the unsupervised clustering algorithm such as 

fuzzy C-means (FCM) and the supervised method such as the neural network 

classifier (Ringenberg et al., 2014, Jiang et al., 2013, Bai et al., 2013). The main 

drawback of the supervised techniques and neural network is that it requires training 

each time a new data is arrived and complex computations (Ain et al., 2010). The 

commonly used unsupervised segmentation techniques can be classified into two-

broad categories: (1) region-based techniques that look for the regions satisfying a 
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given homogeneity criteria and (2) edge-based segmentation techniques that look for 

edges in partition regions with different characteristics (Bankman, 2008).  

For the region-based segmentation category, adaptive thresholding, clustering 

and region growing are well known methods for segmentation (Pratt, 2007, Sonka et 

al., 2008). Inappropriate segmentation methods will produce unwanted noisy regions 

that will affect the subsequent processes of the system. Moreover, high sensitivity of 

homogeneity change in the soft tissue region surrounding the lesion may deteriorate 

the result (Hum et al., 2014). Novel segmentation and classification techniques 

should be able to overcome these limitations as well as be general enough to address 

a large class of tissue types, thus contributing to a faster performance and higher 

accuracy in a fully automatic system. 

For instance, acute stroke and solid tumor lesions may be seen as high 

intensity, while chronic stroke and necrosis appear as low intensity. Visually, there 

might be intensity overlapping in these lesions (Koh and Padhani, 2014). The results 

from the quantitative analysis may be performed to detect and classify the lesions.  

 

1.3  Objectives 

From the mentioned problem statements, the specific objectives of this 

research are: 

1. To examine image analysis techniques for DWI brain lesion detection, 

segmentation and classification. 

2. To evaluate the performances of the analysis techniques based on DWI 

for lesion detection and classification. 

3. To classify types of brain lesion based on DWI images.  

Thus, the aim of this thesis is to provide a solution to the mentioned problems 

in detecting, segmenting and classifying of lesions specifically designed for the 
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lesions from DWI images. The hypothesis of this thesis is that it is feasible to 

automatically detect and segment the hyperintense and hypointense lesions in DWI 

by using image processing and analysis techniques. Furthermore, a brain 

classification system can be developed based on the lesion’s features in DWI. 

 

1.4  Scope of Work 

This research work is restricted to the following scopes: 

1. This research analyses brain lesions based on medical image data on 

DWI. Acute stroke, chronic stroke, tumor and necrosis are the four types 

of brain lesion focused in this study. The DWI samples are using 

diffusion parameter of b1000. The diffusion coefficient of b0, b500 and 

apparent diffusion coefficient (ADC) image as well as conventional MRI 

such as T1, T2 and proton density images are not included in the analysis.  

2. The main focus of this research concentrates on the automatic 

segmentation process of DWI lesions to accurately perform the region of 

interest (ROI). The techniques used are adaptive thresholding, gray level 

co-occurrence matrix (GLCM), region splitting and merging, semi-

automatic and automatic region growing and fuzzy C-means (FCM) 

clustering. The best segmentation technique is identified based on 

similarity indices which are Jaccard and Dice indices, and error rates 

which are false positive rate (FPR) for over-segmentation error and false 

negative rate (FNR) for under-segmentation error.  

3. From the ROI, features are extracted and used as input to a classifier. 

Determination of the type of classifier to be used is not the main focus of 

this study. Hence, rule-based classifier is used due to its simplicity to 

design a multi-class classification. The effectiveness is verified based on 

overall accuracy, sensitivity and specificity. 
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4. The analysis and simulation are done by using Matlab software. This 

research does not include any clinical representation, patient history, 

histological findings or present solution of the lesion.  

5. The validation of this research is limited to small amount of samples. 

Therefore, thorough analysis for field testing are still needed in order to 

implement the system in real applications. 

 

1.5 Proposed System Design 

In order to complete this research, there are several steps that need to be 

done. The proposed analysis framework consists of several stages as shown in Figure 

1.1. 

 

C. Segmentation:
     - Adaptive Thresholding
     - GLCM
     - Region Splitting & Merging
     - Semi-automatic Region Growing
     - Fully automatic Region Growing
     - FCM

D. Features Extraction & 
     Classification:
     - Standard statistical features
     - Rule-based Classifier

E. Performance Evaluation:
     - Segmentation performances 
     - Classification performances

A. DWI:
     - Normal
     - Acute Stroke
     - Solid Tumor
     - Necrosis
     - Chronic Stroke

B. Pre-Processing:
     - Normalization
     - Background Removal
     - Enhancement

 

Figure 1.1 Proposed system design 
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Following is the list of major tasks that need to be carried out in this research: 

1. DWI image acquisition: This research uses clinical DWI on real patients 

which is acquired at two different institutions which are Universiti 

Kebangsaan Malaysia Medical Centre (UKMMC) and Kuala Lumpur 

General Hospital (GHKL) using 1.5 Tesla MRI scanners (Siemens 

Magnetom Avanto). All samples have been verified and confirmed by 

neuroradiologists. Images are stored in Digital Imaging and 

Communications in Medicine (DICOM) format. The acquisition 

parameters used time echo (TE), 94 ms; time repetition (TR), 3200 ms; 

pixel resolutions, 256 × 256; slice thickness, 5 mm; gap between each 

slice, 6.5 mm; diffusion weighting gradient known as b value, 1000 

s/mm2 and total number of slices, 19.  

2. Visual inspection and manual reference segmentation: The ROI of brain 

lesions is determined by experienced neuroradiologists. This data is 

important as manual reference for performance evaluation for the 

proposed frameworks. 

3. Image pre-processing stage: The original input of the DWI will go 

through image normalization, background removal and enhancement of 

the intensity. 

4. Image segmentation stage: Several methods are proposed for lesion 

detection and segmentation. New analysis frameworks based on the 

available methods are designed to address a large class of lesions. The 

best segmentation technique is then chosen for lesion classification. 

5. Features extraction stage: Basic statistical features are used to separate 

the lesion features into clusters. 

6. Classification stage: Rule-based classifier is developed for classifying of 

the brain lesions into their types of neurological disorders. 

7. Classification performance: Evaluation of the performance for both 

segmentation and classification techniques to show the efficiency of the 

proposed method. 
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1.6 Thesis Contributions  

Image analysis techniques for detecting, segmenting and classifying of brain 

lesions from DWI is developed. This system analysed four types of brain lesion 

based on DWI. These are acute stroke, solid tumor, chronic stroke and necrosis. 

Many researchers have studied on this area but they considered only on a specific 

brain disease and mostly are using conventional MRI. Only few studies have been 

reported on DWI but currently no researchers are doing detection, separation and 

classification of multiple brain lesions in DWI.  

The major contributions of this thesis are the development of automatic 

segmentation techniques for brain lesions from DWI images and classification of 

major brain lesions. The proposed techniques are adaptive thresholding, GLCM, 

region splitting and merging, semi-automatic region growing, automatic region 

growing and FCM incorporating with further refinement to correctly segment the 

lesions and eliminate noises. These techniques are designed to be fully automatic. 

The performance comparison of the techniques are evaluated based on Jaccard and 

Dice similarity indices; FPR and FNR to indicate over and under-segmentation errors 

and the execution processing time of the algorithms. The region from DWI 

hyperintensity and hypointensity lesions are segmented accurately despite the 

different lesion size and location in the brain. The advantage of the automatic 

segmentation is also its fast respond for brain region extraction. It used simpler 

techniques implemented to DWI. 

In classifying the major lesions in DWI, rule-based classifier is designed that 

can provide enough information of the lesion’s features and characteristics. 

Statistical features that characterize the mean and boundary on each lesion types is 

implemented. Therefore, multi-class classification is designed and the effectiveness 

is verified based on the accuracy on classifying of each lesions. Commonly, the 

existing techniques on DWI target only on a specific disease and only few studies 

focus on feature analysis and classification of DWI. Up to the time this thesis is 

written, this is the first time an image analysis and classification method has been 

used to classify major brain lesions of real clinical DWI scans. The results are 
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convincing, low classification error and comparable sensitivity and specificity to the 

diagnosis done by neuroradiologists. 

The establishment of this technique could be used to help physicians to have 

clear understanding of the brain lesions.  Nevertheless, this is not meant that the role 

of physicians and neuroradiologists will be taken over by such intelligent systems. 

Such systems would rather serve as a compliment for clinical validation to 

neuroradiologists. 

 

1.7 Thesis Outline  

This thesis is organized as follows. Chapter 2 is the literature review of brain 

lesion detection and classification using neuroimaging techniques. Neuroimaging 

modalities and techniques for lesion detection and classification are reviewed in this 

chapter. The objective is to show the recent published techniques and state or the art 

of neuroimaging techniques for the human brain lesions. Computed tomography 

(CT), magnetic resonance imaging (MRI) and DWI analysis techniques for lesion 

detection and classification are briefly covered in this review. 

In Chapter 3, the proposed methodology is briefly explained. A background 

study on each processing stage is presented. DWI data collections is discussed in this 

chapter. Pre-processing stage analysis is included. Segmentation methods such as 

thresholding, GLCM, region splitting and merging and region growing and FCM are 

exploit to develop new analysis frameworks that meet DWI intensity criteria. The 

proposed segmentation techniques are designed to be fully automatic. Methods for 

features extraction and classification are described in details to classify four types of 

lesions. The theory of the performance analysis and evaluation are also included and 

describe briefly in this chapter. 

Chapter 4 provides result and performance analysis of the proposed 

techniques. The performance of the segmentation techniques are evaluated based on 
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similarity indices and error rates. The best segmentation techniques are evaluated. 

The results of the lesion classification is also evaluated. Benchmarking with previous 

studies are compared.  

Chapter 5 summarizes the thesis and the conclusions of this research works 

are presented. Research contributions and suggestions for future works are also 

provided through this chapter. 
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