NANOCRYSTALLINE DIAMOND DEPOSITED ON TUNGSTEN CARBIDE-COBALT SUBSTRATES USING HOT FILAMENT CHEMICAL VAPOUR DEPOSITION TECHNIQUE

YONG TZE MI

A thesis submitted in fulfilment of the requirements for the award of the degree of Doctor of Philosophy (Mechanical Engineering)

> Faculty of Mechanical Engineering Universiti Teknologi Malaysia

> > OCTOBER 2015

ABSTRACT

Diamond coatings on cutting tools provide the advantages of the properties of diamond in terms of high hardness, excellent wear resistance, and general chemical inertness. The main limitations of diamond coating are coating adhesion problems, high surface roughness and low production rate due to the use of coating equipment with small chamber. There is also a need to have a better understanding on the growth mechanism of diamond coatings on tungsten carbide with cobalt binder (WC-Co). Thus the motivation for this work is to obtain low surface roughness of diamond coatings while achieving good adhesion to substrates through the use of large chamber hot filament chemical vapour deposition (HFCVD) method. In this research. nanocrystalline diamond (NCD) coatings were deposited on WC-Co substrates using the HFCVD method. WC-Co was selected because it is used widely in the current tooling The cutting method was varied between precision cutting and electrical market. discharge machining EDM (Wire-Cut). It was found that precision cutting produce generally planar substrates and was the preferred method of cutting. To achieve good adhesion between the diamond coating and WC-Co substrates, the WC-Co substrates were pretreated before being deposited with diamond and some of these pretreatments parameters were varied. It was found that 20 minutes of Murakami agent treatment, 45-60 seconds of acid etching and <0.25 µm natural diamond seeding in ultrasonic bath were the best pretreatment method. The substrates were then deposited with diamond in the HFCVD chamber. Four batches of deposition were ran namely batch A, B, C and D. The overall results show that the deposited diamonds were nanocrystalline in size with cauliflower or ballas NCD morphology with various crystallite arrangements. Batch A produced generally four different types of morphologies. Type 1 was planar diamond coating morphology attributed to precision cutting effects. Type 2 was planar diamond coating morphology with micro features attributed to rough bench grinding. Type 4 was the extension of type 3 where EDM cut produced about a third tier morphology separating islands of diamond ballas aggregates. Three-tier ballas morphology improves the adhesion property where boundaries hinder failure path of the diamond coating. Batch B produced an obvious microcrystalline diamond layer under the NCD layer. Batch C produced a single layer of very thin NCD layer of only 1.7 microns. Batch D produced a layer NCD coating of about 4 microns thick by changing oxygen pulsing rate and time. X-ray diffraction (XRD) and grazing XRD showed that the diamond layer was in compression. Raman Spectrometer identified the presence of NCD. Atomic force microscope (AFM) showed the ultra-low roughness of the diamond coatings with Ra <200 nm. Nanoindentation revealed that the NCD coating has high hardness of 10-60 GPa and reduced modulus of 40 - 300 GPa. The adhesion strength is good as indicated from the indentation test. Electron microscopy results showed the ballas consist of elongated radial grains in accordance to the thickness of the NCD coating. Further magnifications revealed diamond twins that contributed to the properties and nano size of diamond crystallites. Transmission electron microscopy analyses also indicate that the NCD nucleated and grew on the tungsten carbide (100) planes in the (111) direction, forming (111) planes.

ABSTRAK

Salutan intan ke atas alat pemotong memberikan kelebihan sifat intan dari aspek kekerasan tinggi, rintangan haus yang sangat baik dan kelengaian kimia umum. Had utama salutan intan adalah masalah lekatan dengan substrat, kekasaran permukaan yang tinggi dan kadar pengeluaran yang rendah disebabkan oleh penggunaan peralatan salutan berkebuk kecil. Terdapat juga keperluan untuk memahami mekanisma pertumbuhan salutan intan ke atas substrat tungsten karbida dengan pengikat kobalt (WC-Co). Oleh itu motivasi untuk menjalankan kerja ini adalah untuk menghasilkan salutan intan berkekasaran rendah dengan kekuatan lekatan kepada substrat yang baik menggunakan alat pengendapan wap kimia filamen panas (HFCVD) berkebuk besar. Dalam kajian ini, salutan intan nanokristal (NCD) telah diendapkan ke atas substrat WC-Co menggunakan kaedah HFCVD. WC-Co dipilih kerana ianya diguna secara meluas dalam pasaran alat pemotong semasa. Substrat dipotong dengan kaedah pemotongan persis atau kaedah pemotongan nyah-cas elektrik (EDM) (wayar). Didapati pemotongan persis menghasilkan substrat yang rata dan dipilih sebagai kaedah pemotongan yang lebih sesuai. Untuk mendapatkan lekatan yang baik, substrat WC-Co telah dipra-rawat sebelum intan diendap dan parameter pra-rawatan dipelbagaikan. Didapati bahawa dengan rawatan Murakami ejen selama 20 minit, punaran asid selama 45-60 saat dan pembenihan dengan intan semulajadi bersaiz <0.25µm di dalam mandian ultrasonik adalah kaedah pra-rawatan terbaik. Selepas itu intan diendapkan ke atas substrat di dalam kebuk HFCVD. Sebanyak empat kelompok endapan telah dijalankan dan dinamakan kelompok A, B, C dan D. Keputusan secara keseluruhan menunjukkan bahawa intan yang diendapkan bersaiz nano dengan morfologi kubis bunga atau ballas NCD dengan pelbagai susunan kristalit. Kelompok A menghasilkan empat jenis morfologi. Jenis 1 adalah lapisan intan bermorfologi rata disebabkan oleh kesan pemotongan persis. Jenis 2 adalah seperti jenis 1 tetapi berciri mikro disebabkan oleh kesan kisaran kasar daripada pengisar meja. Jenis 4 yang merupakan lanjutan morfologi jenis 3 yang dihasilkan oleh kesan pemotongan EDM. Potongan EDM ini menghasilkan morfologi berperingkat tiga yang melibatkan pemisahan agregat-agregat ballas. Morphologi ini membaiki sifat lekatan dengan cara memberhentikan kemajuan laluan kegagalan di sempadan agregat ballas. Kelompok B menghasilkan lapisan intan mikrokristal di bawah lapisan NCD. Kelompok C menghasilkan lapisan tunggal NCD yang sangat nipis jaitu hanya 1.7 um. Kelompok D menghasilkan lapisan salutan NCD yang tebalnya lebih kurang 4 mikron dengan memendekkan masa pengendapan dan menukar kadar denyutan dan masa oksigen. Pembelauan sinar-X (XRD) dan XRD geseran menunjukkan lapisan intan dalam keadaan mampatan. Spektrometer Raman mengenalpasti kehadiran NCD. Mikroskop daya atom menunjukkan kekasaran permukaan yang teramat rendah, Ra <200nm. Pelekuk nano menunjukkan salutan intan mempuyai kekerasan yang sangat tinggi, 10-60 GPa dan modulus terkurang 40 – 300 GPa. Kekuatan lekatan adalah baik sebagaimana ditunjukkan oleh ujian lekukan. Keputusan mikroskopi elektron menunjukkan intan bermorfologi ballas terdiri daripada bijian jejari memanjang selari dengan ketebalan salutan NCD. Pembesaran seterusnya mendedahkan kembar intan yang menyumbang kepada sifat dan saiz nano kristalit intan. Analisis mikroskop elektron transmisi juga menunjukkan bahawa intan NCD tumbuh dan membesar ke atas satah (100) tungsten karbida pada arah <111> dan membentuk satah (111).

TABLE OF CONTENTS

CHAPTER		TITLE	PAGE
	DEC	LARATION	ii
	DED	ICATION	iii
	ACK	NOWLEDGEMENTS	iv
	ABST	TRACT	v
	ABST	ГКАК	vi
	TABI	LE OF CONTENTS	vii
	LIST	OF TABLES	xiv
	LIST	OF FIGURES	xvi
	LIST	OF ABBREVIATIONS	xxviii
	LIST	OF SYMBOLS	xxix
	LIST	OF APPENDICES	xxxi
1	INTR	RODUCTION	1
	1.1	Background of Research	1
	1.2	Problem Statement	2
	1.3	Objectives of Research	3
	1.4	Scopes of the Research	4
	1.5	Significance of the Research	4
	1.6	Organisation of Thesis	5
2	LITE	RATURE REVIEW	6
	2.1	Introduction	6
	2.2	Overview on Tungsten Carbide as a Cutting Tool	6
		2.2.1 Structure and Properties of Tungsten	
		Carbide (WC-Co)	7

2.3	Diamo	ond as Coating Material	8
	2.3.1	Structure and Properties of Diamond	8
	2.3.2	Diamond Characteristics as a Coating for	
		Cutting Tools	11
	2.3.3	Advantages of Nanocrystalline Diamond	
		Over Microcrystalline Diamond	16
2.4	Overv	iew on Deposition Mechanism	16
	2.4.1	Introduction	17
	2.4.2	Nucleation of CVD diamonds	18
		2.4.2.1 Heterogeneous Nucleation	19
		2.4.2.2 Homogeneous Nucleation	20
		2.4.2.3 Charged Cluster Model	20
		2.4.2.4 Hydrocarbon Subplantation	21
		2.4.2.5 Cauliflower Nucleation	21
		2.4.2.6 NCD Nucleation Sites Associated with	
		Bias Enhanced Nucleation	22
	2.4.3	Growth of Chemical Vapour Deposited	
		Diamonds	23
		2.4.3.1 Growth Mechanisms of	
		Microcrystalline Diamond Film	24
		2.4.3.2 Growth Mechanisms of Nanocrystalline	
		Diamond Films	27
2.5	Overv	iew on Diamond Deposition Methods	28
	2.5.1	Chemical Vapour Deposition (CVD) Methods	28
		2.5.1.1 Microwave Plasma Chemical Vapour	
		Deposition Method (MPCVD)	29
		2.5.1.2 Hot Filament Chemical Vapour	
		Deposition Method (HFCVD)	30
		2.5.1.3 Plasma Arc Jet Deposition Method	31
	2.5.2	Advantages of Hot Filament Chemical Vapour	
		Deposition Method over Microwave Plasma	
		Chemical Vapour Deposition Method	32
2.6	Effect	s of Chemical Vapour Deposition Parameters	
	and St	urface Preparation towards	

	Nanoc	rystalline Diamonds Formation	33
	2.6.1	Pressure and Gas Flow Rate	33
	2.6.2	Filament and Substrate Temperature	37
	2.6.3	Gas Composition	41
	2.6.4	Bias Enhanced Nucleation (BEN)	44
	2.6.5	Surface Preparation and Adhesion of	
		Diamond to Tungsten Carbide Surface	45
2.7	Diamo	nd Quality and Morphology of	
	Nanoc	rystalline Diamonds	48
	2.7.1	Diamond Quality	48
		2.7.1.1 Raman Spectroscopy	48
		2.7.1.2 X-Ray Diffraction Spectroscopy	52
	2.7.2	Morphology of Diamond Surface	53
		2.7.2.1 Atomic Force Microscope (AFM)	
		and Profilometer	53
		2.7.2.2 Optical and Scanning Electron	
		Microscopy (SEM)	54
	2.7.3	Interface Observations by Transmission	
		Electron Microscopy (TEM)	55
	2.7.4	Mechanical Properties of Nanocrystaline	
		Diamonds	57
		2.7.4.1 Hardness and Young's Modulus	57
		2.7.4.2 Diamond Adhesion	57
2.8	Summ	ary	61
METH	ODOL	DGY	63
3.1	Introd	uction	63
3.2	Substr	ate Material	65
	3.2.1	Sample Preparation	65
	3.2.2	Substrate Pretreatments and Seeding	66
3.3	Nano-	crystalline Diamond (NCD) Deposition by Hot	
	Filame	ent Chemical Vapour Deposition Method	71
	3.3.1	Hot Filament Chemical Vapour Deposition	
	((HFCVD) Machine	72

	3.3.2	Deposition Parameters	72
3.4	Mater	ials Characterisation	75
	3.4.1	Raman Spectrometry	75
	3.4.2	X- Ray Diffractometry	75
	3.4.3	Scanning Electron Microscopy	76
		3.4.3.1 Sample Preparation for Microscopy	
		Analysis	76
	3.4.4	Transmission Electron Microscopy	76
		3.4.4.1 Sample Preparation for TEM Analysis	77
	3.4.5	Atomic Force Microscope (AFM) and	
		Profilometer	80
3.5	Mecha	anical Testing	80
	3.5.1	Adhesion Test	80
	3.5.2	Nanoindentation	81
RES	ULTS AN	D DISCUSSION	82
4.1	Introd	uction	82
4.2	Substr	rate Materials	82
4.3	Effect	s of Cutting on the Diamond Coating	83
	4.3.1	Effects of Cutting on Tungsten Carbide	
		Substrate	84
	4.3.2	Effects of Cutting on the Diamond	
		Coating Morphology	87
		4.3.2.1 Morphology Type 1 - Planar	88
		4.3.2.2 Morphology Type 2	91
		4.3.2.3 Morphology Type 3	93
		4.3.2.4 Morphology Type 4	96
		4.3.2.5 Effects of No Pretreatment to	
		Diamond Coating Morphology	
		and Adhesion	99
	4.3.3	Thickness and Cross-section View	100
	4.3.4	Effects of Pretreatment on Adhesion	101
	4.3.5	Effects of Cutting on the Diamond	
		Topography and Surface Roughness	103

		4.3.5.1Topography and Surface Roughness	
		for Morphology Type 1	104
		4.3.5.2 Topography and Surface Roughness	
		for Morphology Type 2	109
		4.3.5.3Topography and Surface Roughness	
		for Morphology Type 3	114
		4.3.5.4Topography and Surface Roughness	
		for Morphology Type 4	119
		4.3.5.5Topography and Surface Roughness	
		Diamond Coating on Non-pretreated	
		Substrates	124
	4.3.6	Characterisation of Diamond Coating in	
		Batch A	129
		4.3.6.1 X-Ray Diffraction	129
		4.3.6.2 Raman Spectroscopy Results	140
	4.3.7	Mechanical Properties of Diamond Coating	
		Batch A	142
4.4	Effects	of Seeding Size on the Diamond	
	Coating	Batch B	144
	4.4.1	Effects of Seeding on Tungsten Carbide	
		Substrate	144
	4.4.2	Effects of Seeding on the Diamond	
		Morphology and Topography	147
	4.4.3	Characterisation of Diamond Coating	
		in Batch B	152
	4.4.4	Mechanical Properties of Diamond Batch B	154
4.5	Effects	of Hammering on the Diamond Coating	
	Batch C	6 9	155
	4.5.1	Effects of Hammering during Seeding on	
		Tungsten Carbide Substrate	155
	4.5.2	Effects of Hammering during Seeding on	
		the Diamond Morphology and Topography	157
	4.5.3	Characterisation of Diamond Coating in	
		Batch C	164

	4.5.4	Mechanical Properties of Diamond Batch C	167
4.6	Effects	of Variation of Chemical Etching Time	
	on Dia	mond Coating in Batch D	169
	4.6.1	Effects of Variation of Chemical Etching	
		Time on Substrate	169
	4.6.2	Effects of Variation of Chemical Etching	
		Time on the Diamond Morphology and	
		Topography	172
	4.6.3	Characterisation of Diamond Coating in	
		Batch D	181
	4.6.4	Mechanical Properties of Diamond Coating	
		of Batch D	184
1.7	Effects	of Modifications of Deposition Parameters	
	on Dia	mond Coating	185
	4.7.1	Effects of Deposition Time Variation and	
		Oxygen Pulsing Rate Variation on the	
		Diamond Coating	185
		4.7.1.1 Effects of Deposition Time Variation	
		and Oxygen Pulsing Rate Variation on	
		the Diamond Coating Thickness	186
		4.7.1.2 Effects of Deposition Time Variation	
		on the Diamond Coating Quality,	
		Morphology and Mechanical Properties	187
4.8	Nuclea	tion and Growth Mechanism of the	
	Nanocr	ystalline Diamond Coating	191
	4.8.1	Nucleation and Growth Mechanism of	
		Ballas Diamond	191
4.9	Summa	ary	211
CON	CLUSIC	ONS AND RECOMMENDATIONS	
FOR	FUTUR	E WORK	214
5.1	Conclu	sions	214

5.2	Limitations of Current Work and	
	Recommendations for Future Work	216
REFERENCES		218
Appendices A - D		235 - 259

LIST OF TABLES

TABLE NO.	TITLE	PAGE
2.1	Comparison in term of properties for different kind of	
	diamond [2, 8, 28, 33-39]	12
2.2	Actual and potential application of CVD diamond [31]	13
2.3	Summary of existing pretreatments for WC-Co and	
	diamond deposition parameters variation for HFCVD	
	method	46
2.4	Examples of other pretreatment methods	47
2.5	Adhesion behaviour of diamond coating on WC-Co	
	substrates for cutting tools application	60
3.1	Summary of substrate preparation for diamond deposition	65
3.2	Batch A substrates and their pretreatments	69
3.3	Batch B substrates and their pretreatments	70
3.4	Batch C substrates and their pretreatments	70
3.5	Batch D substrates and their pretreatments	71
3.6	Hot filament chemical vapour deposition parameters for	
	batch B	73
3.7	Hot filament chemical vapour deposition parameters for	
	batch C	73
3.8	Hot filament chemical vapour deposition parameters for	
	batch D	74
4.1	The calculated intercept and slope of Williamson-Hall plot	
	and the strain calculated for each sample	139
4.2	Various surface roughness values measured from diamond	
	surface of batch B	150

4.3	Line roughness data obtained from cross-section profile in	
	Figure 4.67 (b)	150
4.4	Various surface roughness values measured from diamond	
	surface of batch B	151
4.5	Line roughness data obtained from cross-section profile in	
	Figure 4.68 (b)	151
4.6	Various surface roughness values measured from diamond	
	surface of batch C	162
4.7	Line roughness data obtained from cross-section profile in	
	Figure 4.79 (b)	162
4.8	Various surface roughness values measured from diamond	
	surface of batch C	163
4.9	Line roughness data obtained from cross-section profile in	
	Figure 4.80 (b)	163
4.10	Summary of change in WC intensity	166
4.11	Effects of chemical etching time on surface cobalt	
	concentration	170
4.12	Various surface roughness values measured from diamond	
	surface of batch D	176
4.13	Line roughness data obtained from cross-section profile in	
	Figure 4.92 (b)	176
4.14	Various surface roughness values measured from diamond	
	surface of batch D	177
4.15	Line roughness data obtained from cross-section profile in	
	Figure 4.93 (b)	177
4.16	Surface roughness properties diamond coating of batch D	
	for 2µm x 2µm scan size	180
4.17	Comparison between nano crystallite, crystal or grain and	
	ballas size of batch A and its' four morphologies, batches	
	B, C and D	188
4.18	Standard d-spacing for tungsten carbide and diamond	
	planes	200

LIST OF FIGURES

FIGURE NO.	TITLE	PAGE
2.1	Carbon atoms (darker spheres) packed inside tungsten	
	(lighter spheres) lattice [29]	7
2.2	Phase diagram of carbon	8
2.3	Schematic diagram of crystal structure of hexagonal	
	graphite with ABAB stacking sequence	9
2.4	A schematic diagram of basic cubic crystal structure of	
	diamond with {111} planes with A-B-C stacking	
	sequence [31]	9
2.5	Schematic of unit cell of cubic diamond (the larger	
	spheres are to indicate nearer carbon atoms to the reader)	
	[32]	10
2.6	Schematic of the simple crystals shape of diamonds and	
	the combination of simple cubic (C), dodecahedron (D)	
	and octahedron (O) crystals [31]	10
2.7	Idiomorphic crystal shapes of diamond for different	
	values of the growth parameter, α [31]	15
2.8	Growth process of a diamond film on a non-diamond	
	substrates: (a) nucleation of individual crystallites (b-c)	
	termination of nucleation, and growth of individual	
	crystallite (d) faceting and coalescence of individual	
	crystallites and formation of continuous film (e-f) some	
	crystals grow faster and swallow their neighbours during	
	growth of continuous film [31]	18
2.9	Schematic of cauliflower particle growth suggesting	
	preferential <110> orientation during NCD film	22

xvi

	deposition. SEM inset showing a plan view of one of the	
	cauliflower spherical particles [75]	
2.10	Schematic of the reaction process occurring at the	
	diamond surface leading to stepwise addition of CH3	
	species and diamond growth [51]	26
2.11	Potential energy surface for C2 addition to diamond (110)	
	surface (barriers are underlined) [24]	27
2.12	Generalized schematic of the physical and chemical	
	process occurring in CVD diamond reactor [75]	29
2.13	Schematic of microwave plasma chemical vapour	
	deposition unit [31]	30
2.14	Schematic of HFCVD [31]	31
2.15	Plasma arc jet deposition method schematic diagram [31]	31
2.16	SEM images of the grain size increase from (a) 5 kPa (b)	
	2.8 kPa (c) 1.0 kPa (d) 0.5 kPa (e) 0.25 kPa (f) 0.125 kPa	
	[16]	35
2.17	Pressure and flow rate are varied as follow; (a) 10 mbar,	
	50 ml min ⁻¹ (b) 50 mbar, 50 ml min ⁻¹ (c) 100 mbar 50 ml	
	min ⁻¹ (d) 50 mbar, 75 ml min ⁻¹ (e) 200 mbar, 50 ml min ⁻¹	
	(f) 50 mbar, 100 ml min ⁻¹ (g) 50 mbar, 25 ml min ⁻¹ [88]	36
2.18	Simplified Bachmann diagram [30]	43
2.19	Plan view of: MCD diamond film with (a) {110}	
	triangular phases (b) {100} square phases (c) NCD	
	diamond film and (d) cauliflower aggregates [16, 18]	54
2.20	HRTEM micrograph of the diamond film. The	
	encapsulate shows the location of one NCD grain	
	surrounded by amorphous structure [90]	56
3.1	Flow chart for the research methodology	64
3.2	CC800®/Dia low pressure HFCVD machine (a) actual	
	equipment and (b) schematic drawing of the inside of the	
	deposition chamber	72
3.3	TEM sample preparation using focus ion beam (FIB) (a)	
	Pt protective layer was deposited (b) two side trenches	
	were ion milled (c) incomplete U was milled. 45° tilt (d)	

	holder brought near and welded to sample and complete	
	'U' milling (e) sample lift off (f) sample brought to Cu	
	ring (g) sample welded to Cu ring (h) part of sample	
	milled off to release holder (i) cross-sections were	
	measured (j) bulk diamond was milled off for stability (k)	
	sample thinning until it is electron transparent and (1) final	
	thickness of 87.42 nm	79
4.1	SEM micrograph and EDS analysis of as-received WC-	
	Co substrate (a) micrograph of as-received WC-Co (b)	
	EDS spot analysis on light region (c) EDS spot analysis	
	on dark region and (d) Overall EDS analysis	83
4.2	FESEM micrograph of WC-Co substrate surface after	
	being cut by precision cutting machine and before	
	pretreatment	84
4.3	SEM micrograph of WC-Co substrate surface after EDM	
	cutting (a) SEM image using detector 1 showing the	
	redeposited porous layer after EDM (Wire-Cut) (b) The	
	detector 2 shows the boundary-like network on the	
	substrate surface (c) further magnification of (b) reveal	
	the boundary-like network is actual a line of pores and (d)	
	even further magnification of (b) and (c) shows depletion	
	of cobalt on substrate surface	85
4.4	Spot EDS results showing presence of reduced amount of	
	Co even before chemical pretreatments	86
4.5	Average surface roughnesses after each step of	
	pretreatment	87
4.6	WC-Co substrate surface pretreatment prior diamond	
	deposition	87
4.7	Optical micrographs of morphology type 1 (a) x 200 and	
	(b) x 500	89
4.8	FESEM micrograph of morphology type 1 at low	
	magnifications (a) x 1000 (b) x 2500 (c) x 10 000 and (d)	
	x 25 000	89

4.9	FESEM micrograph of morphology type 1 at high	
	magnification (a) x 50 000 (b) x 75 000	90
4.10	FESEM micrograph of morphology type 1 at further	
	magnifications (a) presence of few cubic and octahedral	
	crystals and (b) diamond crystals with no clear facets. (a)	
	x 150 000 and (b) x 200 000	91
4.11	FESEM and EDS results of diamond coating of substrate	
	which has been precision cut to represent batch A	91
4.12	Optical micrograph of morphology type 2 (a) Uniformly	
	coated surface and (b) Diamond coated scratches	92
4.13	FESEM micrograph of morphology type 2 (a) x 500 (b) x	
	150	92
4.14	Optical micrograph of morphology type 3 (a) network-	
	like structure of diamond (x 200) and (b) diamond ballas	
	are observable within the boundaries (x 500)	94
4.15	SEM micrograph of morphology type 3 (a) fine	
	boundaries (x 500) and (d) higher magnification of the	
	boundaries (x 25 000)	94
4.16	FESEM micrographs of morphology type 3 shows new	
	layers of ballas growing on previous layer of diamond (a)	
	sparingly propagation of new ballas layer area, encircled	
	is a large ballas about 30 microns in diameter and (b)	
	elaborate propagation of new ballas layer area	94
4.17	FESEM images of morphology type 3 with bright	
	particles at various magnifications (a) x 1000 (b) x 2500	
	(c) x 5000 (d) x 10 000 and (e) x 25 000	95
4.18	FESEM and EDS results showing presence of cobalt	
	particles	96
4.19	Optical micrograph of morphology type 4 (a) x 200 and	
	(b) x 500	98
4.20	FESEM micrograph showing diamond ballas on the floors	
	of the boundaries (a) x 500 and (b) x 1000	98
4.21	FESEM image and EDS results of morphology type 4	98

4.22	FESEM micrograph showing an unaggregated single	
	ballas	99
4.23	Cross-sectional FESEM micrograph of morphology type	
	4 (a) low magnification to show multiple nicks and (b)	
	high magnification to show a diamond coated nick	99
4.24	Micrograph of diamond coating on untreated substrates	
	(a) Optical (x 500) (b) FESEM (x 25 000)	100
4.25	FESEM micrograph showing thickness of diamond to be	
	about 6 µm	101
4.26	FESEM micrograph diamond cross-section (a) uniform	
	diamond layer and (b) non-uniform diamond layer	101
4.27	SEM micrograph of cross-sectioned diamond coating	
	(plan view)	102
4.28	SEM image showing different types of break off surface	
	(a) intra-ballas break-off (b) inter-ballas break-off (c)	
	break off follows the boundaries (d) intra-ballas with	
	cracks on the surface of diamond	103
4.29	3D topographical view of morphology type 1 at different	
	scan size	105
4.30	2D plan view and line profile of morphology type 1 at	
	different scan size	106
4.31	Graph of surface roughness vs. scan size for morphology	
	type 1	108
4.32	Roughness vs. profile line distance for morphology type 1	109
4.33	3D topographical view of morphology type 2 of different	
	scan size	110
4.34	2D plan view and line profile of morphology type 2 at	
	different scan size	111
4.35	Graph of surface roughness vs. scan size for morphology	
	type 2	113
4.36	Roughness vs. profile line distance for morphology type 2	114
4.37	3D topographical view of morphology type 3 of different	
	scan size	115

XX

4.38	2D plan view and line profile of morphology type 3 at	
	different scan size	116
4.39	Surface roughness vs. scan size for morphology type 3	118
4.40	Roughness vs. line scan distance for morphology type 3	119
4.41	3D topographical view of morphology type 4 of different	
	scan size	120
4.42	2D plan view and line profile of morphology type 3 at	
	different scan size	121
4.43	Surface roughness vs. scan area for morphology type 4	123
4.44	Roughness vs. line distance for morphology type 4	124
4.45	3D topographical view of diamond grown on non-	
	pretreated substrates of different scan size	125
4.46	2D plan view and line profile of diamond coating grown	
	on non-pretreated substrates at different scan size	126
4.47	Surface roughness vs. scan area for diamond coating	
	grown on non-pretreated substrates	128
4,48	Roughness vs. line distance for diamond coating grown	
	on non-pretreated substrates	128
4,49	XRD results from batch A using θ -2 θ scan with large	
	incident angle	130
4.50	XRD results for diamond deposited in batch A using	
	detector scan with (a) 1.0 degree grazing angle (b) 1.5	
	degree grazing angle (c) 2.0 degree grazing angle (d) 2.5	
	degree grazing angle and (e) 3.0 degree grazing angle	131
4.51	2.0 degrees grazing angle XRD results of morphology	
	type 1 with green line representing diamond peaks and	
	blue lines representing WC peaks	133
4.52	2.0 degrees grazing angle XRD results of morphology	
	type 2 with green line representing diamond peaks and	
	blue lines representing WC peaks	134
4.53	2.0 degrees grazing angle XRD results of morphology	
	type 3 with green line representing diamond peaks and	
	blue lines representing WC peaks	135

4.54	2.0 degrees grazing angle XRD results of morphology	
	type 4 with green line representing diamond peaks and	
	blue lines representing WC peaks	136
4.55	2.0 degrees grazing angle XRD results diamond coating	
	on unpretreated substrate with green line representing	
	diamond peaks and blue lines representing WC peaks	137
4.56	Williamson-Hall plot for samples morphology type 1, 2,	
	3, 4 and diamond coating on unpretreated substrate	139
4.57	Raman spectrometry of sample N, representing	
	morphology type 1, C representing morphology type 4	
	and AJ, representing diamond coating on unpretreated	
	substrate (a) 200-4000 cm ⁻¹ (b) 1000-2000 cm ⁻¹	142
4.58	Optical micrograph of diamond delamination under 15kg	
	Rockwell indentation of unpretreated substrate	143
4.59	Nanoindentation test results for batch A	144
4.60	FESEM (secondary electrons) micrograph of substrates	
	seeded with ${<}1~\mu\text{m}$ natural diamond seeds. (a) $x~5~000$ and	
	(b) x 25 000	145
4.61	FESEM (back scattered electrons) micrograph and spot	
	EDS results showing higher carbon at bright area thus	
	suggesting it is a diamond seed while dark area, shows	
	lower carbon mass percentage	145
4.62	FESEM micrograph of substrates seeded with ${<}0.5~\mu\text{m}$	
	synthetic diamond seeds (a) $x\ 10\ 000$ and (b) $x\ 50\ 000$	146
4.63	FESEM micrograph of substrates seeded with <0.25 μm	
	natural diamond seeds (a) x 10 000 and (b) x 50 000 $$	146
4.64	FESEM micrograph of substrates seeded with $<0.1 \ \mu m$	
	synthetic diamond seeds (a) $x\ 10\ 000$ and (b) $x\ 100\ 000$	
	and (c) x 25 000	147
4.65	Optical micrograph of diamond coating of batch B (a)	
	planar view (x 500) and (b) cross-section view (x 500)	148
4.66	FESEM micrographs of diamond coating of batch B (a)	
	cross-section of diamond multi-layered (x 20 000) (b)	
	interface between MCD and NCD (x 50 000) (c) cross-	149

	section of diamond multi-layered coating with	
	delaminated NCD layer (x 25 000) (d) planar view of	
	NCD layer (x 150 000)	
4.67	AFM image of diamond coating of batch B (20 µm x 20	
	µm) (a) 2D plan view and (b) Cross-section profile	150
4.68	AFM image of diamond coating of batch B (1 μ m x 1 μ m)	
	(a) 2D plan view and (b) Cross-section profile	151
4.69	Summary of XRD results for sample of batch B with	
	variation of seeding method	153
4.70	Summation of Raman spectra of the diamond coatings	153
4.71	Nanoindentation test results of sample from batch B	155
4.72	FESEM micrographs of substrates seeded with $<1 \ \mu m$	
	natural diamond seeds (a) x 2500 (b) x 25 000 (c) x 100	
	000 and (d) x 100 000	156
4.73	FESEM micrographs of substrates seeded with <0.25 μm	
	natural diamond seeds (a) $x\ 10\ 000$ (b) $x\ 50\ 000$ and (c) x	
	200 000	157
4.74	Optical micrograph of batch C (a) planar view (x 500) (b)	
	cross-section view (x 500)	158
4.75	FESEM micrographs of diamond coatings of batch C (a)	
	fractured surface, planar view, x 500 (b) Planar view, x	
	5000 (c) Planar view, x 100 000	158
4.76	FESEM micrographs of diamond cross-section of batch C	
	(a) x 15 000 (b) x 25 000 (c) x 15 000 (d) x 15 000 (e)	
	fracture surface of cross-section, x 15 000 and (f) ground	
	surface of cross-section, x 15 000	159
4.77	FESEM micrograph of diamond cross-section of batch C,	
	x 100 000	160
4.78	3D topographical view diamond coating of batch C of	
	different scan size	161
4.79	Diamond coating by batch C of 10 μ m x 10 μ m (a) 2D	
	plan view and (b) line profile	162
4.80	Diamond coating by batch C of 500 nm x 500 nm (a) 2D	
	plan view and (b) line profile	163

4.81	XRD result for diamond coating of batch C of seeding	
	treatment with no hammering	165
4.82	XRD result for diamond coating of batch C of seeding	
	treatment with hammering	165
4.83	Raman spectrum of diamond coating in batch C	167
4.84	Optical micrograph of indentation site of diamond coating	
	in batch C	168
4.85	Optical micrograph crack of coating instead of	
	delamination	168
4.86	Nanoindentation test results of diamond coating in batch	
	С	169
4.87	Optical micrograph of diamond coating cross-section of	
	batch D (a) 15 minutes Murakami agent (b) 20 minutes	
	Murakami agent (c) 25 minutes Murakami agent (d) 30	
	minutes Murakami agent (e) 30 seconds acid etching and	
	(f) 45 seconds acid etching. (a), (b), (c) and (d) 60	
	seconds acid etching time. (e) and (f) 20 minutes	
	Murakami agent	171
4.88	Optical micrograph showing plan view of diamond	
	coating deposited using batch D parameters	172
4.89	FESEM micrograph of diamond coating of batch D (a) x	
	100 000 and (b) x 250 000	173
4.90	FESEM micrograph of diamond cross-section deposited	
	using batch D parameters (a) x 10 000 (b) x 25 000 (c) x	
	50 000, with dark lines to illustrate growth of diamond	
	and (d) x 100 000	173
4.91	3D topographical view diamond coating of batch D of	
	different scan size	175
4.92	Diamond coating by batch D of 20 µm x 20 µm (a) 2D	
	plan view and (b) line profile	176
4.93	Diamond coating by batch D of 500 nm x 500 nm (a) 2D	
	plan view and (b) line profile	176
4.94	AFM topography results of diamond coating of batch D	178

4.95	AFM DMT Modulus map results of diamond coating of	
	batch D	179
4.96	AFM dissipation map results of diamond coating of batch	
	D	179
4.97	AFM adhesion results of diamond coating of batch D	180
4.98	5 mm surface profile of diamond coating of batch D	181
4.99	XRD results of diamond coating of batch D of different	
	chemical pretreatment	182
4.100	A zoom in of the diamond 43.9° peaks of XRD results	
	diamond coating of batch D of different chemical	
	pretreatment and corresponding FPM Eval model created	183
4.101	Raman spectra of diamond coating of batch D	184
4.102	Nanoindentation test results of diamond coating deposited	
	using batch D parameters	185
4.103	Relative thickness of diamond coatings between batches	
	A, B, C and D	187
4.104	Relative surface roughness of batches A B, C and D	190
4.105	The comparison between hardness, reduce modulus and	
	elastic modulus between batches A, B, C and D	191
4.106	FESEM micrograph of diamond cross-section of batch D	
	(a) cross-section of two ballases and (b) a copy of image	
	(a) with schematic drawings (blue colour are location of	
	two cross-section ballas, red colour is a removed ballas,	
	lines are identified radial diamond crystals)	194
4.107	FESEM micrographs of fracture diamond coating of batch	
	D with radial grains (a), (b) and (c) x 100 000, (d) and (e)	
	x 200 000	195
4.108	FESEM micrographs of fracture diamond coating of batch	
	D with radial grain	196
4.109	FESEM micrographs of fracture diamond coating of batch	
	D with boundary where two ballas meet	196
4.110	FESEM micrographs of fracture diamond coating of batch	
	D with parallel growing grains (a) x 250 000 (b) x 200 $$	
	000	196

4.111	Schematic diagram of NCD crystal growth	197
4.112	TEM micrograph of the WC-diamond interface (a) growth	
	of diamond in substrate crevices and (b) TEM micrograph	
	diamond layer adjacent to the tungsten carbide-diamond	
	interface	198
4.113	Selected area diffraction (SAD) patterns (a) the	
	approximate area indicator of SAD (b) area 1 (c) area 2	
	(d) area1_C and (e) area2_C (f) schematic diagram of	
	SAD of WC (g) schematic diagram of SAD of diamond	199
4.114	TEM and FFT micrograph of the diamond interface (a)	
	High resolution TEM (x 250 000) (b) FFT of entire	
	micrograph (c) FFT of ROI 1 (d) FFT of ROI 2 (e) FFT of	
	ROI 3 (f) FFT of ROI 4 (g) FFT of ROI 5	202
4.115	High resolution TEM micrograph of the WC-diamond	
	interface	203
4.116	Schematic cross-section of diamond on tungsten carbide	
	with respect to {111} FCC diamond 90° to the (100) HCP	
	WC planes. (Red-green-blue spheres represent the ABC	
	stacking of the {111} planes of diamond and light green	
	spheres represent tungsten atoms. Both grey spheres	
	represent carbon atoms.)	204
4.117	Schematic single layer diamond atoms on tungsten	
	carbide with respect to {111} FCC diamond 90° to the	
	(100) HCP WC planes (Plan view). (Red-green-blue	
	spheres represent the ABC stacking of the {111} planes of	
	diamond and light green spheres represent tungsten	
	atoms. Grey spheres represent carbon atoms. The light	
	hatched green spheres represent tungsten atoms of the	
	next layer.)	205
4.118	High resolution TEM image of defects in the diamond	206
4.119	TEM micrograph of diamond coating and its' EDS results	207
4.120	TEM micrograph of diamond coating deposited using	
	batch D parameters (a) TEM image of location of FFT	208

	performed (x 250 000) (b) FFT image and (c) FFT image	
	with masking	
4.121	High resolution TEM micrograph of diamond adjacent to	
	WC substrate	209
4.122	Schematic cross-section of diamond on tungsten carbide	
	with respect to {111} FCC diamond 76° to the (100) HCP	
	WC planes (Red-green-blue spheres represent the ABC	
	stacking of the {111} planes of diamond and light green	
	spheres represent tungsten atoms. Both grey spheres	
	represent carbon atoms.)	210
4.123	Schematic single layer diamond atoms on tungsten	
	carbide with respect to {111} FCC diamond 76° to the	
	(100) HCP WC planes (Plan view). (Red-green-blue	
	spheres represent the ABC stacking of the {111} planes of	
	diamond and light green spheres represent tungsten	
	atoms. The light hatched green spheres represent tungsten	
	atoms of the next layer. Grey spheres represent carbon	
	atoms.)	210

LIST OF ABBREVIATIONS

AFM	-	Atomic Force Microscope		
BEN	-	Bias Enhanced Nucleation		
CVD	-	Chemical Vapour Deposition		
EDM	-	Electrical Discharge Machining		
FIB	÷	Focus Ion Beam Milling		
HFCVD	-	Hot Filament Chemical Vapour Deposition		
HPHT	۰.	High Pressure High Temperature		
HRTEM		High Resolution Transmission Electron Microscope		
MCD	-	Microcrystalline Diamonds		
MEMS	-	Microelectromechanical Systems		
MPCVD	-	Microwave Plasma Chemical Vapour Deposition		
NCD		Nanocrystalline Diamonds		
PVD	- 1	Physical Vapour Deposition		
RMS	-	Root Mean Square		
SAD	- :	Selected Area Diffraction		
SEM	-	Scanning Electron Microscopy		
SIMS	-	Secondary Ion Mass Spectrometry		
TEM	-	Transmission Electron Microscope		
UNCD	÷	Ultra Nanocrystalline Diamonds		
XRD	-	X-Ray Diffraction		
XRF	-	X-Ray Fluorescence		

LIST OF SYMBOLS

		minute (degree)
%		percent
	i.e.	degree
°C	: 7 1	degree Celsius
A		Ampere
Å		Angstrom
at.%	~	atomic percent
atm	-	atmosphere
bar	-	bar (10 ⁵ Pascal)
cm	-	centimetre
eV	-	electron Volt
g	-	gram
GPa	-	Gigapascal
hr	-	hour
J		Joule
K	٠	Kelvin
keV	-	kilo-electron Volt
kg	. . .	kilogram
kJ	-	kilojoule
kPa		kilopascal
kV	-	kilovolt
1		liter
m	-	meter
mbar	-	milli-bar
min	-	minute
ml	-	millilitre
mln/minute	3 4	milliliter normal per minute

mm	10 7 0	millimetre
kPa	-	kilopascal
MPa	-	Megapascal
Ν	-	Newton
nm	-	nanometer
Ра	-	Pascal
pm	-	picometer
S	-	second
V	-	Volt
vol.%	-	volume percent
W	-	Watt
wt.%	-	weight percent
α		growth parameter
Δa	-	slope angle
θ	-	Angle
$\theta_{\rm B}$	-	Bragg's angle
λ	-	wavelength
λο	-	Cut-off value
μm	-	micrometer

LIST OF APPENDICES

APPENDIX	TITLE	PAGE
A	Atomic Force Microscopy Data	235
В	X-Ray Diffraction Data	240
С	Optical Micrographs of Adhesion Test	257
D	Publications	259

xxxi

CHAPTER 1

INTRODUCTION

1.1 Background of Research

Diamond is a wonder of nature and has properties exceeding other materials such as extreme hardness, high thermal conductivity and wear resistance; and low coefficient of friction and thermal expansion, which make it a very effective cutting material. Deposition of microcrystalline diamond (MCD) films via Chemical Vapour Deposition (CVD) method has been progressively improved over the past 30 years of research [1] but three main problems remains for tungsten carbide with cobalt binder (WC-Co) substrates, 1. Poor adhesion to the WC-Co substrate due to difference in coefficient of thermal expansion of diamond and WC-Co, with the cobalt binder phase is a graphite forming promoter, 2. Low diamond growth rates in compromise to quality crystalline grains, and 3. Surface roughness of the diamond thin films [2, 3]. High surface roughness will cause high tool wear and shorter tool life, in addition to affecting machining precision [4] and give poorer surface finish [5]. While various polishing methods for diamond has been introduced, diamond, being the hardest material on earth, makes its polishing process costly and time consuming. Thus, depositing low roughness films by reducing the diamond crystals to nano-size becomes important.

Nanocrystalline diamonds (NCD) has first made its appearance 14 years ago using Hot Filament Chemical Vapour Deposition (HFCVD) method [6]. NCD has superior properties in comparison to MCD of having roughness of a few orders of magnitude lower while retaining the excellent properties of diamond. Much research has been done on depositing NCD on various types of substrates. Many recent Diamond coated tungsten carbide with cobalt binder (WC-Co) surpasses uncoated tool performance in machining of materials such as metal matrix composites, carbon fibers, Aluminium-Silicon Carbide (AlSiC), Aluminium-Silicon (AlSi), wood, odontological and micro-machining tools [3, 5, 8-14]. The performance of the WC-Co tool has been increased with the coating of MCD film [12].

1.2 Problem Statement

The two main problems related to diamond deposition which require further research are; 1. Poor adhesion to the WC-Co substrate due to difference in coefficient of thermal expansion of diamond and WC-Co, with the cobalt binder phase is a graphite forming promoter and 2. Surface roughness of the diamond thin films. Low roughness will reduce associated diamond surface wear [9], and increase cutting performance. While various polishing methods for diamond has been introduced, diamond, being the hardest material on earth, has makes its polishing process costly, time consuming and not practical for complex geometry. Thus, the importance of depositing low roughness films by depositing NCD films becomes significant [15].

HFCVD units are normally used for large area MCD coatings. While research units for HFCVD that coats NCD films have relatively small chambers [4, 16] and small filament to substrate distance in comparison with the commercial MCD units, large chamber deposition unit like CC800[®]/Dia low pressure HFCVD machine are at least 10 times more volume than small chambers that are mostly custom made [17]. Deposition parameters for NCD using large chamber HFCVD differs from that of small research chambers. Thus there is a need to establish deposition parameters for large chamber units. Previous research by Dayangku [18] shows that crystallite size of approximately 70 nm was successfully grown on different substrates using a large chamber HFCVD unit. Work by Izman and colleagues [19, 20] focused mainly on effects of pretreatment towards diamond deposition for large chamber HFCVD unit. While Hassan and colleagues [21-23] focused on developing an interlayer for diamond deposition for large chamber HFCVD unit. Thus, there is also a need to understand fundamentals of diamond growth mechanism for large chamber HFCVD unit.

The mechanism of growth of NCD using Microwave Plasma Chemical Vapour deposition (MPCVD) method [24] has been well established. However NCD growth mechanism using HFCVD is still under investigations. The main reason underlining this is that the reactions that form NCD in MPCVD involves plasma formed in MPCVD that is not available in HFCVD. Thus much is not understood about the nucleation and growth mechanisms of NCD in a HFCVD reactor. Nevertheless HFCVD is able to deposit diamond films more uniformly than MPCVD as plasma is limited by the plasma ball.

Furthermore, while NCD deposition has been well studied on silicon substrate, and there are many studies for MCD deposition on WC-Co, the subject on NCD-WC-Co boundaries are limited [4]. Another field of research is to explore whether pretreatment of NCD in large HFCVD units differ to that of NCD deposited in small units.

1.3 Objectives of Research

The objectives of the research are as follows:

- To perform parametric study on the cutting and substrate pretreatments and to establish deposition parameters to produce strong adhesion of nanocrystalline diamond on tungsten carbide with cobalt binder surface for hot filament chemical vapour deposition method with large reaction chamber.
- To characterise the deposited diamond coating by evaluating its chemical, morphological and mechanical properties.
- To determine the characteristics of the bonding interface and growth mechanism of nanocrystalline diamond on tungsten carbide.

1.4 Scopes of the Research

The scopes of the research are as follows;

- Tungsten carbide substrate sample pretreatment for nanocrystalline diamond deposition.
- Deposition of thin coalesce nanocrystalline diamond film on tungsten carbide substrate.
- Material characterisation, surface and cross-section morphology analysis of nanocrystalline diamond film using optical microscope, profilometer, atomic force microscope, scanning electron microscope, Raman spectrometer and X-Ray diffractometer.
- 4. Adhesion test analysis between diamond and tungsten carbide surface.
- Characterisation of mechanical properties of nanocrystalline diamond film using nanoindentor.
- Characterisation of bonding interface between nanocrystalline diamond and tungsten carbide using transmission electron microscope.

1.5 Significance of the Research

This research is expected to produce better and improved adhesion and mechanical properties of NCD coated on WC-Co cutting tool produced by large chamber HFCVD. This may be achieved by varying the deposition parameters and performing pretreatment on the substrate. Analysis of the results will give better understanding on the chemical, morphology and mechanical properties of the NCD that will affect the function of the film as well as better understanding of the NCD-WC interface. This will in turn give better understanding of the nucleation and growth mechanism of the film thus enabling progressive improvements for better diamond coating on cutting tools.

1.6 Organisation of Thesis

This thesis is organised five chapters. Chapter 1 briefly introduces the background of the research, objectives, scopes and significance of the research. Chapter 2 is the literature review. This chapter introduces the subject of study in detail. It deliberates the substrate, the coating, the technique and it is experimental parameters chosen, and the analyses required. This deliberation is based on the works of other researchers.

Chapter 3 is the detailed experimental and analysis methodology. The experiment set up is done in two major phases i.e. the substrate pretreatment phase and the diamond deposition phase. Description of diamond coating preparation for analyses was included.

Chapter 4 portrays the related analytical results to answer the objectives. The results were obtained from Optical Microscope, Scanning Electron Microscope (SEM) and Atomic Force Microscope (AFM) for topographical data. X-Ray Diffraction (XRD) and Raman Spectroscope produced data for chemical identification. Adhesion test was done to qualitatively measure the adhesion strength of the coating to substrate. Nanoindentation test was done to obtain nano-mechanical properties of the coating. Transmission Electron Microscope (TEM) was done to obtain atomic, chemical and morphology of the diamond to substrate bonding interface. All the data were analysed and discuss in depth to satisfy the objectives.

This thesis ends at Chapter 5. Chapter 5 concludes the findings, elaborates the main limitations of the findings and gives recommended work for future.

REFERENCES

- Matsumoto, S., Sato, Y., Kamo, M., and N.Setaka. Growth of diamond particles from methane-hydrogen gas. *Journal of Material Science*, 1982. 17: 3106-3109.
- Erdemir, A., Bindal, C., Fenske, G.R., Zuiker, C., Krauss, A.R., and Gruen,
 D.M. Friction and wear properties of smooth diamond films grown in fullerene
 + argon plasmas. *Diamond and Related Materials*, 1996. 5: 923-931.
- Meng, X.M., Tang, W.Z., Hei, L.F., Li, C.M., Askari, S.J., Chen, G.C., and Lu., F.X. Application of CVD nanocrystalline diamond films to cemented carbide drills. *International Journal of Refractory Metals and Hard Materials*, 2008. 26: 485-490.
- Ma, Y.P., Sun, F.H., Xue, H.G., Zhang, Z.M., and Chen, M. Deposition and characterization of nanocrystalline diamond films on Co-cemented tungsten carbide inserts. *Diamond and Related Materials*, 2007. 16(3): 481-485.
- Inspektor, A., Oles, E.J., and Bauer, C.E. Theory and practice in diamond coated metal-cutting tools. *International Journal of Refractory Metals and Hard Materials*, 1997. 15(1–3): 49-56.
- Zhou, X.T., Lai, H.L., Peng, H.Y., Sun, C., Zhang, W.J., Wang, N., Bello, I., Lee, C.S., and Lee, S.T. Heteroepitaxial nucleation of diamond on Si(100) via double bias-assisted hot filament chemical vapor deposition. *Diamond and Related Materials*, 2000. 9: 134-139.
- May, P.W., Smith, J.A., and Mankelevich, Y.A. Deposition of NCD films using hot filament CVD and Ar/CH4/H2 gas mixtures. *Diamond & Related Materials*, 2006. 15: 345 – 352.

- Qin, F., Chou, Y.K., Nolen, D., and Thompson, R.G. Coating thickness effects on diamond coated cutting tools. *Surface & Coatings Technology*, 2009. 204(6-7): 1056-1060.
- Kremer, A. and El Mansori, M. Influence of nanostructured CVD diamond coatings on dust emission and machinability of SiC particle-reinforced metal matrix composite. *Surface and Coatings Technology*, 2009. 204(6–7): 1051-1055.
- Uhlmann, E. and Koenig, J. CVD diamond coatings on geometrically complex cutting tools. *CIRP Annals - Manufacturing Technology*, 2009. 58: 65-68.
- Zhang, Z.M., He, X.C., Shen, H.S., Sun, F.H., Chen, M., and Wan, Y.Z. Pretreatment for diamond coatings on free-shape WC–Co tools. *Diamond and Related Materials*, 2000. 9(9–10): 1749-1752.
- Hintermann, H.E. Advances and development in CVD technology. *Materials* Science and Engineering A, 1996. 209: 366 - 371.
- Salgueiredo, E., Almeida, F.A., Amaral, M., Fernandes, A.J.S., Costa, F.M., Silva, R.F., and Oliveira, F.J. CVD micro/nanocrystalline diamond (MCD/NCD) bilayer coated odontological drill bits. *Diamond & Related Materials*, 2009. 18: 264-270.
- Sein, H., Ahmed, W., Jackson, M., Woods, R., and Polini, R. Performance and characterisation of CVD diamond coated, sintered diamond and WC-Co cutting tools for dental and micromachining applications. *Thin Solid Films*, 2004. 447-448 455-461.
- Sun, F.H., Zhang, Z.M., M.Chen, and Shen, H.S. Fabrication and application of high quality diamond-coated tools. *Journal of Materials Processing Technology*, 2002. 129: 435-440.
- Liang, X., Wang, L., Zhu, H., and Yang, D. Effect of pressure on nanocrystalline diamond films deposition by hot filament CVD technique from CH4/H2 gas mixture. *Surface & Coatings Technology*, 2007. 202: 261-267.
- 17. Saw, K.G., Growing Diamond from Gas: Penerbit Universiti Sains Malaysia.

- Dayangku Noorfazidah Awang Sh'ri, S. Effect Of Surface Pretreatments On The Deposition Of Polycrystalline Diamond On Silicon Nitride Substrates Using Hot Filament Chemical Vapor Deposition Method. Master's Thesis Universiti Teknologi Malaysia; 2009.
- Bakar, E.A., Nazim, E.M., Sudin, I., Ourdjini, A., and Shaharoun, A. Effect of pretreatment and deposition parameters on diamond nucleation in CVD. *National Metallurgical Conference*. 26-27 November 2007
- Nazim, E.M., Izman, S., Ourdjini, A., Abubakar, T.A., and Mas-Ayu, H. Adhesion Strength of HFCVD Diamond Coating on WC Substrate Seeded with Diamond and Different Ratios of SiC Powders. *Advanced Materials Research*, 2014, 845: 467-471.
- Wahab, H.A., Noordin, M., Izman, S., and Kurniawan, D. Quantitative Analysis of Electroplated Nickel Coating on Hard Metal. *The Scientific World Journal*, 2013: 631936.
- Wahab, H.A., Noordin, M., Hussain, M.S., and Izman, S. Characteristics of electroplated nickel layer on tungsten carbide. *Applied Mechanics and Materials*, 2013. 315: 73-77.
- Wahab, H.A., Noordin, M., Izman, S., Kamdi, Z., and Kurniawan, D. Composition Modification of Electroplated Nickel Interlayer on Tungsten Carbide Substrate by Thermal Carburizing. *Advanced Materials Research*, 2014, 845: 378-381.
- Gruen, D.M. Nanocrystalline Diamond Films. Annu. Rev. Mater Sci, 1999, 29: 211-259.
- 25. *Tungsten Carbide*. [cited 2014 20 August 2010]; Available from: http://en.wikipedia.org/wiki/Tungsten_carbide
- Zhengui Yao, J.J.S.a.T.S.S. Nano-grained Tungsten Carbide-cobalt (WC-Co).
 [cited 2015 6 August]; Available from: http://www.matmod.com/publications/armor_1.pdf.

- Takeuchi, S., Kojima, M., Takano, S., Kanda, K., and Murakawa, M. Adhesion strength of multi-layered diamond films on WC–Co alloy substrate. *Thin Solid Films*, 2004, 469–470(0): 190-193.
- 29. *Tungsten Carbide An Overview*. [cited 2010 25 January]; Available from: http://www.carbideprocessors.com/tungsten carbide explanation.htm
- Schwander, M. and Partes, K. A review of diamond synthesis by CVD processes. *Diamond and Related Materials*, 2011. 20: 1287-1201.
- Liu, H. and Dandy, D.S., *Diamond Chemical Vapor Deposition: Nucleation and* early growth stage., Park Ridge, New Jersey, United States of America: Noyes Publications, 1995
- Callister, W.D., Materials Science and Engineering: An Introduction, New York, NY.: John Wiley & Sons, Inc. 2003
- Gielisse, P., Diamond and Diamond-Like Film Applications. , Lancaster, Pennsylvania.: Technomic Publishing Company Inc., 1998
- Hollman, P., Alahelisten, A., Olsson, M., and Hogmark, S. Residual stress, Young's modulus and fracture stress of hot flame deposited diamond. *Thin Solid Films*, 1995. 270: 137-142.
- Bormett, R.W., Asher, S.A., Witowski, R.E., Partlow, W.D., Lizewski, R., and Pettit, F. Ultraviolet Raman spectroscopy characterizes chemical vapor deposition diamond film growth and oxidation. *Journal of Applied Physics*, 1995. 77(11): 5916-5923.
- Everitt, N.M., Silva, R.F., Vieira, J., Rego, C.A., Henderson, C.R., and May, P.W. Friction measurements on hot filament CVD diamond films deposited on etched tungsten carbide surfaces. *Diamond and Related Materials*, 1995. 4(5– 6): 730-734.
- 37. Shen, B. and Sun, F. Deposition and friction properties of ultra-smooth

composite diamond films on Co-cemented tungsten carbide substrates. *Diamond & Related Materials*, 2009. 18: 238–243.

- Buijnsters, J.G., Shankar, P., van Enckevort, W.J.P., Schermer, J.J., and ter Meulen, J.J. Adhesion analysis of polycrystalline diamond films on molybdenum by means of scratch, indentation and sand abrasion testing. *Thin Solid Films*, 2005. 474(1–2): 186-196.
- Erdemir, A., Fenske, G.R., Krauss, A.R., Gruen, D.M., McCauley, T., and Csencsits, R.T. Tribological properties of nanocrystalline diamond films. *Surface and Coatings Technology*, 1999. 120–121(0): 565-572.
- Ristić, G.S., Bogdanov, Ž.D., Zec, S., Romčević, N., Dohčević-Mitrović, Z., and Miljanić, Š.S. Effect of the substrate material on diamond CVD coating properties. *Materials Chemistry and Physics*, 2003. 80(2): 529-536.
- 41. Engdahl, N.C. CVD Diamond-Coated Rotating Tools for Composite Machining. [cited 2009 06 July]; Available from: http://www.crvstallume.com/html/white_papers.html
- Scardi, P., Veneri, S., Leoni, M., Polini, R., and Traversa, E. Lattice disorder and texture in diamond coatings deposited by HFCVD on Co-cemented tungsten carbide. *Thin Solid Films*, 1996. 290–291(0): 136-142.
- Sun, F., Ma, Y., Shen, B., Zhang, Z., and Ming Chen. Fabrication and application of nano-microcrystalline composite diamond films on the interior hole surfaces of Co cemented tungsten carbide substrates. *Diamond and Related Materials*, 2009. 18: 276–282.
- May, P.W., Ludlow, W J., Hannaway, M., Heard, P.J., Smith, J.A., and Rosser, K.N. Raman and conductivity studies of Boron-doped microcrystalline diamond, facetted nanocrystalline diamond and cauliflower films. *Diamond & Related Materials*, 2008. 17: 105-117.
- 45. Barbosa, D.C., Almeida, F.A., Silva, R.F., Ferreira, N.G., Trava-Airoldi, V.J., and Corat, E.J. Influence of substrate temperature on formation of ultrananocrystalline diamond filmsdeposited by HFCVD argon-rich gas

mixture Diamond & Related Materials, 2009. 18: 1283-1288.

- Azevedo, A.F., Ramos, S.C., Baldan, M.R., and Ferreira, N.G. Graphitization effects of CH4 addition on NCD growth by first and second Raman spectra and by X-ray diffraction measurements *Diamond & Related Materials*, 2008. 17: 1137-1142.
- Tang, C.J., Neves, A.J., Grácio, J., Fernandes, A.J.S., and Carmo, M.C. A new chemical path for fabrication of nanocrystalline diamond films. *Journal of Crystal Growth*, 2008. 310(2): 261-265.
- Silva, F., Benedic, F., Bruno, P., and Gicquel, A. Formation of <110> texture during nanocrystalline diamond growth: an X-ray diffraction study. *Diamond* & *Related Materials*, 2005. 14: 398-403.
- Yang, T.-S., Lai, J.-Y., Cheng, C.-L., and Wong, M.-S. Growth of faceted, ballas-like and nanocrystalline diamond films deposited in CH4/H2/Ar MPCVD. *Diamond and Related Materials*, 2001. 10(12): 2161-2166.
- Haubner, R. and Lux., B. Deposition of ballas diamond and nano-crystalline diamond. *International Journal of Refractory metals and Hard Materials*, 2002.
 20: 93-100.
- Ashfold, M.N.R., May, P.W., Rego, C.A., and Everitt, N.M. Thin Film Diamond by Chemical Vapour Deposition Methods. *Chemical Society Reviews*, 1994. 23: 21-30.
- Torres, C.D., Heaney, PJ., Sumant, A.V., Hamilton, M.A., Carpick, R.W., and Pfefferkorn, F.E. Analyzing the performance of diamond-coated micro end mills *International Journal of Machine Tools & Manufacture*, 2009. 49: 599-612.
- Zhang, S. and Ali, N., eds. Nanocomposite Thin Films And Coatings: Processing, Properties and Performance. 2006, Imperial College Press. London.
- Zimmermann, T., Janischowsky, K., Denisenko, A., Hernández Guillén, F.J., Kubovic, M., Gruen, D.M., and Kohn, E. Nanocrystalline diamond pn-structure

grown by Hot-Filament CVD. *Diamond and Related Materials*, 2006. 15(2–3): 203-206.

- Williams, O.A., Nesladek, M., Daenen, M., Michaelson, S., Hoffman, A., Osawa, E., K.Haenen, and Jackman., R.B. Growth, electronic properties and applications of nanodiamond *Diamond and Related Materials*, 2008. 17: 1080-1088.
- 56. Yokota, Y., Ando, Y., Kobashi, K., Hirao, T., and Oura, K. Morphology control of diamond films in the region of α=1–1.5 using a 60-kW microwave plasma CVD reactor. *Diamond and Related Materials*, 2003. 12(3–7): 295-297.
- Mehta Menon, P., Clausing, R.E., Heatherly, L., and Feigerle, C.S. The morphology of diamond grown by hot filament chemical vapor deposition. *Diamond and Related Materials*, 1998. 7(8): 1201-1206.
- Norgard, C., Eskildsen, S.S., and Matthews, A. The influence of oriented growth on the surface roughness of CVD diamond films. *Surface and Coatings Technology*, 1995. 74–75, Part 1(0): 358-361.
- Coe, S.E. and Sussmann, R.S. Optical, thermal and mechanical properties of CVD diamond. *Diamond & Related Materials*, 2000. 9: 1726-1729.
- Kamiya, S., Takahashi, H., Kobayashi, A., Saka, M., and Abe, H. Fracture strength of chemically vapor deposited diamond on the substrate and its relation to the crystalline structure. *Diamond & Related Materials*, 2000. 9: 1110-1114.
- Spear, K.E. and Frenklach, M. High Temperature Chemisrty of CVD (chemical vapor deposition) diamond growth. *Pure Appl. Chem.*, 1994. 66(9): 1773-1782.
- Amaral, M., Silva, D.J., Fernandes, A.J.S., Costa, F.M., Oliveira, F.J., and Silva, R.F. Surface activation pre-treatments for NCD films grown by HFCVD. *Vacuum*, 2009. 83(10): 1228-1232.
- Lin, T., Loh, K.P., Wee, A.T.S., Shen, Z.X., Lin, J., Lai, C.H., Gao, Q.J., and Zhang, T.J. High resolution transmission electron microscopy study of the initial growth of diamond on silicon. *Diamond and Related Materials*, 2000. 9(9–10): 1703-1707.

- Karve, P., Sainkar, S.R., and Kshirsagar, S.T. Role of surface features in CVD diamond nucleation on surface-pretreated substrates. *Materials Letters*, 1998. 34(3–6): 387-391.
- Komvopoulos, K. and Xu, T. Transmission electron microscopy study of diamond nucleation and growth on smooth silicon surfaces coated with a thin amorphous carbon film. *Diamond and Related Materials*, 2000. 9(3–6): 274-282.
- Polini, R. and Tomellini, M. Analysis of size distribution functions of diamond crystallites formed in the early stages of chemical vapour deposition. *Diamond* and Related Materials, 1995. 4(12): 1311-1316.
- Nicholson, E.D., Weeks, J.R., and Ashfold, M.N.R. The effect of varying deposition conditions on the Young's modulus of diamond coated wires. *Diamond and Related Materials*, 1997. 6(5–7): 817-821.
- Sawada, H., Ichinose, H., Watanabe, H., Takeuchi, D., and Okushi, H. Crosssectional TEM study of unepitaxial crystallites in a homoepitaxial diamond film. *Diamond and Related Materials*, 2001. 10(11): 2030-2034.
- Tallaire, A., Kasu, M., Ueda, K., and Makimoto, T. Origin of growth defects in CVD diamond epitaxial films. *Diamond and Related Materials*, 2008. 17(1): 60-65.
- Hwang, N.M. and Yoon, D.Y. Thermodynamic approach to the paradox of diamond formation with simultaneous graphite etching in the low pressure of diamond. *Journal of Crystal Growth*, 1996. 160: 98-103.
- Ali, M. and Ürgen, M. Surface morphology, growth rate and quality of diamond films synthesized in hot filament CVD system under various methane concentrations. *Applied Surface Science*, 2011. 257(20): 8420-8426.
- Kenzie, D.R.M., Muller, D., and Pailthorpe, B.A. Compressive-stress-induced formation of thin-film tetrahedral amorphous carbon. *Phys. Rev. Lett.*, 1991.
 67: 773-776.
- 73. Pierson, H.O., Handbook of Carbon, Graphite, Diamond, and Fullerenes :

Properties, Processing, and Applications, Park ridge, New Jersey. U. S. A.: Noyes Publications. 1993

- 1'kova', M.K., Vojsa, M., Brezaa, J., Vesely', M., Frgala, Z., Michalka, M., Mate'jkova', J., Vojac'kova', A., Danis', T., and Marton, M. *Microelectronics Journal*, 2007. 38: 20-23.
- Davis, R.F., ed. *Diamond Films And Coatings*. 1993, Noyes Publications: Park Ridge, New Jersey.
- Garcia, M.M., Jimenez, I., Sachez, O., Gomez-Alexanddre, C., and Vazquez, L. Model of the bias-enhanced nucleation of diamond on silicon based on atomic force microscopy and x-ray-absorption studies. *Phys. Rev. B*, 2000. 61: 10383-10387.
- Y.Yao, Liao, M.Y., Wang, Z.G., and Lee, S.T. Nucleation of diamond by pure carbon ion bombardment—a transmission electron microscopy study. *Appl. Phys. Lett.*, 2005, 87: 0631031-063103-3.
- Stonner, B.R., Ma, G.H.M., Wolter, S.D., and Glass, J.T. Characterization of bias-enhanced nucleation of diamond on silicon by invacuo surface analysis and transmission electron microscopy. *Phys. Rev B*, 1995. 45: 11067-11084.
- Wolden, C., Mitra, S., and Gleason, K.K. Radiative heat transfer in hot filament chemical vapor deposition diamond reactors. *Journal of Applied Physics*, 1992. 72(8): 3750-3758.
- Gicquel, A., Hassouni, K., Silva, F., and Achard, J. CVD diamond films: from growth to applications. *Current Applied Physics*, 2001. 1(6): 479-496.
- Kim, G.-H. Transmission electron microscope observation of diamond/WC interface *Journal of Crystal Growth*, 1997. 178(4): 634-638.
- Wang, L. and Zhu, X.D. Effect of substrate facets on homoepitaxial growth of diamonds during plasma-assisted hot filament chemical vapor deposition. *Diamond and Related Materials*, 2007. 16(3): 637-641.
- 83. Ali, M. Influence of processing parameters on the properties of tin coatings

deposited on tool steels using cathodic arc physical vapour deposition technique. Ph.D. Thesis. Universiti Teknologi Malaysia; 2007

- Song, G.H., Sun, C., Huang, R.F., Wen, L.S., and Shi, C.X. Heat transfer simulation of HFCVD and fundamentals of diamond vapor growth reactor designing. *Surface and Coatings Technology*, 2000. 131(1–3): 500-505.
- Hirmke, J., Hempel, F., Stancu, G.D., Röpcke, J., Rosiwal, S.M., and Singer, R.F. Gas-phase characterization in diamond hot-filament CVD by infrared tunable diode laser absorption spectroscopy. *Vacuum*, 2006. 80(9): 967-976.
- Pecoraro, S., Arnault, J.C., and Werckmann, J. BEN-HFCVD diamond nucleation on Si(111) investigated by HRTEM and nanodiffraction. *Diamond* and Related Materials, 2005. 14(2): 137-143.
- Glaser, A., Jentsch, H.G., Rosiwal, S.M., Lüdtke, A., and Singer, R.F. Deposition of uniform and well adhesive diamond layers on planar tungsten copper substrates for heat spreading applications. *Materials Science and Engineering: B*, 2006. 127: 186-192.
- Amaral, M., Fernandes, A.J.S., Vila, M., Oliveira, F.J., and Silva, R.F. Growth rate improvements in the hot-filament CVD deposition of nanocrystalline diamond. *Diamond and Related Materials*, 2006. 15: 1822 – 1827.
- Vojs, M., Vesely, M., Redhammer, R., Jani'k, J., Kadlecikova, M., Danis, T., Marton, M., Michalka, M., and Sutta, P. Double bias HF CVD multilayer diamond films on WC–Co cutting tools. *Diamond & Related Materials*, 2005. 14: 613–616.
- Li, H., Lee, H.-J., Park, J.-K., Baik, Y.-J., Hwang, G.W., Jeong, J.-h., and Lee, W.-S. Control of abnormal grain inclusions in the nanocrystalline diamond film deposited by hot filament CVD. *Diamond and Related Materials*, 2009. 18: 1369-1374.
- Hamzah, E., Purniawan, A., and Toff, M.R.M. Residual stress analysis using Raman spectra on polycrystalline diamond coated WC deposited by Microwave Plasma Assisted CDV. *International Conference on Sustainable*

- Jiang, X., Fryda, M., and Jia, C.L. High quality heteroepitaxial diamond films on silicon: recent progresses. *Diamond and Related Materials*, 2000. 9(9–10): 1640-1645.
- Kim, J.G. and Yu, J. Behavior of residual stress on CVD diamond films. Materials Science and Engineering: B, 1998. 57(1): 24-27.
- Barbosa, D.C., Nova, H.F., and Baldan, M.R. Numerical Simulation of HFCVD Process Used for Diamond Growth. *Brazilian Journal of Physics*, 2006. 36(2A): 313-316.
- Redman, S.A., Chung, C., and Ashfold, M.N.R. H atom production in a hot filament chemical vapour deposition reactor. *Diamond and Related Materials*, 1999. 8(8–9): 1383-1387.
- Park, S.-S. and Lee, J.-Y. Nucleation behaviour of diamond particles on silicon substrates in a hot-filament chemical vapour deposition. *Journal of Materials Science*, 1993. 28(7): 1799-1804.
- Wei, Q.P., Yu, Z.M., Ma, L., Yin, D.F., and Ye, J. The effects of temperature on nanocrystalline diamond films deposited on WC-13 wt.% Co substrate with W-C gradient layer. *Applied Surface Science*, 2009. 256: 1322-1328.
- Ali, M. and Qazi, I.A. Effect of substrate temperature on hot-filament CVD grown diamond films at constant filament current. *Int. J. of Surface Science and Engineering*, 2012. 6(3): 214 - 230.
- Mankelevich, Y.A., Suetin, N.V., Ashfold, M.N.R., Smith, J.A., and Cameron,
 E. Experimental data vs. 3-D model calculations of HFCVD processes: correlations and discrepancies. *Diamond and Related Materials*, 2001. 10(3– 7): 364-369.
- Rego, C.A., May, P.W., Henderson, C.R., Ashfold, M.N.R., Rosser, K.N., and Everitt, N.M. In-situ mass spectrometric study of the gas-phase species involved in CVD of diamond as a function of filament temperature. *Diamond* and Related Materials, 1995. 4(5–6): 770-774.

- 101. Ashfold, M.N.R., May, P.W., Petherbridge, J.R., Rosser, K.N., Smith, J.A., Mankelevich, Y.A., and Suetin, N.V. Unravelling aspects of the gas phase chemistry involved in diamond chemical vapour deposition. *Physical Chemistry Chemical Physics*, 2001. 3(17): 3471-3485.
- Suilik, S.B.A., Shimamoto, D., Kitagawa, H., Hasezaki, K., and Noda, Y. Experimental study of nucleation and quality of CVD diamond adopting twostep deposition approach using MPECVD. *Diamond & Related Materials*, 2006. 15: 1765–1772.
- Ashfold, M.N.R. and May, P.W., *Diamond chemical vapour deposition*. University of Bristol, School of Chemistry.
- 104. Scientific, H. Derivation of Physical Parameters from Raman Spectra of Hard Carbon Films. Horiba Jobin Yvon Raman Application Note, Carbon; 1-4]. Available from: <u>http://www.horiba.com/fileadmin/uploads/Scientific/Documents/Raman/Carb</u><u>on02.pdf</u>.
- Wurzinger, P., Pongratz, P., Gerber, J., and Ehrhardt, H. Bias-enhanced diamond nucleation on silicon—a TEM study. *Diamond and Related Materials*, 1996. 5(3–5): 345-349.
- 106. Sun, X.S., Wang, N., Woo, H.K., Zhang, W.J., Yu, G., Bello, I., Lee, C.S., and Lee, S.T. The effect of ion bombardment on the nucleation of CVD diamond. *Diamond and Related Materials*, 1999. 8(8–9): 1414-1417.
- G., S., Wang, W.L., Polo, M.C., and Esteve, J. Nucleation of diamond on silicon by biased HFCVD: a comparative study. *Diamond & Related Materials*, 1998.
 7: 200-204.
- Sahoo, B. and Chattopadhyay, A.K. On effectiveness of various surface treatments on adhesion of HF-CVD diamond coating to tungsten carbide inserts. *Diamond and Related Materials*, 2002. 11(9): 1660-1669.
- Polini, R., Delogu, M., and Marcheselli, G. Adherent diamond coatings on cemented tungsten carbide substrates with new Fe/Ni/Co binder phase. *Thin*

Solid Films, 2006. 494(1-2): 133-140.

- Polini, R., Bravi, F., Casadei, F., D'Antonio, P., and Traversa, E. Effect of substrate grain size and surface treatments on the cutting properties of diamond coated Co-cemented tungsten carbide tools. *Diamond and Related Materials*, 2002. 11(3–6): 726-730.
- Liu, S., Yu, Z.M., and Yi, D.Q. Chemical Pretreatments of The Surface of WC-15wt% Co with Diamond Coatings. *Acta Metallurgica Sinica(English letters)*, 2001. 14(2): 143-147
- 112. Kamiya, S., Takahashi, H., Polini, R., and Traversa, E. Quantitative determination of the adhesive fracture thoughness of CVD diamond to WC-Co cemented carbide. *Diamond & Related Materials*, 2000. 9: 191-194.
- 113. Yanchuk, I.B., Valakh, M.Y., Vul', A.Y., Golubev, V.G., Grudinkin, S.A., Feoktistov, N.A., Richter, A., and Wolf, B. Raman scattering, AFM and nanoindentation characterisation of diamond films obtained by hot filament CVD. *Diamond and Related Materials*, 2004. 13(2): 266-269.
- 114. Lin, C.R., Kuo, C.T., and Chang, R.M. Improvement in adhesion of diamond films on cemented WC substrate with Ti–Si interlayers. *Diamond and Related Materials*, 1998. 7(11–12): 1628-1632.
- Raman spectroscopy. 2014 [cited 2014 7 November 2014]; Available from: http://en.wikipedia.org/wiki/Raman_spectroscopy.
- 116. Scientific, H. Raman Spectroscopy for Analysis and Monitoring. Horiba Jobin Yvon Raman Application Note 2010; 1-2]. Available from: <u>http://www.horiba.com/fileadmin/uploads/Scientific/Documents/Raman/bands</u>.<u>pdf</u>.
- 117. Scientific, H. Impact of Raman Spectroscopy On Technologically Important Forms of Elemental Carbon. Horiba Jobin Yvon Raman Application Note, Carbon 2010; 1-4]. Available from: <u>http://www.horiba.com/fileadmin/uploads/Scientific/Documents/Raman/Carb</u> <u>on01.pdf</u>.

- Pandey, M., D'Cunha, R., and Tyagi, A.K. Defects in CVD diamond: Raman and XRD studies. *Journal of Alloys and Compounds*, 2002. 333(1–2): 260-265.
- 119. Kadlečíková, M., Vojs, M., Breza, J., Veselý, M., Frgala, Z., Michalka, M., Matějková, J., Vojačková, A., Daniš, T., and Marton, M. Microwave and hot filament chemical vapour deposition of diamond multilayers on Si and WC–Co substrates. *Microelectronics Journal*, 2007. 38(1): 20-23.
- 120. Wang, G.Z., Ye, F., Chang, C., Liao, Y., and Fang, R.C. Micro-Raman analysis of the cross-section of a diamond film prepared by hot-filament chemical vapor deposition. *Diamond and Related Materials*, 2000. 9(9–10): 1712-1715.
- Ralchenko, V., Nistor, L., Pleuler, E., Khomich, A., Vlasov, I., and Khmelnitskii,
 R. Structure and properties of high-temperature annealed CVD diamond. *Diamond and Related Materials*, 2003. 12(10–11): 1964-1970.
- 122. Zhang, Z.M., Shen, H.S., Sun, F.H., He, X.C., and Wan, YZ. Fabrication and application of chemical vapor deposition diamond-coated drawing dies. *Diamond and Related Materials*, 2001. 10(1): 33-38.
- 123. Lee, E., Adar, F., and Whitley, A., Multivariate Data Processing of Spectral Images: The Ugly, the Bad, and the True., in Spectroscopy. 2007, ADVANSTAR Publication: USA.
- Hempel, M. and Harting, M. Characterisation of CVD grown diamond and its residual stress state. *Diamond & Related Materials*, 1999. 8: 1555-1559.
- 125. Aoki, Y., Nakamuta, Y., and Sugawara, Y. Formation of tetrapod-like crystals of diamond formed by hot-filament chemical vapour deposition: effects of preformation of tungsten carbide on substrate *Journal of Crystal Growth*, 1995. 147: 77-82.
- Nanoindentation. 2014 5 July 2014 [cited 2014 Dec 6]; Available from: http://en.wikipedia.org/wiki/Nanoindentation.
- 127. [cited 2010 8 February]; Available from: http://www.insaco.com/MatPages/mat_display.asp?M=TC

- Everitt, N.M., Silva, R.F., Vieira, J., Rego, C.A., Hendrerson, C.R., May, P.W., and Ashfold, M.N.R., *Analysis of Hot Filament CVD Diamond Films on Etched and Unetched WC-Co Surfaces*, in *4th Int. Conf. New Diamond Sci. Technol.*, S. Saito, N. Fujimori, O. Fukunaga, M. Kamo, K. Kobashi, and M. Yoshikawa, Editors. 1994; Kobe, Japan. p. 787-790.
- Brookes, C.A., Zhang, L.Y., and May, P.W. On the mechanical integrity ratio of diamond coatings. *Diamond & Related Materials*, 1997. 6: 348-352.
- Kamiya, S., Takahashi, H., Polini, R., D'Antonio, P., and Traversa, E. Effect of WC-Co substrates pre-treatment and microstructure on the adhesive toughness of CVD diamond. *Diamond and Related Materials*, 2001. 10(3–7): 786-789.
- Azmi, K. Investigation of machining performance of the coated carbide cutting tools with murakami surface pretreatment. Undergraduate Project Report Universiti Malaysia Pahang.; 2012.
- 132. Chee, K.M.F. Deposition polycrystalline diamond on silicon nitride and tungsten carbide by using hot filament chemical vapor deposition. Bachelor Degree Project Report. Universiti Teknologi Malaysia; 2009
- 133. Purniawan, A. Deposition and characterisation of polycrystalline diamond coated on silicon nitride and tungsten carbide using microwave plasma assisted chemical vapour deposition technique. Master's Thesis. Universiti Teknologi Malaysia; 2008
- Williams, O.A. Nanocrystalline diamond. *Diamond and Related Materials*, 2011. 20(5–6): 621-640.
- Gatan, I., DigitalMicrograph 3.4 User's Guide, 5933, Coronado Lane Pleasanton, CA 94588: Gatan, Inc., 1999
- Boudias, C. and Monceau, D., Carine Crystallography 3.1 for Microsoft Windows User's Guide, 1998
- Instruments, F., Model 170 Ultrasonic Disc Cutter Instruction Manual. E.A. Fischione Instruments, Inc., 9003 Corporate Circle Export, PA 15632 USA, 2010

- Gatan, I., Dimple Grinder, Model 656 User's Guide, 5933, Coronado Lane Pleasanton, CA 94588: Gatan, Inc., 1998
- Gatan, I., Precision Ion Polishing System User's Guide, 5933, Coronado Lane Pleasanton, CA 94588: Gatan, Inc., 1998
- Azizi, M.Y.M. Chemical Mapping Techniques for Nanoscale Multilayer Coatings. Ph.D. Thesis. The University of Sheffield; 2009
- Fischione, P.E., Materials Specimen Preparation for Transmission Electron Microscopy. 2010
- Fischione Instruments, I., E.A. Fischione Instruments, Inc. E.A. Fischione Instruments, Inc., 2010
- Gatan, I., Product Notification Bulletin. 5794 W. Las Positas Blvd. Pleasanton, CA 94588, 2009
- 145. Scientific, A., Strain Gage Installations with M-Bond 43-B, 600 and 610 Adhesive Systems. Agar Scientific, Unit 7, M11 Business Link Personage Lane, Stansted Essex, CM24 BGF, England, 2010.
- 146. Olympus, Olympus Micro cantilever OMCL/TR400PSA-1. 2009
- 147. Inc., S.N., SPM Terminology: SII NanoTechnoogy Inc., 2001-2003d
- 148. Pittenger, B., Erina, N., and Su, C., Application Note #128 Quantitative Mechanical Property Mapping at the Nanoscale with PeakForce QNM. Santa Barbara, CA USA, 2012
- Kem, R., Properties Of EDM Wires -TechTips 7, in EDM Today Megazine. 2007, EDM Today LLC p. 8.
- 150. Yan, C.-S. and Vohra, YK. Multiple twinning and nitrogen defect center in chemical vapor deposited homoepitaxial diamond. *Diamond & Related*

Materials, 1999. 8: 2022-2031.

- Hamzah, E., Yong, T.M., and Yajid., M.A.M. Surface morphology and bond characterization of nanocrystalline diamonds grown on tungsten carbide via hot filament chemical vapor deposition. *Journal of Crystal Growth* 2013. 372: 109– 115.
- Sharda, T., Soga, T., Jimbo, T., and Umeno, M. High compressive stress in nanocrystalline diamond films grown by microwave plasma chemical vapor deposition. *Diamond & Related Materials*, 2001. 10: 352-357.
- 153. Yong, T.M. and Hamzah, E. Effects of Various Seeding Methods on Multi-Layered Diamond Coatings Deposited via Hot Filament Chemical Vapor Deposition. Advanced Materials Research, 2014. 845: 36-40.
- 154. Tang, Y.H., Zhou, X.T., Hu, Y.F., Lee, C.S., Lee, S.T., and Sham, T.K. A soft Xray absorption study of nanodiamond films prepared by hot-filament chemical vapor deposition. *Chemical Physics Letters*, 2003. 372(3–4): 320-324.
- Wurzinger, P., Fuchs, N., Pongratz, P., Schreck, M., Heßmer, R., and Stritzker, B. TEM investigations on the heteroepitaxial nucleation of CVD diamond on (001) silicon substrates. *Diamond and Related Materials*, 1997. 6(5–7): 752-757.