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 ABSTRACT  

 

 

 

 Recent real-time systems and applications are becoming more complex and 

contain more functionality. Therefore, these systems are increasingly to be 

implemented upon multiprocessor platforms, as they require complex sharing of 

data, synchronization and parallelism. To overcome this limitation, recent researches 

have applied Divisible Load Theory (DLT) to real-time multiprocessor scheduling 

and the theory is known as Real-time Divisible Load Theory (RT-DLT).  However, 

most current studies in this field are about distributing data in single-round algorithm 

and there are limited studies in multi-round strategy in real-time systems to reduce 

idle time. Moreover, current multi-round studies have some performance problems 

mainly due to inefficient use of available resources and long execution time for task 

scheduling. This research is carried out to address the problem of task execution on 

real-time multiprocessor platforms to reduce inserted idle time in order to meet task 

deadline. Therefore to achieve that, this research developed three significant multi-

round algorithms which are: MultiMINPROCS, OPTROUND and MINCOMPTIME 

in expanding the current single-round RT-DLT to multi-round RT-DLT. Series of 

experimental evaluations showed that the three developed algorithms had improved 

the performance of previous both single-round and multi-round algorithms. The first 

algorithm computed the minimum number of processors needed to complete the job 

by its deadline, 40% improved the previous single-round algorithm and 33% 

improved previous multi-round algorithm. The second algorithm determined the 

most efficient number of round. Finally the third algorithm computed the minimum 

completion time in order to meet the task’s deadline, 35% improved the previous 

single-round algorithm and 38% improved previous multi-round algorithm.   
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ABSTRAK   

 

 

 

Sistem masa nyata dan aplikasi terkini menjadi semakin kompleks dan 

mengandungi lebih banyak fungsi. Justeru itu, sistem ini semakin kerap dilaksanakan 

dalam platform pelbagai pemproses, disebabkan oleh keperluan dalam perkongsian 

data, penyelarasan dan keselarian yang kompleks. Bagi mengatasi kekurangan ini, 

kajian sebelum ini telah menggunakan Teori Pembahagian Beban (DLT) bersama 

penjadualan multipemproses masa nyata dan teori ini dikenali sebagai Teori 

Pembahagian Beban Masa Nyata (RT-DLT). Walau bagaimanapun, kebanyakan 

kajian semasa dalam bidang ini adalah merangkumi data dalam algoritma pusingan 

tunggal dan terhad kepada kajian dalam strategi multi-pusingan sistem masa nyata 

untuk mengurangkan masa melahu. Selain itu, kajian semasa pusingan pelbagai ini 

mempunyai masalah prestasi disebabkan oleh penggunaan sumber sedia ada yang 

tidak efisien dan mempunyai masa pelaksanaan yang lama dalam penjadualan tugas. 

Kajian ini dijalankan untuk menangani masalah pelaksanaan tugas pada platform 

masa nyata multipemproses untuk mengurangkan kemasukan masa melahu bagi 

memenuhi tempoh had tugas. Oleh itu, bagi mencapai matlamat kajian ini tiga 

algoritma penting multi-pusingan iaitu MultiMINPROCS, OPTROUND dan 

MINCOMPTIME telah dibangunkan bagi menambah balik algorithma pusingan 

tunggal RT-DLT kepada multi-pusingan RT-DLT. Pengujian eksperimen secara 

bersiri menunjukkan pembangunan algoritma bertambah baik bagi pusingan tunggal 

dan multi-pusingan algoritma sebelumnya. Algoritma pertama mengambil kira 

bilangan minimum pemproses yang diperlukan untuk menyelesaikan tugas sebelum 

tempoh had adalah 40% lebih baik daripada algoritma pusingan tunggal dan 33% 

lebih baik daripada algoritma multi-pusingan kajian sebelumnya. Algoritma kedua 

menentukan bilangan pusingan paling cekap. Algoritma ketiga pula mengira masa 

minimum tempoh had diselesaikan, dengan 35% lebih baik daripada algoritma 

pusingan tunggal dan 38% lebih baik daripada algoritma multi-pusingan kajian 

sebelumnya. 
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CHAPTER 1 

 

 

 

INTRODUCTION 

 

 

 

1.1 Overview 

 

 In this chapter, we present a general overview of the applications 

performance problem in current real-rime computational systems. In particular, our 

work is focused on data intensive parallel applications. This chapter introduces the 

motivation inspiring this work, as well as an overview of studies related to our 

research. In addition, it presents the goal and contributions of this work and describes 

the research motivation. Finally, we present the organization of this document. 

 

 

 

1.2 Research Background 

 

Real-time computer systems are systems that function efficiently and their 

correctness depends on meeting their performance criteria. In these systems, 

correctness of system behavior depends not only on the logical results of the 

computations, but also on the temporal instant that those issued are produced. 

Temporal restrictions of real-time systems are commonly specified as deadlines and 

these kinds of systems are assumed to complete their work and deliver their results 

on a timely basis. In other words, time is a vital part of the explanation of a real-time 

system.
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Within this kind of system, there are two wide groups: hard real-time and soft 

real-time systems. Hard real-time systems are those that have a strict attachment to 

deadline constraints; or else, the consequence is disastrous(Buttazzo, 2005, Buttazzo, 

2011). In these kinds of systems, to guarantee deadline, we need to know the worst 

case execution times and for predictability, we need to know if deadlines may be 

missed. 

 

 One of the examples of a hard real-time system is a system of flight control, 

which in this system, if it does not respond to pilot’s command within microseconds, 

the system might fail and may cause catastrophic situations. 

 

In contrast, soft real-time systems are those that do not have a strict 

attachment to deadline constraints (Buttazzo et al., 2006); but it is desirable to do so 

and if deadline is missed, there is a penalty. In this kind of system, we should provide 

statistical guarantees and we need to know the statistical distributions of execution 

times. 

 

In other words, missing deadline in hard real-time systems causes disaster 

and in soft real-time systems, it can lead to a serious loss. Streaming media player is 

an example of soft real-time system, which means that if the system does not 

consider the performance criteria in a single step, then the quality of system becomes 

reduced and eventually may be lost. Most real-time systems have combination of 

both hard real time and soft real time tasks. In this research, hard real-time system is 

a major concern.  

 

In recent times, real time applications require composite and increased 

functionality significantly and it would not be reasonable upon uniprocessor 

platforms to implement them. Thus, these systems consider using implementation 

upon multiprocessor platforms increasingly, with complexity in sharing of data, 

synchronization and requirements of parallelism. However, formal models in real 

time workloads are specifically designed for the modeling of processes executed in 

uniprocessor platforms and in the capture characteristic of multiprocessor real-time 

systems that these models prone to fail. Moreover, they may enforce more 

restrictions upon implementation and design of system. Mok and Dertouzos (1978) 



3 

 

 

 

showed that the algorithms that are optimal for single processor systems are not 

optimal for increased numbers of processors. 

 

One of limitations from models of uniprocessor to multiprocessor is that at 

each time, only one task can be executed upon at most one processor. It means that, 

the task does not have permission to execute in parallel platforms. Therefore, to solve 

this problem, many real-time models and scheduling algorithms have been explored. 

Divisible load model which is distributed by divisible load theory is a computation 

model that can be divided arbitrarily to different load pieces of workload and would 

be able to provide a good real-world application.   

 

 In general, if a scientific application is appropriately designed to take 

advantage of systems parallelism, its executions would be usually carried out in a 

fast and efficient way. Nevertheless, to process data efficiently is not only a matter of 

having enough processing units, but it also depends on specific characteristics of the 

workload of the application. In many cases, these applications can be naturally 

implemented in parallel by partitioning their data sets into smaller pieces and 

distributing them among the processing units of the parallel system. However, each 

partition may have different processing times and this situation may lead to 

significant imbalances in the execution time of the processing units of the 

application. 

 

Lin et al. (2007, 2010) and Chuprat (2007, 2008, 2010 and 2011) and Mamat 

(2008, 2009, 2010, 2011 and 2012)  have done research in this area and have applied 

Divisible Load Theory (DLT) to real-time systems in multiprocessor platforms. 

However, the process of load distribution causes communication delays and idle time 

for almost all the processing nodes since a processor can start computing only after 

receiving the entire load fraction assigned to it. 
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1.3 Motivation 

 

The motivation of this research is to extend Divisible Load Theory (DLT) to 

real-time systems on multiprocessor platforms to schedule the large real-time task 

and reduce processor idle time during the initialization of computation phase. 

Therefore to achieve that, the load fractions are sent in more than one round and 

totally, the whole workload is distributed between the workers in multi-round 

algorithm in many small installments or fractions rather than one big fraction in 

single-round algorithm. Moreover, another motivation of this research is to optimize 

the utilization of the resources by efficient use of available resources and minimize 

the processing time of the task is distributed between the processors in order to meet 

the task deadline. Therefore, this study, will introduce multi-round algorithms in 

real-time multi-processor applications to improve the previous findings. 

 

 

 

1.4 Problem Statement 

 

The subject of scheduling a divisible workload on real-time multiprocessor 

platforms is quite understood when all processors become available instantly at the 

same time. However, in real systems, usually, all processors that are required at the 

start time of scheduling are not available because of previous scheduling task or local 

task. This reason causes inserted idle time. Most current studies in this field are about 

distributing data in single-round algorithm and there are limited studies in multi-

round algorithm. In Divisible Load Theory (DLT), it is known that, distributing with 

single round promotes idle-time and aggregated idle-time would increase completion 

time and more processing nodes. Moreover, existing multi-round studies have some 

performance problems mainly due to inefficient use of available resources and long 

execution time for task scheduling. These issues lead to general research question:    

 

What is the effective multi-round algorithm to extend Real-Time Divisible Load 

Theory (RT-DLT) to scheduling of real-time workloads upon multiprocessor 

platforms which reduce the idle time? 
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Specifically, we consider four important issues: 

 

i. How can we calculate the minimum number of processors upon multiprocessor 

platforms in order to meet a job’s deadline? 

 

ii. How can we calculate the optimal number of rounds upon multiprocessor 

platforms in order to meet a job’s deadline? 

 

iii. How can we compute the earliest completion time in order to meet a job’s 

deadline? 

 

iv. What is the effective multi-round algorithm to extend Real-Time Divisible Load 

Theory (RT-DLT) upon multiprocessor platforms in order to meet a job’s 

deadline by evaluate and comparison with the previous multi-round algorithm? 

 

 Therefore, to solve all the afore-mentioned problems, we will use multi-round 

algorithms instead of single-round algorithm and will extend and develop it 

accordingly, so as to calculate the minimum number of processors and minimum 

execution time that requires meeting an application’s deadline in order to reduce idle 

time. 

 

 

 

1.5 Research Objectives 

 

The main aim of this research is to extend the art of Real-Time Divisible 

Load Theory (RT-DLT) for multiprocessor hard real-time scheduling in order to 

reduce processor idle time during computation and communication. Therefore, in this 

research we will design and develop multi-round algorithm which is designed for 

multiprocessor hard real-time systems in order to improve the previous single-round 

and multi-round method to  reduce initial idle time, optimum utilization of processors 

and minimize the task execution time . Some of our objectives which we have 

distinguished to achieve this aim are: 
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i. To build an effective multi-round scheduling algorithm that will calculate the 

minimum number of processors that must be assigned to a job in order to 

meets the deadline. 

 

ii. To design an efficient multi-round scheduling algorithm to determining the 

most efficient number of rounds. 

 

iii. To develop a scheduling multi-round algorithm to determine the minimum 

completion time upon a number of processor of multi-processor platform in 

order to meet deadline.  

 

iv. To compare and evaluate our real-time multi-round algorithms to previous multi-

round algorithm. 

 

 

 

1.6 Research Scope and Limitations 

 

In this research, we use special formal real-time model that is used in many 

real-time distributed system designs. Thus, there are certain units which are known 

as workloads that require performing. In the base of real-time scheduling, there are 

many constraints being observed. In this research, we limit our studies on the only 

one of these limits which is the deadline of workloads or jobs. With consideration of 

the resource system, in this research, we focus on determining the minimum number 

of processors used and the optimal number of rounds needed for our multi-round 

algorithm. Moreover, the minimum completion time will be another finding in this 

research. Even though other resources of system, such as energy and bandwidth of 

network are also important, they are not our scopes within this research. 

 

 Furthermore, in RT-DLT, several network topologies like stars, meshes and 

tree have been used. But we will limit our research to the single-level tree topology. 

This kind of topology could be the simplest model among other network topologies 

but contain many important issues when DLT is applied to real-time systems. So far, 
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most researchers have developed and analyzed divisible load theory with single-

round strategy. 

 

However, there are many problems like blocking in scheduling and idle time for 

almost all processors in this method and a processor can start executing the workload 

fraction only after receiving the whole load fraction assigned to it. Therefore, these 

complexities will be solved effectively by utilizing divisible load theory with multi-

round strategy. Thus we will restrict our research only to divisible load theory with 

multi-round method. 

 

 Also, there are some kinds of scheduling algorithms that can be joined 

potentially into RT-DLT such as Earliest Deadline Zero Laxity (EDZL)(Baker et al., 

2008), Deadline Monotonic (Leung and Whitehead, 1982, Audsley et al., 1993b), 

Rate Monotonic(Liu and Layland, 1973, Baruah and Goossens, 2003) and etc. But, 

our work is related to Earliest Deadline First (EDF) (Liu and Layland, 1973) , 

(Baruah et al., 2003). 

 

 

 

1.7 Summary of Contributions 

 

 The actual contributions in this research are generally relevant to our 

objectives that we have defined in the previous sections.   

 

 In some data, particularly intensive applications on real-time platforms, 

dividing the workloads into data fractions does not guarantee meeting the deadlines 

stipulated. It means that, total execution time of workload often exceeds the task 

deadline. Moreover, recent methods do not consider resource management efficiency 

and could not utilize IITs completely. Accordingly, we will design and implement an 

optimum methodology which will be applied on real-time multi-processor platforms 

with proper subset of task intensive application.  
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 Therefore, to prove all issues in this thesis; we will produce 4 main 

contributions that can be summarized as:   

 

i. Introducing an algorithm to calculate the minimum number of processors by 

creating a multi-round scheduling algorithm that must be assigned to a task in 

order to meet deadline. In this multi-round algorithm, we will divide the 

workload into small fractions and will allocate them to working processor in 

optimal number of rounds. Thus, the number of processors used will be 

minimal. 

 

ii. Creating an effective multi-round scheduling algorithm to determine the most 

efficient number of rounds. In this algorithm, we will select the round with 

minimum number of processors and the earliest completion time as an 

optimal round in multi-round algorithm. 

 

iii. Developing a scheduling multi-round algorithm to determine earliest 

completion time upon a number of processor on multi-processor platform in 

order to meet deadline. Thus, for approving this method, we will use multi-

round algorithms to determine the minimum processors and the optimal 

number of round for calculating the earliest completion time.  

 

iv. Evaluating our scheduling real-time multi-round algorithms to previous multi-

round algorithm to ensure that the designed multi-round algorithm will assist to 

overcoming the idle time concern as well as decrease the processing nodes and 

task completion time. 
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1.8 Organization of Thesis 

  

 In this chapter, we have developed our objectives and have also described our 

contributions and motivation of our research. Moreover, we have specified our work 

limitations and scopes. In the next chapter, we will explain the literature review, 

related works and results on real-time systems and Divisible Load Theory (DLT). In 

Chapter 3, we will present our research methodology and research procedure that 

will be used in our work. So, taking such explanation as a starting point will lead to 

significant analysis in developing our research to calculate the minimum number of 

processing node in Chapter 4.  

 

 After that, Chapter 5 presents a multi-round algorithm to calculate the 

optimal number of rounds in our multi-processor platforms. In Chapter 6, we will 

calculate the minimum completion time in an optimal round by using minimum 

number of resources and in Chapter 7, we will evaluate and compare our foundlings 

with previous multi-round algorithm on multi-processor real-time systems.  Finally, 

in Chapter 8, we will conclude our thesis and will present suggestions for the future 

studies in similar field.  Therefore, in Figure 1.1, we present the total flow of our 

thesis accordingly.  
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Figure 1. 1  Organization of Thesis 
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