
MULTI-ROUND DIVISIBLE REAL-TIME SCHEDULING ALGORITHM ON

MULTIPROCESSOR PLATFORMS

PEGAH RAZMARA

UNIVERSITI TEKNOLOGI MALAYSIA

MULTI-ROUND DIVISIBLE REAL-TIME SCHEDULING ALGORITHM ON

MULTIPROCESSOR PLATFORMS

PEGAH RAZMARA

A thesis submitted in fulfilment of the

requirements for the award of the degree of

Doctor of Philosophy (Computer Science)

Faculty of Computing

Universiti Teknologi Malaysia

OCTOBER 2015

iii

To my beloved mother and father

iv

ACKNOWLEDGEMENT

 In the name of Allah The Most Gracious The Most Merciful, Praise is to

Allah who created us and gave us intelligence and guidance and peace is upon our

prophet the teacher of all mankind and peace is upon his family.

 I would like to thank my supervisor Dr.Suriayati bt Chuprat , the most patient

person as far as know, for her advises , guidance , encouragement and support in my

research.

 My special thanks go to my family. My mother and father deserve special

mention for their inseparable prayer, encouragement and endless patient.

v

 ABSTRACT

 Recent real-time systems and applications are becoming more complex and

contain more functionality. Therefore, these systems are increasingly to be

implemented upon multiprocessor platforms, as they require complex sharing of

data, synchronization and parallelism. To overcome this limitation, recent researches

have applied Divisible Load Theory (DLT) to real-time multiprocessor scheduling

and the theory is known as Real-time Divisible Load Theory (RT-DLT). However,

most current studies in this field are about distributing data in single-round algorithm

and there are limited studies in multi-round strategy in real-time systems to reduce

idle time. Moreover, current multi-round studies have some performance problems

mainly due to inefficient use of available resources and long execution time for task

scheduling. This research is carried out to address the problem of task execution on

real-time multiprocessor platforms to reduce inserted idle time in order to meet task

deadline. Therefore to achieve that, this research developed three significant multi-

round algorithms which are: MultiMINPROCS, OPTROUND and MINCOMPTIME

in expanding the current single-round RT-DLT to multi-round RT-DLT. Series of

experimental evaluations showed that the three developed algorithms had improved

the performance of previous both single-round and multi-round algorithms. The first

algorithm computed the minimum number of processors needed to complete the job

by its deadline, 40% improved the previous single-round algorithm and 33%

improved previous multi-round algorithm. The second algorithm determined the

most efficient number of round. Finally the third algorithm computed the minimum

completion time in order to meet the task’s deadline, 35% improved the previous

single-round algorithm and 38% improved previous multi-round algorithm.

vi

ABSTRAK

Sistem masa nyata dan aplikasi terkini menjadi semakin kompleks dan

mengandungi lebih banyak fungsi. Justeru itu, sistem ini semakin kerap dilaksanakan

dalam platform pelbagai pemproses, disebabkan oleh keperluan dalam perkongsian

data, penyelarasan dan keselarian yang kompleks. Bagi mengatasi kekurangan ini,

kajian sebelum ini telah menggunakan Teori Pembahagian Beban (DLT) bersama

penjadualan multipemproses masa nyata dan teori ini dikenali sebagai Teori

Pembahagian Beban Masa Nyata (RT-DLT). Walau bagaimanapun, kebanyakan

kajian semasa dalam bidang ini adalah merangkumi data dalam algoritma pusingan

tunggal dan terhad kepada kajian dalam strategi multi-pusingan sistem masa nyata

untuk mengurangkan masa melahu. Selain itu, kajian semasa pusingan pelbagai ini

mempunyai masalah prestasi disebabkan oleh penggunaan sumber sedia ada yang

tidak efisien dan mempunyai masa pelaksanaan yang lama dalam penjadualan tugas.

Kajian ini dijalankan untuk menangani masalah pelaksanaan tugas pada platform

masa nyata multipemproses untuk mengurangkan kemasukan masa melahu bagi

memenuhi tempoh had tugas. Oleh itu, bagi mencapai matlamat kajian ini tiga

algoritma penting multi-pusingan iaitu MultiMINPROCS, OPTROUND dan

MINCOMPTIME telah dibangunkan bagi menambah balik algorithma pusingan

tunggal RT-DLT kepada multi-pusingan RT-DLT. Pengujian eksperimen secara

bersiri menunjukkan pembangunan algoritma bertambah baik bagi pusingan tunggal

dan multi-pusingan algoritma sebelumnya. Algoritma pertama mengambil kira

bilangan minimum pemproses yang diperlukan untuk menyelesaikan tugas sebelum

tempoh had adalah 40% lebih baik daripada algoritma pusingan tunggal dan 33%

lebih baik daripada algoritma multi-pusingan kajian sebelumnya. Algoritma kedua

menentukan bilangan pusingan paling cekap. Algoritma ketiga pula mengira masa

minimum tempoh had diselesaikan, dengan 35% lebih baik daripada algoritma

pusingan tunggal dan 38% lebih baik daripada algoritma multi-pusingan kajian

sebelumnya.

vii

TABLE OF CONTENTS

CHAPTER TITLE PAGE

 DECLARATION ii

 DEDICATION iii

 ACKNOWLEDGEMENT iv

 ABSTRACT v

 ABSTRAK vi

 TABLE OF CONTENTS vii

 LIST OF TABLES xii

 LIST OF FIGURES xiv

 LIST OF ABBREVIATIONS xvii

 LIST OF SYMBOLS xviii

1 INTRODUCTION 1

 1.1 Overview 1

 1.2 Research Background 1

 1.3 Motivation 4

 1.4 Problem Statement 4

 1.5 Research Objectives 5

 1.6 Research Scope and Limitations 6

 1.7 Summary of Contributions 7

 1.8 Organization of Thesis 9

2 LITERATURE REVIEW 11

 2.1 Overview 11

 2.2 Real-time Systems 12

viii

 2.3 Real-time Platform Model 13

 2.4 Scheduling Methods 15

 2.4.1 Static Scheduling 17

 2.4.2 Dynamic Scheduling 18

 2.5 Real-time Scheduling Methods 20

 2.5.1 Static Priority Scheduling Algorithms 22

 2.5.2 Fixed Job-priority Scheduling Algorithms 23

 2.5.3 Dynamic Job-priority Scheduling Algorithms 24

 2.6 Divisible load Theory 24

 2.6.1 Linear Network Model 29

 2.6.2 Tree Network Model 30

 2.6.3 Single-round Strategy 32

 2.6.4 Multi-round Strategy 33

 2.7 Real-time Divisible Load Theory (RT-DLT) 36

 2.7.1 Task Model and system Model 36

 2.8 Related Research Work 39

 2.8.1 Single-round Cluster Computing Algorithm 39

 2.8.2 Cluster Computing with Different Processor Available

 Time 41

 2.8.3 Scheduling Divisible Real-time Loads with Varying

 Processor Start Times 41

 2.8.4 Multi-round Algorithm for Real-Time Divisible Load

 Scheduling 42

 2.8.5 Efficient Algorithm for Real-Time Divisible Load

 Scheduling 42

 2.9 Summary of Comprative Studies and Research Roadmap 43

3 METHODOLOGY 48

 3.1 Introduction 48

 3.2 Research Procedure 48

 3.2.1 Investigation on Single-round and Multi-round

 Algorithm 50

 3.2.2 Problem Identification 50

 3.2.3 Objective Determination 51

ix

 3.2.4 Analysis of RT-DLT in Single-round and Multi-round

 Algorithm 51

 3.2.5 Design of Multi-round Algorithm for Real-time

 Scheduling 51

 3.2.6 Algorithm Implementation and Simulation

 Environment 52

 3.2.7 Performance Metrics Measurement 53

 3.2.8 Evaluation of Multi-round Algorithm 54

 3.2.9 Documentation 55

 3.3 Approach Model: Single-round and Selection

 Multi-round Model 55

 3.3.1 Single-round Model 55

 3.3.2 Selection Multi-round Model 57

 3.4 Research Framework 59

 3.4.1 Problem Formulation 60

 3.4.2 Previous Model Implementation 60

 3.4.3 Experiments 60

 3.4.4 Analysis of Result 61

 3.5 Summary 62

4 MULTI-ROUND ALGORITHM FOR REAL-TIME LOADS

TO MINIMIZE THE PROCESSORS 63

 4.1 Introduction 63

 4.2 Motivation 64

 4.3 Proposed Method to Minimize the Processing Nodes 66

 4.3.1 Resources Allocation in Single-round Strategy 67

 4.3.2 Resources Allocation in Selected Multi-round

 Strategy 68

 4.4 Algorithm – Multiround 70

 4.5 Performance Analysis and Discussion 73

 4.5.1 Increasing Deadline 74

 4.5.2 Increasing Data size 78

 4.5.3 Increasing Communication Time 82

 4.5.4 Increasing Computation Time 86

x

 4.6 Discussion 89

 4.7 Summary 91

5 DETERMINE THE OPTIMAL ROUND IN MULTI-ROUND

REAL-TIME DIVISIBLE LOAD THEORY 92

 5.1 Introduction 92

 5.2 Proposed Method for Optimal Rounds 93

 5.3 Algorithm – Optimal Round 95

 5.4 Evaluating the Proposed Method and Discussion 98

 5.4.1 Processing Nodes 100

 5.4.2 Completion Time 104

 5.5 Discussion 107

 5.6 Summary 108

6 MULTI-ROUND ALGORITHM FOR THE EARLIEST

COMPLETION TIME ON REAL-TIME LOADS 109

 6.1 Introduction 109

 6.2 Motivation 110

 6.3 Proposed Method to Calculate Earliest Completion Time 111

 6.4 Algorithm – Minimum Completion Time 114

 6.5 Performance Analysis and Discussion 117

 6.5.1 Comparison with Increasing Data Size 119

 6.6 Discussion 130

 6.7 Summary 131

7 COMPARISON OF THE PROPOSED MULTI-ROUND

ALGORITHM WITH SMR ALGORITHM 132

 7.1 Introduction 132

 7.2 Simplified Multi-round (SMR) Algorithm 133

 7.3 Comparison of Proposed Method with SMR 136

 7.4 Performance Evaluation and Discussions 138

 7.4.1 Minimum Number of processors 139

 7.4.2 Earliest Completion Time 145

 7.5 Discussion 148

xi

 7.6 Summary 150

8 CONCLUSIONS 133

 8.1 Summary 133

 8.2 Contributions and Significance of Study 152

 8.3 Future Works 154

 8.3.1 Task Model 154

 8.3.2 Scheduling Algorithms 155

 8.3.3 Heterogeneous Platforms 155

 8.3.4 Network model 155

 8.3.5 Network with Front-end Processor 155

REFERENCES 157

xii

LIST OF TABLES

TABLE NO. TITLE PAGE

 2. 1 Notations 39

 2. 2 Summary of comparative studies on Real-time Divisible

 Load Theory(RT-DLT) 44

 4. 1 Comparison of generated with increasing deadline

 and cluster of n=16 processors 75

 4. 2 Comparison of generated with increasing deadline

 and cluster of n=32 processors 77

 4. 3 Comparison of generated with increasing data size

 and cluster of n=16 processors 79

 4. 4 Comparison of generated with increasing

 data size and cluster of n=32 processors 81

 4. 5 Comparison of generated with increasing

 communication time and cluster of n=16 processors 83

 4. 6 Comparison of generated with increasing

 communication time and cluster of n=32 processors 85

 4. 7 Comparison of generated with increasing

 computation time and cluster of n=16 processors 87

 4. 8 Comparison of generated with increasing

 computation time and cluster of n=32 processors 89

 5. 1 Comparison of generated proper round in terms of

 minimum processing node and cluster of n=16 processors 102

 5. 2 Comparison of generated proper round in terms of

 minimum processing node and cluster of n=32 processors 103

xiii

 5. 3 Comparison of generated proper round in terms of

 minimum completion time and cluster of n=16 processors 105

 5. 4 Comparison of generated proper round in terms of

 minimum completion time and cluster of n=32 processors 107

xiv

LIST OF FIGURES

FIGURE NO. TITLE PAGE

 1.1 Organization of Thesis 10

 2.1 Existing relationship among the various classes of

multiprocessor platforms 14

 2.2 Taxonomy of scheduling method 16

 2.3 Differences between global scheduling and Partitioned

 scheduling 21

 2.4 Data parallelism 26

 2.5 Load distribution linear network 29

 2.6 Load distribution tree network 31

 2.7 System Topology 37

 2.8 Research Roadmap 46

 3.1 Research Procedure 49

 3.2 Data transmission and execution time diagram in

 single-round algorithm 56

 3.3 The proposed multi-round model for data transmission

 and execution time 57

 3.4 The general stage of research framework 59

 4.1 The proposed multi-round algorithm 71

 4.2 Evaluation of produced 𝑢𝑙𝑡 − 𝑟𝑜𝑢 𝑑 with

 increasing deadline and n=16 processing nodes 75

 4.3 Evaluation of produced 𝑢𝑙𝑡 − 𝑟𝑜𝑢 𝑑 with

 increasing deadline and n=32 processing nodes 76

 4.4 Evaluation of produced 𝑢𝑙𝑡 − 𝑟𝑜𝑢 𝑑 with

 increasing data size and n=16 processing nodes 79

file:///E:/My%20study/MY%20PHD/My%20Thesis/Thesis(last%203%20chapters)/Final%20thesis-correction2.docx%23_Toc413212938
file:///E:/My%20study/MY%20PHD/My%20Thesis/Thesis(last%203%20chapters)/Final%20thesis-correction2.docx%23_Toc413212940
file:///E:/My%20study/MY%20PHD/My%20Thesis/Thesis(last%203%20chapters)/Final%20thesis-correction2.docx%23_Toc413212943
file:///E:/My%20study/MY%20PHD/My%20Thesis/Thesis(last%203%20chapters)/Final%20thesis-correction2.docx%23_Toc413212944
file:///E:/My%20study/MY%20PHD/My%20Thesis/Thesis(last%203%20chapters)/Final%20thesis-correction4.docx%23_Toc427287340

xv

 4.5 Evaluation of produced 𝑢𝑙𝑡 − 𝑟𝑜𝑢 𝑑 with

 increasing data size and n=32 processing nodes 80

 4.6 Evaluation of produced 𝑢𝑙𝑡 − 𝑟𝑜𝑢 𝑑 with

 increasing communication time and n=16 processing nodes 83

 4.7 Evaluation of produced 𝑢𝑙𝑡 − 𝑟𝑜𝑢 𝑑 with

 increasing communication time and n=32 processing nodes 84

 4.8 Evaluation of produced 𝑢𝑙𝑡 − 𝑟𝑜𝑢 𝑑 with

 increasing computation time and n=16 processing nodes 87

 4.9 Evaluation of produced 𝑢𝑙𝑡 − 𝑟𝑜𝑢 𝑑 with

 increasing computation time and n=32 processing nodes 88

 5.1 Computing optimal round 97

 5.2 Evaluation of produced proper round according to minimum

 number of processors and n=16 processing nodes. 101

 5.3 Evaluation of produced proper round according to minimum

 number of processors and n=32 processing nodes. 103

 5.4 Evaluation of produced proper round according to minimum

 completion time and n=16 processing nodes 105

 5.5 Evaluation of produced proper round according to minimum

 completion time and n=32 processing nodes. 106

 6.1 Computing multi-round completion time 115

 6.2 Evaluation of completion time with n=6 and deadline

 D=1800 120

 6.3 Evaluation of completion time with n=10 and deadline

 D=1800 120

 6.4 Evaluation of completion time with n=12 and deadline

 D=1800 121

 6.5 Evaluation of completion time with n=16 and deadline

 D=1800 122

 6.6 Evaluation of completion time with n=20 and deadline

 D=1800 122

 6.7 Evaluation of completion time with n=24 and deadline

 D=1800 124

 6.8 Evaluation of completion time with n=6 and deadline

 D=2800 126

xvi

 6.9 Evaluation of completion time with n=10 and deadline

 D=2800 126

 6.10 Evaluation of completion time with n=12 and deadline

 D=2800 127

 6.11 Evaluation of completion time with n=16 and deadline

 D=2800 128

 6.12 Evaluation of completion time with n=20 and deadline

 D=2800 129

 6.13 Evaluation of completion time with n=24 and deadline

 D=2800 129

 7. 1 Data transmission and execution time diagram in SMR

 algorithm 133

 7. 2 Comparison of produced 𝑢𝑙𝑡 − 𝑟𝑜𝑢 𝑑 by

 increasing data size and cluster of n=16 processing nodes 139

 7. 3 Comparison of produced 𝑢𝑙𝑡 − 𝑟𝑜𝑢 𝑑 by increasing

 deadline and cluster of n=16 processing nodes 140

 7.4 Comparison of produced 𝑢𝑙𝑡 − 𝑟𝑜𝑢 𝑑 by increasing

 computation time, data size and cluster of n=16

 processing nodes 141

 7.5 Comparison of produced 𝑢𝑙𝑡 − 𝑟𝑜𝑢 𝑑 by increasing

 computation time, data size and cluster of n=16

 processing nodes 142

 7. 6 Comparison of produced 𝑢𝑙𝑡 − 𝑟𝑜𝑢 𝑑 by increasing

 communication time, data size and cluster of n=16

 processing nodes 143

 7. 7 Comparison of produced 𝑢𝑙𝑡 − 𝑟𝑜𝑢 𝑑 by increasing

 communication time, data size and cluster of n=16

 processing nodes 144

 7. 8 Comparison of completion time in cluster of n=24

 processing nodes and deadline D=1800 146

 7. 9 Comparison of completion time in cluster of n=24

 processing nodes and deadline D=2800 147

xvii

LIST OF ABBREVIATIONS

DLT - Divisible Load Theory

DM - Deadline Monotonic

EDF - Earliest Deadline First

EDZL - Earliest Deadline Zero Laxity

FX - Fixed Priority

FIFO - First In First Out

IIT - Inserted Idle Time

LP - Linear Programming

MP - Multi-processor Platforms

QoS - Quality of System

RM - Rate Monotonic

RT-DLT - Real-time Divisible Load Theory

xviii

LIST OF SYMBOLS

A - Arrival Time

 - Arrival time of Task

 - Computation Requirement of Task

 - Computation Cost

 - Communication Cost

 - Chunk Size of Round

C(n) - Completion Time

 - Communication Speed

D - Deadline

 - Deadline of Task

 - Link

m - Number of Rounds

n - Number of Processors

 - Minimum Number of Processors

 - Processor

𝑟 - Ready Time Task

 - Start Time Task

 - Processing Time

 - Task

T i - Idle Time

V - Total Size of Each Round

 - Total Workload

 - Computation Speed

xix

Greek Symbols

 - Workload

 - Total Size of Workload

 - Fraction of workload

 - Ratio of and (+)

 - Time between Current Instant and Deadline

 - Execution Time

CHAPTER 1

INTRODUCTION

1.1 Overview

 In this chapter, we present a general overview of the applications

performance problem in current real-rime computational systems. In particular, our

work is focused on data intensive parallel applications. This chapter introduces the

motivation inspiring this work, as well as an overview of studies related to our

research. In addition, it presents the goal and contributions of this work and describes

the research motivation. Finally, we present the organization of this document.

1.2 Research Background

Real-time computer systems are systems that function efficiently and their

correctness depends on meeting their performance criteria. In these systems,

correctness of system behavior depends not only on the logical results of the

computations, but also on the temporal instant that those issued are produced.

Temporal restrictions of real-time systems are commonly specified as deadlines and

these kinds of systems are assumed to complete their work and deliver their results

on a timely basis. In other words, time is a vital part of the explanation of a real-time

system.

2

Within this kind of system, there are two wide groups: hard real-time and soft

real-time systems. Hard real-time systems are those that have a strict attachment to

deadline constraints; or else, the consequence is disastrous(Buttazzo, 2005, Buttazzo,

2011). In these kinds of systems, to guarantee deadline, we need to know the worst

case execution times and for predictability, we need to know if deadlines may be

missed.

 One of the examples of a hard real-time system is a system of flight control,

which in this system, if it does not respond to pilot’s command within microseconds,

the system might fail and may cause catastrophic situations.

In contrast, soft real-time systems are those that do not have a strict

attachment to deadline constraints (Buttazzo et al., 2006); but it is desirable to do so

and if deadline is missed, there is a penalty. In this kind of system, we should provide

statistical guarantees and we need to know the statistical distributions of execution

times.

In other words, missing deadline in hard real-time systems causes disaster

and in soft real-time systems, it can lead to a serious loss. Streaming media player is

an example of soft real-time system, which means that if the system does not

consider the performance criteria in a single step, then the quality of system becomes

reduced and eventually may be lost. Most real-time systems have combination of

both hard real time and soft real time tasks. In this research, hard real-time system is

a major concern.

In recent times, real time applications require composite and increased

functionality significantly and it would not be reasonable upon uniprocessor

platforms to implement them. Thus, these systems consider using implementation

upon multiprocessor platforms increasingly, with complexity in sharing of data,

synchronization and requirements of parallelism. However, formal models in real

time workloads are specifically designed for the modeling of processes executed in

uniprocessor platforms and in the capture characteristic of multiprocessor real-time

systems that these models prone to fail. Moreover, they may enforce more

restrictions upon implementation and design of system. Mok and Dertouzos (1978)

3

showed that the algorithms that are optimal for single processor systems are not

optimal for increased numbers of processors.

One of limitations from models of uniprocessor to multiprocessor is that at

each time, only one task can be executed upon at most one processor. It means that,

the task does not have permission to execute in parallel platforms. Therefore, to solve

this problem, many real-time models and scheduling algorithms have been explored.

Divisible load model which is distributed by divisible load theory is a computation

model that can be divided arbitrarily to different load pieces of workload and would

be able to provide a good real-world application.

 In general, if a scientific application is appropriately designed to take

advantage of systems parallelism, its executions would be usually carried out in a

fast and efficient way. Nevertheless, to process data efficiently is not only a matter of

having enough processing units, but it also depends on specific characteristics of the

workload of the application. In many cases, these applications can be naturally

implemented in parallel by partitioning their data sets into smaller pieces and

distributing them among the processing units of the parallel system. However, each

partition may have different processing times and this situation may lead to

significant imbalances in the execution time of the processing units of the

application.

Lin et al. (2007, 2010) and Chuprat (2007, 2008, 2010 and 2011) and Mamat

(2008, 2009, 2010, 2011 and 2012) have done research in this area and have applied

Divisible Load Theory (DLT) to real-time systems in multiprocessor platforms.

However, the process of load distribution causes communication delays and idle time

for almost all the processing nodes since a processor can start computing only after

receiving the entire load fraction assigned to it.

4

1.3 Motivation

The motivation of this research is to extend Divisible Load Theory (DLT) to

real-time systems on multiprocessor platforms to schedule the large real-time task

and reduce processor idle time during the initialization of computation phase.

Therefore to achieve that, the load fractions are sent in more than one round and

totally, the whole workload is distributed between the workers in multi-round

algorithm in many small installments or fractions rather than one big fraction in

single-round algorithm. Moreover, another motivation of this research is to optimize

the utilization of the resources by efficient use of available resources and minimize

the processing time of the task is distributed between the processors in order to meet

the task deadline. Therefore, this study, will introduce multi-round algorithms in

real-time multi-processor applications to improve the previous findings.

1.4 Problem Statement

The subject of scheduling a divisible workload on real-time multiprocessor

platforms is quite understood when all processors become available instantly at the

same time. However, in real systems, usually, all processors that are required at the

start time of scheduling are not available because of previous scheduling task or local

task. This reason causes inserted idle time. Most current studies in this field are about

distributing data in single-round algorithm and there are limited studies in multi-

round algorithm. In Divisible Load Theory (DLT), it is known that, distributing with

single round promotes idle-time and aggregated idle-time would increase completion

time and more processing nodes. Moreover, existing multi-round studies have some

performance problems mainly due to inefficient use of available resources and long

execution time for task scheduling. These issues lead to general research question:

What is the effective multi-round algorithm to extend Real-Time Divisible Load

Theory (RT-DLT) to scheduling of real-time workloads upon multiprocessor

platforms which reduce the idle time?

5

Specifically, we consider four important issues:

i. How can we calculate the minimum number of processors upon multiprocessor

platforms in order to meet a job’s deadline?

ii. How can we calculate the optimal number of rounds upon multiprocessor

platforms in order to meet a job’s deadline?

iii. How can we compute the earliest completion time in order to meet a job’s

deadline?

iv. What is the effective multi-round algorithm to extend Real-Time Divisible Load

Theory (RT-DLT) upon multiprocessor platforms in order to meet a job’s

deadline by evaluate and comparison with the previous multi-round algorithm?

 Therefore, to solve all the afore-mentioned problems, we will use multi-round

algorithms instead of single-round algorithm and will extend and develop it

accordingly, so as to calculate the minimum number of processors and minimum

execution time that requires meeting an application’s deadline in order to reduce idle

time.

1.5 Research Objectives

The main aim of this research is to extend the art of Real-Time Divisible

Load Theory (RT-DLT) for multiprocessor hard real-time scheduling in order to

reduce processor idle time during computation and communication. Therefore, in this

research we will design and develop multi-round algorithm which is designed for

multiprocessor hard real-time systems in order to improve the previous single-round

and multi-round method to reduce initial idle time, optimum utilization of processors

and minimize the task execution time . Some of our objectives which we have

distinguished to achieve this aim are:

6

i. To build an effective multi-round scheduling algorithm that will calculate the

minimum number of processors that must be assigned to a job in order to

meets the deadline.

ii. To design an efficient multi-round scheduling algorithm to determining the

most efficient number of rounds.

iii. To develop a scheduling multi-round algorithm to determine the minimum

completion time upon a number of processor of multi-processor platform in

order to meet deadline.

iv. To compare and evaluate our real-time multi-round algorithms to previous multi-

round algorithm.

1.6 Research Scope and Limitations

In this research, we use special formal real-time model that is used in many

real-time distributed system designs. Thus, there are certain units which are known

as workloads that require performing. In the base of real-time scheduling, there are

many constraints being observed. In this research, we limit our studies on the only

one of these limits which is the deadline of workloads or jobs. With consideration of

the resource system, in this research, we focus on determining the minimum number

of processors used and the optimal number of rounds needed for our multi-round

algorithm. Moreover, the minimum completion time will be another finding in this

research. Even though other resources of system, such as energy and bandwidth of

network are also important, they are not our scopes within this research.

 Furthermore, in RT-DLT, several network topologies like stars, meshes and

tree have been used. But we will limit our research to the single-level tree topology.

This kind of topology could be the simplest model among other network topologies

but contain many important issues when DLT is applied to real-time systems. So far,

7

most researchers have developed and analyzed divisible load theory with single-

round strategy.

However, there are many problems like blocking in scheduling and idle time for

almost all processors in this method and a processor can start executing the workload

fraction only after receiving the whole load fraction assigned to it. Therefore, these

complexities will be solved effectively by utilizing divisible load theory with multi-

round strategy. Thus we will restrict our research only to divisible load theory with

multi-round method.

 Also, there are some kinds of scheduling algorithms that can be joined

potentially into RT-DLT such as Earliest Deadline Zero Laxity (EDZL)(Baker et al.,

2008), Deadline Monotonic (Leung and Whitehead, 1982, Audsley et al., 1993b),

Rate Monotonic(Liu and Layland, 1973, Baruah and Goossens, 2003) and etc. But,

our work is related to Earliest Deadline First (EDF) (Liu and Layland, 1973) ,

(Baruah et al., 2003).

1.7 Summary of Contributions

 The actual contributions in this research are generally relevant to our

objectives that we have defined in the previous sections.

 In some data, particularly intensive applications on real-time platforms,

dividing the workloads into data fractions does not guarantee meeting the deadlines

stipulated. It means that, total execution time of workload often exceeds the task

deadline. Moreover, recent methods do not consider resource management efficiency

and could not utilize IITs completely. Accordingly, we will design and implement an

optimum methodology which will be applied on real-time multi-processor platforms

with proper subset of task intensive application.

8

 Therefore, to prove all issues in this thesis; we will produce 4 main

contributions that can be summarized as:

i. Introducing an algorithm to calculate the minimum number of processors by

creating a multi-round scheduling algorithm that must be assigned to a task in

order to meet deadline. In this multi-round algorithm, we will divide the

workload into small fractions and will allocate them to working processor in

optimal number of rounds. Thus, the number of processors used will be

minimal.

ii. Creating an effective multi-round scheduling algorithm to determine the most

efficient number of rounds. In this algorithm, we will select the round with

minimum number of processors and the earliest completion time as an

optimal round in multi-round algorithm.

iii. Developing a scheduling multi-round algorithm to determine earliest

completion time upon a number of processor on multi-processor platform in

order to meet deadline. Thus, for approving this method, we will use multi-

round algorithms to determine the minimum processors and the optimal

number of round for calculating the earliest completion time.

iv. Evaluating our scheduling real-time multi-round algorithms to previous multi-

round algorithm to ensure that the designed multi-round algorithm will assist to

overcoming the idle time concern as well as decrease the processing nodes and

task completion time.

9

1.8 Organization of Thesis

 In this chapter, we have developed our objectives and have also described our

contributions and motivation of our research. Moreover, we have specified our work

limitations and scopes. In the next chapter, we will explain the literature review,

related works and results on real-time systems and Divisible Load Theory (DLT). In

Chapter 3, we will present our research methodology and research procedure that

will be used in our work. So, taking such explanation as a starting point will lead to

significant analysis in developing our research to calculate the minimum number of

processing node in Chapter 4.

 After that, Chapter 5 presents a multi-round algorithm to calculate the

optimal number of rounds in our multi-processor platforms. In Chapter 6, we will

calculate the minimum completion time in an optimal round by using minimum

number of resources and in Chapter 7, we will evaluate and compare our foundlings

with previous multi-round algorithm on multi-processor real-time systems. Finally,

in Chapter 8, we will conclude our thesis and will present suggestions for the future

studies in similar field. Therefore, in Figure 1.1, we present the total flow of our

thesis accordingly.

10

Figure 1. 1 Organization of Thesis

REFERENCES

Audsley, N., Burns, A., Richardson, M., Tindell, K. & Wellings, A. J. 1993a.

Applying new scheduling theory to static priority pre-emptive scheduling.

Software Engineering Journal, 8, 284-292.

Audsley, N., Burns, A. & Wellings, A. 1993b. Deadline monotonic scheduling

theory and application. Control Engineering Practice, 1, 71-78.

Audsley, N. C., Burns, A., Richardson, M. F. & Wellings, A. J. Real-Time

scheduling: the deadline-monotonic approach. in Proc. IEEE Workshop on

Real-Time Operating Systems and Software, 1991, 133-137.

Baker, T. P. & Baruah, S. K. 2007. Schedulability analysis of multiprocessor

sporadic task systems. Handbook of Real-Time and Embedded Systems, 3-1.

Baker, T. P., Cirinei, M. & Bertogna, M. 2008. EDZL scheduling analysis. Real-

Time Systems, 40, 264-289.

Balafoutis, E., Paterakis, M., Triantafillou, P., Nerjes, G., Muth, P. & Weikum, G.

2003. Clustered scheduling algorithms for mixed-media disk workloads in a

multimedia server. Cluster Computing, 6, 75-86.

Baruah, S. Feasibility analysis of preemptive real-time systems upon heterogeneous

multiprocessor platforms. Real-Time Systems Symposium, 2004.

Proceedings. 25th IEEE International, 2004a. IEEE, 37-46.

Baruah, S., Funk, S. & Goossens, J. 2003. Robustness results concerning EDF

scheduling upon uniform multiprocessors. IEEE Transactions on Computers,

52, 1185-1195.

Baruah, S., Koren, G., Mao, D., Mishra, B., Raghunathan, A., Rosier, L., Shasha, D.

& Wang, F. 1992. On the competitiveness of on-line real-time task

scheduling. Real-Time Systems, 4, 125-144.

Baruah, S. K. 2004b. Optimal utilization bounds for the fixed-priority scheduling of

periodic task systems on identical multiprocessors. IEEE Transactions on

Computers, 53, 781-784.

158

Baruah, S. K. Partitioning real-time tasks among heterogeneous multiprocessors.

Parallel Processing, 2004. ICPP 2004. International Conference on, 2004c.

IEEE, 467-474.

Baruah, S. K. Task Partitioning Upon Heterogeneous Multiprocessor Platforms.

IEEE Real-Time and Embedded Technology and Applications Symposium,

2004d. Citeseer, 536-543.

Baruah, S. K. 2006. The non-preemptive scheduling of periodic tasks upon

multiprocessors. Real-Time Systems, 32, 9-20.

Baruah, S. K., Cohen, N. K., Plaxton, C. G. & Varvel, D. A. 1996. Proportionate

progress: A notion of fairness in resource allocation. Algorithmica, 15, 600-

625.

Baruah, S. K., Gehrke, J. E. & Plaxton, C. G. Fast scheduling of periodic tasks on

multiple resources. Parallel Processing Symposium, International, 1995.

IEEE Computer Society, 280-280.

Baruah, S. K. & Goossens, J. 2003. Rate-monotonic scheduling on uniform

multiprocessors. IEEE Transactions on Computers, 52, 966-970.

Baruah, S. K., Mok, A. K. & Rosier, L. E. Preemptively scheduling hard-real-time

sporadic tasks on one processor. Real-Time Systems Symposium, 1990.

Proceedings., 11th, 1990. IEEE, 182-190.

Bataineh, S., Hsiung, T.-Y. & Robertazzi, T. G. 1994. Closed form solutions for bus

and tree networks of processors load sharing a divisible job. IEEE

Transactions on Computers, 43, 1184-1196.

Bharadwaj, V. 1996. Scheduling divisible loads in parallel and distributed systems,

John Wiley & Sons.

Bharadwaj, V., Ghose, D. & Mani, V. 1994. Optimal sequencing and arrangement in

distributed single-level tree networks with communication delays. Parallel

and Distributed Systems, IEEE Transactions on, 5, 968-976.

Bharadwaj, V., Ghose, D. & Mani, V. 1995. Multi-installment load distribution in

tree networks with delays. Aerospace and Electronic Systems, IEEE

Transactions on, 31, 555-567.

Bharadwaj, V., Ghose, D., Mani, V. & Robertazzi, T. G. 1996. Scheduling divisible

loads in parallel and distributed systems, Wiley-IEEE Computer Society

Press.

159

Bharadwaj, V., Ghose, D. & Robertazzi, T. G. 2003. Divisible load theory: A new

paradigm for load scheduling in distributed systems. Cluster Computing, 6, 7-

17.

Bokhari, S. H. 1981. On the mapping problem. Computers, IEEE Transactions on,

100, 207-214.

Bubendorfer, K. P. & Hine, J. H. 1999. A compositional classification for load-

balancing algorithms, School of Mathematical and Computing Sciences,

Victoria University of Wellington.

Burns, A. & Wellings, A. J. 2001. Real-time systems and programming languages:

Ada 95, real-time Java, and real-time POSIX, Pearson Education.

Buttazzo, G. C. 2005. Hard Real-Time Computing Systems: Predictable Scheduling

Algorithms and Applications. Real-Time Systems.

Buttazzo, G. C. 2011. Hard real-time computing systems: predictable scheduling

algorithms and applications, Springer.

Buttazzo, G. C., Lipari, G., Abeni, L. & Caccamo, M. 2006. Soft Real-Time Systems:

Predictability vs. Efficiency, Springer.

Casavant, T. L. & Kuhl, J. G. 1988. A taxonomy of scheduling in general-purpose

distributed computing systems. Software Engineering, IEEE Transactions on,

14, 141-154.

Chan, S., Bharadwaj, V. & Ghose, D. 2001. Large matrix–vector products on

distributed bus networks with communication delays using the divisible load

paradigm: performance analysis and simulation. Mathematics and Computers

in Simulation, 58, 71-92.

Cheng, Y.-C. & Robertazzi, T. G. 1988. Distributed computation with

communication delay (distributed intelligent sensor networks). Aerospace

and Electronic Systems, IEEE Transactions on, 24, 700-712.

Chuprat, S. Divisible load scheduling of real-time task on heterogeneous clusters.

Information Technology (ITSim), 2010 International Symposium in, 2010.

IEEE, 721-726.

Chuprat, S. & Baruah, S. Scheduling divisible real-time loads on clusters with

varying processor start times. Embedded and Real-Time Computing Systems

and Applications, 2008. RTCSA'08. 14th IEEE International Conference on,

2008. IEEE, 15-24.

160

Chuprat, S. & Baruah, S. K. Deadline-based scheduling of divisible real-time loads.

ISCA PDCS, 2007. 7-12.

Chuprat, S. & Baruah, S. K. Real-Time Divisible Load Theory: Incorporating

Computation Costs. RTCSA (1), 2011. 33-37.

Chuprat, S. & Salleh, S. 2007. A deadline-based algorithm for dynamic task

scheduling with precedence constraints. Proceedings of the 25
th

 confernece

on Proceedings of the 25
th

 IASTED International Multi-Conference: parallel

and distributed computing and networks , 551, 158.

Chuprat, S., Salleh, S. & Baruah, S. K. Evaluation of a linear programming approach

towards scheduling divisible real-time loads. Information Technology, 2008.

ITSim 2008. International Symposium on, 2008. IEEE, 1-8.

Cvetanovic, Z. 1987. The effects of problem partitioning, allocation, and granularity

on the performance of multiple-processor systems. IEEE Transactions on

Computers, 100, 421-432.

Dertouzos, M. L. & Mok, A. K. 1989. Multiprocessor online scheduling of hard-real-

time tasks. Software Engineering, IEEE Transactions on, 15, 1497-1506.

Devine, K. D., Boman, E. G. & Karypis, G. 2006. Partitioning and load balancing for

emerging parallel applications and architectures. Parallel Processing for

Scientific Computing, 20,93- 99.

Drozdowski, M. & Lawenda, M. 2006. Multi-installment divisible load processing in

heterogeneous systems with limited memory. Parallel Processing and Applied

Mathematics. 847-854.Springer.

Katwijk, J. V. & Zalewski, J. 2001. Parallel and distributed real-time systems: An

introduction. Scalable Computing: Practice and Experience, 2.

Kim, H. J., Jee, G.-I. & Lee, J. G. 1996. Optimal load distribution for tree network

processors. Aerospace and Electronic Systems, IEEE Transactions on, 32,

607-612.

Krueger, P. & Livny, M. 1987. Load balancing, load sharing and performance in

distributed systems, University of Wisconsin-Madison, Computer Sciences

Department.

Lee, W. Y., Hong, S. J. & Kim, J. 2003. On-line scheduling of scalable real-time

tasks on multiprocessor systems. Journal of Parallel and Distributed

Computing, 63, 1315-1324.

161

Leung, J. Y.-T. & Whitehead, J. 1982. On the complexity of fixed-priority

scheduling of periodic, real-time tasks. Performance evaluation, 2, 237-250.

Li, X., Liu, X. & Kang, H. Sensing workload scheduling in sensor networks using

divisible load theory. Global Telecommunications Conference, 2007.

GLOBECOM'07. IEEE, 2007. IEEE, 785-789.

Li, X., Veeravalli, B. & Ko, C. 2003. Distributed image processing on a network of

workstations. International Journal of Computers and Applications, 25, 136-

145.

Lin, X., Deogun, J., Lu, Y. & Goddard, S. 2008. Multi-round real-time divisible load

scheduling for clusters. High Performance Computing-HiPC 2008. Springer.

Lin, X., Lu, Y., Deogun, J. & Goddard, S. 2007a. Enhanced real-time divisible load

scheduling with different processor available times. High Performance

Computing–HiPC 2007. Springer.

Lin, X., Lu, Y., Deogun, J. & Goddard, S. Real-time divisible load scheduling for

cluster computing. Real Time and Embedded Technology and Applications

Symposium, 2007. RTAS'07. 13th IEEE, 2007b. IEEE, 303-314.

Lin, X., Lu, Y., Deogun, J. & Goddard, S. Real-time divisible load scheduling with

different processor available times. Parallel Processing, 2007. ICPP 2007.

International Conference on, 2007c. IEEE, 20-20.

Lin, X., Mamat, A., Lu, Y., Deogun, J. & Goddard, S. 2010. Real-time scheduling of

divisible loads in cluster computing environments. Journal of Parallel and

Distributed Computing, 70, 296-308.

Liu, C. L. & Layland, J. W. 1973. Scheduling algorithms for multiprogramming in a

hard-real-time environment. Journal of the ACM (JACM), 20, 46-61.

Mamat, A. Real-time divisible load scheduling for cluster computing. THE

 UNIVERSITY OF NEBRASKA-LINCOLN , 2011.

Mamat, A., Lu, Y., Deogun, J. & Goddard, S. Real-time divisible load scheduling

 with advance reservation. Real-Time Systems, 2008. ECRTS'08. Euromicro

 Conference on, 2008. IEEE, 37-46.

Mamat, A., Lu, Y., Deogun, J. & Goddard, S. An efficient algorithm for real-time

divisible load scheduling. Real-Time and Embedded Technology and

Applications Symposium (RTAS), 2010 16th IEEE, 2010. IEEE, 323-332.

162

Mamat, A., Lu, Y., Deogun, J. & Goddard, S. 2012a. Efficient real-time divisible

load scheduling. Journal of Parallel and Distributed Computing, 72, 1603-

1616.

Mamat, A., Lu, Y., Deogun, J. & Goddard, S. 2012b. Scheduling real-time divisible

loads with advance reservations. Real-Time Systems, 48, 264-293.

Mamat, A., Lu, Y., Deogun, J. S. & Goddard, S. 2009. An Efficient Algorithm for

Real-Time Divisible Load Scheduling. CSE Technical reports, 74.

Manimaran, G. & Murthy, C. S. R. 1998. An efficient dynamic scheduling algorithm

for multiprocessor real-time systems. Parallel and Distributed Systems, IEEE

Transactions on, 9, 312-319.

Mok, A. K.-L. & Dertouzos, M. L. 1978. Multiprocessor scheduling in a hard real-

time environment, Domain Specific Systems Group [Massachusetts Institute

of Technology].

Moore, R., Prince, T. A. & Ellisman, M. 1998. Data-intensive computing and digital

libraries. Communications of the ACM, 41, 56-62.

Ouelhadj, D. & Petrovic, S. 2009. A survey of dynamic scheduling in manufacturing

systems. Journal of Scheduling, 12, 417-431.

Paprzycki, M. & Zalewski, J. 1993. Call for Papers Distributed and Parallel Real

Time Systems Special Issue of INFORMATICA. An International Journal of

Computing and Informatics, 17, 413-419.

Ramamritham, K., Stankovic, J. A. & Shiah, P.-F. 1990. Efficient scheduling

algorithms for real-time multiprocessor systems. IEEE Transactions on

Parallel and Distributed Systems, 1, 184-194.

Robertazzi, T. G. 1993. Processor equivalence for daisy chain load sharing

processors. IEEE Transactions on Aerospace and Electronic Systems, 29,

1216-1221.

Robertazzi, T. G. 2003. Ten reasons to use divisible load theory. Computer, 36, 63-

68.

Robertazzi, T. G. 2007. Networks and grids: technology and theory, Springer

 Science & Business Media.

Rommen, C. 1991. The probability of load balancing success in a homogeneous

network. IEEE Transactions on Software Engineering, 17, 922-933.

163

Shokripour, A. & Othman, M. Categorizing researches about DLT in Ten groups.

Computer Science and Information Technology-Spring Conference, 2009.

IACSITSC'09. International Association of, 2009a. IEEE, 45-49.

Shokripour, A. & Othman, M. Survey on divisible load theory and its applications.

Information Management and Engineering, 2009. ICIME'09. International

Conference on, 2009b. IEEE, 300-304.

Shokripour, A., Othman, M. & Ibrahim, H. 2010. A new algorithm for divisible load

scheduling with different processor available times. Intelligent Information

and Database Systems, 221-230.

Shokripour, A., Othman, M., Ibrahim, H. & Subramaniam, S. 2011. A method for

scheduling heterogeneous multi-installment systems. Intelligent Information

and Database Systems. Springer.

Shokripour, A., Othman, M., Ibrahim, H. & Subramaniam, S. 2012. New method for

scheduling heterogeneous multi-installment systems. Future Generation

Computer Systems, 28, 1205-1216.

Shokripour, A., Othman, M., Ibrahim, H. & Subramaniam, S. 2013. A new method

for job scheduling in two-levels hierarchical systems. Intelligent Information

and Database Systems. Springer.

Sohn, J. & Robertazzi, T. 1995. An optimum load sharing strategy for divisible jobs

with time-varying processor speed and channel speed. Proceedings of the

ISCA International Conference on Parallel and Distributed Computing

Systems. 27-32.

Sohn, J. & Robertazzi, T. G. 1996. Optimal divisible job load sharing for bus

networks. IEEE Transactions on Aerospace and Electronic Systems, 32, 34-

40.

Srinivasan, A. & Baruah, S. 2002. Deadline-based scheduling of periodic task

systems on multiprocessors. Information Processing Letters, 84, 93-98.

Veeravalli, B., Li, X. & Ko, C. C. 2000. On the influence of start-up costs in

scheduling divisible loads on bus networks. Parallel and Distributed Systems,

IEEE Transactions on, 11, 1288-1305.

Veeravalli, B. & Ranganath, S. 2002. Theoretical and experimental study on large

size image processing applications using divisible load paradigm on

distributed bus networks. Image and Vision Computing, 20, 917-935.

164

Willebeek-Lemair, M. H. & Reeves, A. P. 1993. Strategies for dynamic load

balancing on highly parallel computers. Parallel and Distributed Systems,

IEEE Transactions on, 4, 979-993.

Wolniewicz, P. & Drozdowski, M. 2002. Processing time and memory requirements

for multi-instalment divisible job processing. Parallel Processing and

Applied Mathematics. Springer.

Xu, C. 1997. Load balancing in parallel computers: theory and practice, Springer.

Yang, Y. & Casanova, H. UMR: A multi-round algorithm for scheduling divisible

workloads. Parallel and Distributed Processing Symposium, 2003.

Proceedings. International, 2003. IEEE, 9 pp.

Yang, Y., Casanova, H., Drozdowski, M., Lawenda, M. & Legrand, A. 2007. On the

complexity of multi-round divisible load scheduling.

Yang, Y., Van Der Raadt, K. & Casanova, H. 2005. Multiround algorithms for

scheduling divisible loads. IEEE Transactions on Parallel and Distributed

Systems, 16, 1092-1102.

	PegahRazmaraPFC2015ABS
	PegahRazmaraPFC2015TOC
	PegahRazmaraPFC2015CHAP1
	PegahRazmaraPFC2015REF

