CHARACTERISTICS OF COAL ASH MIXTURES AS REPLACEMENT MATERIALS IN GROUND IMPROVEMENT WORKS

ABD. RAHIM BIN HJ. AWANG

UNIVERSITI TEKNOLOGI MALAYSIA

CHARACTERISTICS OF COAL ASH MIXTURES AS REPLACEMENT MATERIALS IN GROUND IMPROVEMENT WORKS

ABD. RAHIM BIN HJ. AWANG

A thesis submitted in fulfilment of the requirements for the award of degree of Doctor of Philosophy (Civil Engineering)

> Faculty of Civil Engineering Universiti Teknologi Malaysia

> > JULY 2015

To my respectful parents, beloved wife Noraishah Hj. Abdul Rahman and my children; four Amirul (sons), Ahmad Amirul Asyraf, Ahmad Amirul Aiman, Ahmad Amirul Afif and Ahmad Amirul Waidz and three daughters, Ainatul Mahirah, Aina Balthisya and Afrina Raisya Balqis

ACKNOWLEDGMENTS

I would like to deeply praise the Almighty ALLAH SWT for allowing me passing all of this moment and also I would like to take this opportunity to express my sincere gratitude to all those who have contributed in completing this project. I wish to express profound gratitude to my supervisors Prof. Dr. Aminaton Marto and Assoc. Prof. Dr. Ahmad Mahir Makhtar for their direct supervision, continuous advice and guidance throughout this research, especially during the writing of this thesis.

Thanks to all researchers and lecturers in Soft Soil Research Group and the Department of Geotechnical and Transportation, Faculty of Civil Engineering (FKA), Universiti Teknologi Malaysia (UTM) who provided helps, valuable discussions, and cooperation in executing laboratory works. Acknowledgment is also conveyed to all technicians of Geotechnics laboratory, FKA, UTM; in particular Mr. Zulkifly Wahid who patiently provided assistance in laboratory tests. Thanks are also due to lecturers and technicians from Universiti Tun Hussein Onn Malaysia for their helps in the geochemistry tests. The moral and spiritual supports from all colleagues in Sultan Haji Ahmad Shah Polytechnic, Kuantan, Pahang are also acknowledged.

The financial support for this research and scholarship was provided by UTM and the Ministry of Education, Malaysia. Those are gratefully acknowledged. Finally, I wish to express special thanks and appreciation to my mother, father and family for their supports and loves. Special thanks to my wife, Mrs. Noraishah Abdul Rahman, for her loves, sacrifices, patience, and continuous struggle towards the accomplishment of this study.

ABSTRACT

Fly ash (FA) and bottom ash (BA) are two of the coal ashes by-products produced from coal-fired power plants. They are usually disposed off together as a waste in utility disposal sites with a typical disposal rate of 80% FA and 20% BA. The use of coal ash in construction projects that require large volume materials, such as in soil improvement works, is highly promising in solving the disposal problem. The aim of this research is to determine the suitability of FA-BA mixtures as replacement materials for soft soil foundation. Representative samples of coal ash were collected from Tanjung Bin Power Plant, Pontian, Johor. Six mixtures of FA and BA with different mix ratios of 0%, 30%, 50%, 70%, 90% and 100% FA content by weight had been used in this study. The coal ash mixtures were compacted at 95% of maximum dry density, sealed and cured for 0, 14, and 28 days before being analysed for material characterization, mechanical properties and chemical analysis. The performance of FA-BA mixtures as replacement materials had been determined through laboratory physical model tests. In model test, 40 cm height (H) of soft kaolin clay (about 20 kPa undrained strength) was replaced fully and partially by FA-BA mixtures (H_m) at replacement ratio, $H_m/H = 0$, 0.125, 0.375 and 1.0. In general, the results of the laboratory tests indicate good performance of FA-BA mixtures. Morphological analysis shows that the number of irregular shaped particles increased confirming change in material type with curing period. The results also show that mixtures with higher fly ash composition have less drainage characteristics but can be improved by prolonging the curing period. The shear strength of coal ash mixtures varied depending on the FA content. The maximum shear strength was obtained at the mixture of 50% FA with the friction angle values ranged from 27° to 37° that increased with curing period. The California Bearing Ratio (CBR) values increased while compressibility decreased with curing periods due to pozzolanic reaction. CBR values and compressibility of the mixtures also generally decreased with the increased of FA content. Results suggest that ash mixtures are non-corrosive while the heavy metals concentration is below the limit set by respective authority. Since the mixture of 50%FA-50%BA has the highest strength and considerably low compressibility, it can be concluded that this mixture is the most suitable mixture for replacement of soft soil. The result of physical model tests concluded the suitability of FA-BA mixtures as full or partial replacement materials of soft clay that gives promising effect in terms of decreasing the settlement of the footing placed on top of the soil. Based on this, preliminary design charts had been developed for the usage of FA-BA mixtures in geotechnical engineering works. This could help the engineers not only in designing the depth of soil to be replaced in soil improvement works but also in other purposes that rely on the strength of the eco-friendly ash mixtures.

ABSTRAK

Abu terbang (FA) dan abu bawah (BA) adalah dua daripada keluaran sampingan yang terhasil daripada loji tenaga arang batu. Bahan ini biasanya dilupuskan bersama sebagai bahan buangan di tapak pelupusan utiliti dengan kadar pelupusan 80%FA dan 20%BA. Penggunaan abu arang batu dalam projek-projek pembinaan yang memerlukan bahan yang banyak seperti dalam kerja-kerja pembaikan tanah, adalah sangat memberangsangkan dalam menyelesaikan masalah pelupusan. Tujuan kajian ini adalah untuk menentukan kesesuaian campuran FA-BA sebagai bahan gantian untuk tanah asas yang lembut. Sampel abu arang batu telah dikumpulkan dari loji janakuasa Tanjung Bin, Pontian, Johor, Enam campuran FA dan BA dengan nisbah campuran yang berbeza; 0%, 30%, 50%, 70%, 90% dan 100% kandungan FA mengikut berat telah digunakan dalam kajian ini. Campuran abu arang batu telah dipadatkan pada 95% ketumpatan kering maksimum, dibalut dan diawet kepada tempoh masa 0, 14, dan 28 hari sebelum dianalisis untuk pencirian bahan, sifat mekanik dan analisis kimia. Prestasi campuran FA-BA sebagai bahan gantian telah ditentukan melalui ujian model fizikal makmal. Dalam ujian model, 40 cm (H) ketinggian tanah liat kaolin lembut (kira-kira 20 kPa kekuatan tak tersalir) telah digantikan sepenuhnya dan sebahagiannya oleh campuran FA-BA (H_m) pada nisbah penggantian, $H_m/H = 0$, 0.125, 0.375 dan 1.0. Secara umum, keputusan ujian makmal menunjukkan campuran FA-BA berprestasi baik. Analisis morfologi menunjukkan bahawa bilangan zarah berbentuk tidak teratur meningkat mengesahkan perubahan jenis bahan dengan tempoh pengawetan. Keputusan juga menunjukkan bahawa campuran dengan komposisi abu terbang yang lebih tinggi mempunyai ciri-ciri saliran yang lebih rendah tetapi boleh ditingkatkan dengan memanjangkan tempoh pengawetan. Kekuatan ricih campuran abu arang batu berubah bergantung kepada kandungan FA. Kekuatan ricih maksimum adalah pada campuran 50% FA dengan nilai sudut geseran antara 27⁰-37⁰ yang meningkat dengan tempoh awetan. Nilai Nisbah Menggalas California (CBR) meningkat manakala kebolehmampatan menurun dengan tempuh awetan disebabkan oleh tindak balas pozzolanik. Nilai CBR dan kebolehmampatan daripada campuran juga umumnya menurun dengan peningkatan kandungan FA. Keputusan menunjukkan bahawa campuran abu adalah tidak menghakis manakala kepekatan logam berat adalah di bawah had yang ditetapkan oleh pihak berkuasa. Disebabkan campuran 50%FA-50%BA mempunyai kekuatan tertinggi dan kebolehmampatan agak rendah, ia boleh disimpulkan bahawa campuran ini adalah campuran yang paling sesuai untuk menggantikan tanah lembut. Hasil ujian model fizikal menyimpulkan kesesuaian campuran FA-BA sebagai bahan gantian tanah liat lembut secara penuh atau sebahagian yang memberikan kesan baik dari segi mengurangkan enapan asas yang diletakkan di atas tanah. Berdasarkan ini, carta reka bentuk awal telah dibangunkan untuk penggunaan campuran FA-BA dalam kerja-kerja kejuruteraan geoteknik. Ini boleh membantu jurutera bukan sahaja untuk pemilihan kedalaman tanah yang akan digantikan dalam kerja-kerja pembaikan tanah tetapi juga untuk tujuan lain yang bergamttung kepada kekuatan campuran abu yang mesra alam.

TABLE OF CONTENTS

CHAPTER		TITLE	PAGE
	DEC	CLARATION	ii
	DED	DICATION	iii
	ACK	iv	
	ABS	TRACT	v
	ABS	TRAK	vi
	TAB	BLE OF CONTENTS	vii
	LIST	Γ OF TABLES	xiv
	LIST	Γ OF FIGURES	xix
	LIST	Γ OF ABBREVIATIONS	xxvi
	LIST	Г OF SYMBOLS	xxviii
	LIST	Γ OF APPENDICES	xxxi
1	INT	RODUCTION	1
	1.1	Background of Research	1
	1.2	Problem Statement	5
	1.3	Objectives of Research	6
	1.4	Scope of Research	7
	1.5	Significance of Research	7
	1.6	Thesis Organisation	8
2	LITI	ERATURE REVIEW	10
	2.1	Introduction	10
	2.2	Coal Fired Power Plant in Malaysia	13
	2.3	Coal Combustion Products	16
		2.3.1 Introduction	16
		2.3.2 Fly Ash	20

		2.3.2.1 Class C fly ash	21
		2.3.2.2 Class F fly ash	21
	2.3.3	Bottom Ash	22
2.4	Physic	al Properties of Coal Ash	23
	2.4.1	Appearance and Shape	23
	2.4.2	Specific Gravity	26
	2.4.3	Particle Size Distribution	28
2.5	Mecha	nnical Properties of Coal Ash	32
	2.5.1	Compaction Behaviour	32
	2.5.2	Permeability (Hydraulic Conductivity)	36
	2.5.3	Strength	39
		2.5.3.1 Shear Strength Parameter	39
		2.5.3.2 California Bearing Ratio	44
	2.5.4	Compressibility	45
2.6	Morph	ological, Mineralogical, Pozzolanic	
	Activit	y and leachate Properties	48
	2.6.1	Microscopic Examination of Particles	48
	2.6.2	Mineral Composition	51
	2.6.3	Chemical Analysis	53
	2.6.4	Pozzolanic Activity	55
	2.6.5	Heavy Metal and Corrosivity of Coal Ash	56
2.7	Proper	ties of Coal Ash Mixtures	60
	2.7.1	Particle Size Distribution	61
	2.7.2	Compaction Characteristics	63
	2.7.3	Permeability	65
	2.7.4	Strength and Compressibility	66
2.8	Utilisa	tion of Coal Ash in Geotechnical	
	Engine	eering Work	67
2.9	Enviro	nmental Aspects of Coal Ash Usage	
	in Geo	technical Engineering Work	70
2.10	Soft Cl	lay Problems	71
	2.10.1	Introduction	71
	2.10.2	Bearing Capacity	72
	2.10.3	Consolidation Settlement	74

	2.10.4 Properties of Soft Clay	74
2.11	Physical Modelling of Embankment	78
	2.11.1 Full-Scale Tests of Embankment on Soft Soil	78
	2.11.2 Full-Scale Test of Embankment using Fly Ash	
	as Backfill Materials	80
	2.11.3 Laboratory Physical Model Test	82
	2.11.3.1 Introduction	82
	2.11.3.2 Development of Dimension Model	82
2.12	Summary	85

3	RESEARCH METHODOLOGY			
	3.1	Introd	uction	86
	3.2	Resear	rch Activities	87
		3.2.1	Research Design	87
		3.2.2	Literature Search and Information Collection	89
		3.2.3	Sample Collection and Preparation	89
			3.2.3.1 Sample Collection	89
			3.2.3.2 Preparation of Fly Ash and Bottom Ash	
			Samples	91
			3.2.3.3 Preparation of FA-BA Mixtures	91
			3.2.3.4 Curing of the Samples	93
		3.2.4	Equipment Preparation and Calibration	93
	3.3	Sampl	e Characterisation and Properties Establishment	95
		3.3.1	Laboratory Testing Programme	95
		3.3.2	Physical Tests	98
			3.3.2.1 Specific Gravity	98
			3.3.2.2 Sieve Test	99
			3.3.2.3 Hydrometer Test	100
			3.3.2.4 Atterberg Limit Test	102
		3.3.3	Material Characterisation and Geochemistry Tests	103
			3.3.3.1 Morphology Characteristics	103
			3.3.3.2 Mineralogy Characteristics	104
			3.3.3.3 Element Characteristics	105

		3.3.3.4 Thermal Analysis	106
		3.3.3.5 Heavy Metal Study	107
		3.3.3.6 pH Test	109
	3.3.4	Mechanical Tests	109
		3.3.4.1 Direct Shear Test	109
		3.3.4.2 California Bearing Ratio	111
		3.3.4.3 Permeability Test	112
		3.3.4.4 Consolidation Test	115
		3.3.4.5 Unconfined Compression Test	116
3.5	Analy	rsis of Data	118
3.6	Detern	mination of Settlement of FA-BA Mixtures as	
	Soft C	Clay Replacement	118
	3.6.1	Laboratory Physical Model	118
		3.6.1.1 Introduction	118
		3.6.1.2 Model Size and Design	119
	3.6.2	Size of Test Box Model	121
		3.6.2.1 Considering Soft Clay, $\phi = 34.03^{\circ}$	122
		3.6.2.2 Considering the Strongest FA-BA	
		Mixtures, $\phi = 36.85^{\circ}$	123
	3.6.3	Fabrication of Model Test Box	124
	3.6.4	Loading Frame for Soft Soil Preparation	125
		3.6.5 Load Testing Assembly for Settlement	127
	3.6.6	Testing Programme for Model Tests	129
	3.6.7	Preparation of Sample	130
		3.6.7.1 Soft Clay Preparation	130
		3.6.7.2 Preparation of Full FA-BA Mixture Lay	er 132
		3.6.7.3 Preparation of Partially Replaced Soft C	lay
		with FA-BA Mixtures Layer	134
	3.6.8	Settlement Test & Monitoring	134
	3.6.9	Anaysis of Settlement Test Results	135

~			
OF]	FA-BA N	AIXTURES	
4.1	Introd	uction	
4.2	Physic	cal Characteristics	
	4.2.1	Specific Gravity	
		4.2.1.1 FA-BA Mixtures	
		4.2.1.2 Kaolin	
	4.2.2	Particle Size Distribution	
4.3	Morpł	nology Characteristics	
4.4	Miner	alogy Characteristics	
4.5	Mecha	anical Characteristics	
	4.5.1	Compaction	
	4.5.2	Permeability	
	4.5.3	Strength Behaviour	
		4.5.3.1 Unconfined Compression Strength	
		4.5.3.2 Direct Shear of FA-BA Mixtures	
		4.5.3.3 Direct Shear of Kaolin	
		4.5.3.4 Undrained Strength of Kaolin	
		4.5.3.5 California Bearing Ratio	

4

xi

4.5.4 Compressibility of FA-BA Mixtures 181

5 CHEMICAL, POZZOLANIC ACTIVITY, CORROSIVITY AND HEAVY METAL CHARACTERISTICS OF FA-BA MIXTURES

OF I	FA-BA MIXTURES	189
5.1	Introduction	189
5.2	Chemical Characteristic	189
5.3	Thermal Gravimetri Analysis	196
5.4	pH Characteristics	199
5.5	Heavy Metal Content	201

6.1	Introd	uction
6.2	Proper	rties of Compacted Soft Clay and FA-BA Mixture
6.3	Settle	nent Results of Model Tests
	6.3.1	Full Replacement
		6.3.1.1 Time-Settlement Behaviour
		6.3.1.2 Effect of FA Content
	6.3.2	Partial Replacement
		6.3.2.1 Time-Settlement Behaviour
		6.3.2.2 Effect of Replacement Height Ratio
DES	IGN CH	ARTS FOR APPLICATION OF COAL ASH
MIX	TURES	AS ALTERNATIVE MATERIALS IN
GEO	TECHN	VICAL ENGINEERING WORKS
71	Introd	uction

7.1	Introduction		221
7.2	Recommendations for the Selection of Design Parameters 2		
	7.2.1	Environmental Aspects	223
	7.2.2	Design Aspects	224
	7.2.3	Construction Aspects	225
7.3	Propos	sed Design Chart for FA-BA Mixtures as	
	Repla	cement Materials	225
	7.3.1	Unconfined Compressive Strength versus Fly Ash	l
		Content Charts	226
	7.3.2	Settlement Chart for FA-BA Mixtures in	
		Full Soil Replacement	232
	7.3.3	Settlement Chart for Partially Replaced Soft Clay	
		by FA-BA Mixtures	234
CON	CLUSI	ON AND RECOMMENDATIONS	236

8.1	Introduction	236
8.2	2 Conclusion	237
8.3	Contribution of Research	239

6

7

8

	8.3.1 Ground Improvement	239
	8.3.2 Sustainability	239
	8.3.3 Economy	240
	8.3.4 Originality	240
8.4	Recommendations for Future Research	241
REFERENC	242	

Appendices A-N	248-350

LIST OF TABLES

TABLE NO.

TITLE

PAGE

2.1	Total energy supply and coal consumption in some	
	countries in 2003 (Fujitomi and Matsui, 2005)	11
2.2	Generation mix by fuel kind (Energy Commission Malaysia, 2005	5) 12
2.3	List of Coal-Fired Power Stations in Malaysia up to year 2010	
	(Jaffar, 2009)	14
2.4	Coal demand estimations for year 2010 to 2030 (based on Year	
	2005) (Ghazali, 2007)	15
2.5	Worldwide FA production (Geertsema, 2007)	19
2.6	Chemical content of class C pulverised fly ash	
	(ASTM C 618, 2004)	21
2.7	Chemical content of PFA class F (ASTM C 618, 2004)	22
2.8	Specific gravity and chemical composition of FA and BA	
	from the Wabash River Plant, USA (Kim et al., 2005a)	27
2.9	Typical specific gravity for different origins of Fly Ash	28
	(Muhardi et al. 2010)	
2.10	Permeability of Indian FA (Pandian, 2004)	36
2.11	Permeability of Indiana FA (Kim, 2003)	37
2.12	Permeability of the Wabash River Plant ash mixtures	
	(Kim <i>et al.</i> , 2005a)	37
2.13	Hydraulic conductivity of typical soils (Terzaghi et al. 1996)	38
2.14	Results of direct shear tests on Indiana Bottom Ashes	
	(Huang, 1990)	40
2.15	Results of peak friction angle of Indiana FA from direct shear test	
	(Kim, 2003)	41
2.16	Results of cohesion of Indiana FA from direct shear test	
	(Kim, 2003)	41

2.17	Results of strength parameters under different test	
	conditions of FA from India (Pandian, 2004)	42
2.18	Peak shear strength parameters taken from direct shear tests	
	for different age specimens (Tri Utomo, 1996)	42
2.19	Residual strength parameters taken from direct shear test on	
	FA at different age specimens (Tri Utomo, 1996)	43
2.20	Peak and residual strength parameters taken from consolidated	
	drained triaxial on FA at different age specimens	
	(Tri Utomo, 1996)	43
2.21	CBR values according to Road Note 29	
	(TRRL Laboratory Report 1132)	44
2.22	Results of compression index for Indian FA (Pandian, 2004)	46
2.23	Results of coefficient of volume change, mv (cm ² /kg)	
	for Indian FA (Pandian, 2004)	47
2.24	Results of coefficient of consolidation, C_v (10 ⁻³ /kg)	
	for Indian FA (Pandian, 2004)	47
2.25	Results of compression index at different placement	
	conditions for Indian FA (Pandian, 2004)	48
2.26	Mineralogy of the coal fly ash from the AE	
	power plant (Suphi, 2005)	52
2.27	Mineral content in Candiota coal (Marcal et al., 2004)	52
2.28	Typical range of analysis from UK fly ash (Reed, 2005)	54
2.29	Chemical analysis of coal ash (Huang, 1990)	55
2.30	Indiana Administrative Code restricted wasted site type	
	criteria Indiana Administrative Code, 329 IAC 2-9-3 (IAC 1993)	58
2.31	Compaction properties of ash mixtures (Kim, 2003)	64
2.32	Permeability of Wabash River Plant ash mixtures	
	(Kim <i>et al.</i> , 2005a)	65
2.33	Uses of Coal Combustion Products in Highway Applications	
	(GAI and USIFCAU, 1993)	67
2.34	Utilization of coal ash and quantities used in each area during	
	2001 in the USA in thousand tons (Kim, 2003)	68
2.35	Utilization of Fly ash and quantities used in Europe for each area	
	in 1999 (Meij and Berg, 2001)	69

2.36	Utilization of Fly ash and quantities used in each area in 1997	
	in UK (Sear, 2001)	69
2.37	Comparison of index properties of clay in different places	
	(Jamal <i>et al.</i> , 1997)	75
2.38	Classification properties of clay soil from	
	West Coast of Peninsular Malaysia	76
2.39	Typical value of compression index of different type	
	of soil (GEO5 user's guide, 2010)	77
2.40	Properties of kaolin used by previous researchers	78
2.41	Comparison of Delaware and Pennsylvania full scale FA	
	embankment (after Yoon et al., 2009, Golden and	
	DiGioia, 2003 and Ki, 2003)	81
3.1	List of major equipments	94
3.2	Laboratory tests and standard/method used	97
3.3	Laboratory testing programme for FA-BA mixtures	98
3.4	Laboratory model settlement programme	130
4.1	The value of specific gravity of coal ash mixtures	137
4.2	The comparison of specific gravity and iron oxide	
	of FA-BA mixtures	139
4.3	Basic grain size indices and the classification of	
	FA-BA mixtures from Unified Soil Classification	
	System (USCS)	141
4.4	Summary of mineral composition of coal ash mixtures	155
4.5	Standard proctor compaction test results for coal ash mixtures	156
4.6	Coefficient of permeability, k of various mixtures	
	at different curing periods	
	159	
4.7	Unconfined compression strength of FA-BA mixtures at	
	various curing period	164
4.8	Normal stress and peak stress obtained from direct shear	
	tests on FA-BA mixtures at various curing periods	170
4.9	Shear strength parameters from direct shear test for	
	FA-BA mixtures at various curing periods	171
4.10	Shear strength of FA-BA mixtures at normal stress	

	of 50 kN/m ² at various curing periods	174
4.11	Direct shear test result of soft kaolin	176
4.12	Undrained shear strength results from vane	
	shear tests on reconstituted soft kaolin	177
4.13	Variation of CBR values with FA content and curing periods	178
4.14	Shear strength of FA-BA mixtures at various	
	normal stress (28 day curing period)	180
4.15	Summary result on compressibility characteristics	
	of FA-BA mixtures	183
5.1	Chemical content of ash at pure condition (0 days)	
	curing time	190
5.2	Chemical content of ash at pure condition (14 days)	
	curing time	190
5.3	Chemical content of ash at pure condition (28 days)	
	curing time	191
5.4	Chemical content of Tanjung Bin fly ash and bottom ash	
	at pure condition (0 day)	191
5.5	Chemical content of Tanjung Bin fly ash and bottom ash	
	at pure condition (14 day)	192
5.6	Chemical content of Tanjung Bin fly ash and bottom ash	
	at pure condition (28 day)	192
5.7	Mass loss of Ca(OH) ₂ (at 500° C to $600)^{\circ}$ C) for ash mixtures	197
5.8	pH value of FA-BA mixtures	199
5.9	AAS test results at 0 day curing period	202
5.10	AAS test result at 14 day curing period	202
5.11	AAS test result at 28 day curing period	202
6.1	Properties of reconstituted soft clay (kaolin)	205
6.2	Properties of compacted FA-BA mixtures	206
6.3	Settlement of soft clay layer and the layer of FA-BA	
	mixtures at 3, 7, 14, and 28 days after loading	208
6.4	Settlement at day 28 of soft clay layer and	
	the layer of FA-BA mixtures	209
6.5	Values of constant A, B and C from	
	Equation 6.1, obtained from Fig. 6.2	211

6.6	Regression equations of A, B and C with	
	coefficient of determination, R ²	212
6.7	Settlement of partially replaced soft clay with 50% FA-50% BA	
	mixtures at 3,7,14 and 28 day of loading	216
6.8	Settlement at day 28 of soft clay layer and the layer of FA-BA21	7
6.9	Values of constants c and m from Equation 6.3	218
6.10	Regression equation of c and m with coefficient	
	of determination, R^2	219
7.1	Values of constant c and m from Equations 7.1 and 7.2	227
7.2	Regression equations of c and m with coefficient	
	of determination, R^2	229

LIST OF FIGURES

FIGURE NO. PAGE

TITLE

PAGE

1.1	Location of coal fired power plants in	
	Peninsular Malaysia (Mahmud, 2008)	2
2.1	Energy input in power stations for (a) Year 1998 and (b) Year	
	2005 (Ghazali, 2007)	12
2.2	Coal-fired power stations in Malaysia (Jaffar, 2009)	14
2.3	Tanjung Bin Coal-Fired Power Plant, Johor	
	(Muhardi <i>et al.</i> , 2010)	16
2.4	Schematic diagram of a coal fired power station	
	(Meij and Berg, 2001)	17
2.5	Schematic diagram of coal ash generation (FHWA, 2002)	18
2.6	Production of coal ash in the USA (Kim, 2003)	19
2.7	Fly ash and bottom ash collected from coal-fired power plant	
	(Muhardi, 2010)	20
2.8	Fly Ash particles at 2000x magnification (American Coal Ash	
	Association, 2003)	23
2.9	Particle shape of the bottom ash (Chen et al., 2008)	24
2.10	Coal ashes as by-products of coal burning	
	(a) Fly ash (b) Bottom ash (Kim et al., 2005a)	24
2.11	Typical gradation ranges of coal ash (Kim, 2003)	29
2.12	Grain size distributions of bottom ash and fly ash (Lee, 2008)	30
2.13	Grain distributions for each FA, BA and coal ash	
	mixtures (Kim et al., 2005b)	31
2.14	Compaction curves of ash mixtures (Kim et al., 2005b)	32
2.15	Typical compaction curves for Western Pennsylvania bituminous	
	FA (Kim, 2003)	33
2.16	Typical compaction curves for Western United States lignite and	

	sub bituminous FA (Kim, 2003)	34
2.17	Dry density and water content relation for Indian fly ash and soils	J
	(Pandian, 2004)	35
2.18	Hydraulic conductivity versus FA content from Wabash	
	River Plant (Kim et. al., 2005b)	38
2.19	CBR value with different proportions of fly ash with different	
	kinds of soil (Sahu, 2001)	45
2.20	SEM photographs of fly ash and bottom ash	
	(Ctvrtnickova et al., 2010)	49
2.21	Scanning electron microscope (SEM) photomicrographs of	
	bottom ash (a) pure specimen and (b) 28 days compacted	
	specimen (Lee, 2008)	50
2.22	Particle size distributions of the Wabash River Plant fly ash,	
	bottom ash, and fly-bottom ash mixtures (Yoon, 2005)	62
2.23	Particle size distributions of the A.B.Brown Plant fly ash,	
	bottom ash, and fly-bottom ash mixtures (Yoon, 2005)	62
2.24	Compaction curves of fly ash and bottom ash mixtures from	
	the Wabash River Plant (Kim, 2003)	63
2.25	Compaction curves of fly ash and bottom ash mixtures from	
	the A.B.Brown Plant (Kim, 2005)	64
2.26	Hydraulic conductivity againt FA content of FA-BA	
	mixtures of coal ash from from Wabash River Plant	
	(Kim <i>et al.</i> , 2005b)	66
2.27	Failure modes of shallow foundation (redrawn	
	after Vesic (1973) by Das, 2004)	72
2.28	Failure mechanism from general shear failure of	
	shallow foundation (Sutjiono and Najoan, 2005)	83
3.1	Flowchart of research activities	88
3.2	Tanjung Bin coal-fired power station Pontian, Johor	90
3.3	Supplied kaolin in bags, stored at a dry place in the laboratory	90
3.4	Apparatus for standard proctor compaction test	92
3.5	Curing of FA-BA mixtures sample	93
3.6	Portable data logger type UCAM-70A	95
3.7	Pycnometer test apparatus	99

3.8	Sieve tests apparatus	100
3.9	Hydrometer test apparatus	101
3.10	ZEISS SUPRA 35-VP scanning electron microscope	103
3.11	X-ray diffractometer of type Siemens Diffraktometer D5000	105
3.12	X-ray fluorescence of type Bruker AXS Model S4 Pioneer	
	chemical element of sample	106
3.13	TGA/SDTA 851 Model (METTLER TOLEDO)	107
3.14	TRACE AI1300-AAS model	108
3.15	pH meter test equipment	109
3.16	Direct shear test equipment	111
3.17	California bearing ratio (CBR) test equipment	112
3.18	Falling head permeability equipment	113
3.19	Schematic diagram of constant head permeability test	115
3.20	Oedometer consolidation test equipment	116
3.21	Unconfined compression test apparatus	117
3.22	Schematic diagram of laboratory settlement model test	119
3.23	Sectional view of the test models series for (a) Double layer	
	(b) Single layer (FA-BA mixtures) (c) Single layer (soft clay)	121
3.24	Details of loading plate and model test box	125
3.25	Schematic diagram of loading frame for preparation of	
	homogeneous soft kaolin clay soil	126
3.26	Schematic diagram of loading frame for consolidation tests	128
3.27	Details of load connection frame	128
3.28	Dimension of loading plate model (strip footing)	129
3.29	Location of vane shear tests on the reconstituted soft clay soils	131
3.30	Preparation of homogeneous soft clay by consolidation process	132
3.31	Mixing of FA-BA mixtures in concrete mixer machine	133
3.32	Completed compacted FA-BA mixture in test box model	133
3.33	Settlement test on prepared soft clay model	135
4.1	Specific gravity at different FA composition	138
4.2	Grain size distribution of coal ash mixtures	140
4.3	SEM micrograph of coal ash mixtures particles (0 day)	
	(Magnification ×1000), (a) 0%FA; (b) 30%FA;	
	(c) 50%FA; (d) 70%FA; (e) 90%FA; (f) 100%FA	144

4.4	SEM micrograph of coal ash mixtures particles (14 days)	
	(Magnification ×1000), (a) 0%FA; (b) 30%FA; (c) 50%FA;	
	(d) 70%FA; (e) 90%FA; (f) 100%FA	145
4.5	SEM micrograph of coal ash mixtures particles (28 days)	
	(Magnification ×1000), (a) 0%FA; (b) 30%FA; (c) 50%FA;	
	(d) 70%FA; (e) 90%FA; (f) 100%FA	146
4.6	SEM micrograph of coal ash mixtures particles (0%FA)	
	(Magnification ×1000), (a) 0 day; (b) 14 day; (c) 28 day	147
4.7	SEM micrograph of coal ash mixtures particles (30%FA)	
	(Magnification ×1000), (a) 0 day; (b) 14 day; (c) 28 day	148
4.8	SEM micrograph of coal ash mixtures particles (50%FA)	
	(Magnification ×1000), (a) 0 day; (b) 14 day; (c) 28 day	149
4.9	SEM micrograph of coal ash mixtures particles (70%FA)	
	(Magnification ×1000), (a) 0 day; (b) 14 day; (c) 28 day	150
4.10	SEM micrograph of coal ash mixtures particles (90%FA)	
	(Magnification ×1000), (a) 0 day; (b) 14 day; (c) 28 day	151
4.11	SEM micrograph of coal ash mixtures particles (100%FA)	
	(Magnification ×1000), (a) 0 day; (b) 14 day; (c) 28 day	152
4.12	Crystalline compounds at 50% FA-BA mixtures from XRD	
	Difractograms	154
4.13	Dry unit weight at various coal ash mixtures	157
4.14	Optimum moisture content at various coal ash mixtures	157
4.15	Coefficient of permeability coal ash mixtures	
	at various curing periods	160
4.16	Coefficient of permeability coal ash mixtures at various	
	fly ash composition	161
4.17	Variation of compressive strength of FA-BA mixtures with	
	FA contents for different curing periods	164
4.18	Variation of unconfined compressive strength of FA-BA	
	mixtures with curing periods for different fly ash content	165
4.19	Bar chart on increased in unconfined compressive strength	
	at different intervals of curing periods for various fly ash	
	content in FA-BA mixtures	166
4.20	Shear stress versus horizontal displacement from direct shear	

	tests for 50%FA-50%BA mixtures at different normal stress	169
4.21	Peak friction angle of coal ash mixtures at various FA content	172
4.22	Cohesion intercept of coal ash mixtures at various FA content	173
4.23	Peak friction angle of coal ash mixtures at various curing time	173
4.24	Cohesion intercept of coal ash mixtures at various curing time	174
4.25	Shear strength of coal ash mixtures at various FA content	175
4.26	Shear strength of coal ash mixtures at various curing time	175
4.27	Variation of CBR values with curing periods at different	
	FA content	179
4.28	Variations of CBR values with FA contents at different	
	curing periods	179
4.29	Shear strength of FA-BA mixtures at various percentages	
	of FA at 28 day curing periods	181
4.30	A typical settlement versus square root time curve at 70%FA,	
	28 day curing period	182
4.31	A typical e-log σ graph for 70% FA mixture at	
	28 day curing period	182
4.32	Relationship between coefficient of consolidation with FA	
	contents and the variation with curing periods for all mixtures	184
4.33	Coefficient of consolidation versus pressure at different phase in	
	consolidation test for 70%FA mixture at 28 day curing period	184
4.34	Changes of coefficient of volume compressibility	
	with curing periods	185
4.35	Variation of compression index and swelling index	
	with curing time	187
5.1	CaO content at various fly ash compositions at difference	
	curing period	193
5.2	Effect of curing period on the Al ₂ O ₃ composition at	
	different FA-BA mixtures	193
5.3	Effect of curing periods on the SiO ₂ composition at	
	different FA-BA mixtures	194
5.4	SiO ₂ content at various fly ash compositions at different	
	curing period	194
5.5	Percentage of Chemical Content at 50% fly ash	195

5.6	Mass loss of Ca(OH) ₂ for FA-BA mixtures at various	
	curing periods	197
5.7	Effect of FA compositions on mass loss of Ca(OH) ₂ at	
	0, 14 and 28 day curing periods	198
5.8	pH value of FA-BA mixtures at different curing period	199
5.9	Arsenic value of FA-BA mixtures at different curing period	202
5.10	Cadmium value of FA-BA mixtures at different curing period	202
6.1	Time-settlement relationship of soft clay layer and layer	
	of FA-BA mixtures at various FA compositions	208
6.2	Relationship between settlement of layers of FA-BA mixtures	
	and FA content at various loading time	211
6.3	Correlation between constant A and time	211
6.4	Correlation between constant B and time	212
6.5	Correlation between constant C and time	212
6.6	Correlation of settlement with FA content at various	
	loading time	213
6.7	Time-settlement relationship of footing on 50% FA-50% BA	
	mixtures at various replacement height ratio	215
6.8	Effect of partial replacement of soft clay on the settlement with	
	layer of 50%FA-50%BA mixtures at various loading time	218
6.9	Correlations of constants c and m with time of loading	219
6.10	Correlation of settlement with height replacement ratio	
	at various loading time	220
7.1	Relationship between unconfined compressive strength and	
	FA content at various loading time for FA>50%	227
7.2	Relationship between unconfined compressive strength and	
	FA content at various loading time for FA<50%	227
7.3	Correlation of constant c with loading time at (a) FA> 50%	
	and (b) FA< 50%	228
7.4	Correlation of constant m with loading time at (a) FA> 50%	
	and (b) FA< 50%	229
7.5	Correlation of unconfined compressive strength with	
	FA content at various loading time for $FA > 50\%$	231
7.6	Correlation of unconfined compressive strength with	

	FA content at various loading time for $FA < 50\%$	231
7.7	Design charts (UCT-Ash Mixtures) of unconfined	
	compressive strength for FA-BA mixtures	232
7.8	Design chart (Settlement-FRAM) of settlement for	
	FA-BA mixtures in full Soil replacement	233
7.9	Design charts (Settlement-PR50FA) of settlement for	
	50%FA-50%BA mixtures in partial replacement of	
	soil with $S_u = 20$ kPa and vertical stress = 216 kPa	234

LIST OF ABBREVIATIONS

AAS	-	Atomic absorption spectroscopy
ACAA	-	American Coal Ash Association
ASTM	-	American Society of Testing Material
BA	-	Bottom ash
BS	-	British standard
CCP	-	Coal combustion product
CD	-	Consolidated drained
CU	-	Consolidated undrained
FA	-	Fly ash
FA-BA	-	Fly ash – bottom ash
FBA	-	Furnace bottom ash
FEA	-	Finite element analysis
FGD	-	Flue gas desulfurization
HSM	-	Hardening soil model
JKR	-	Public works department
LEM	-	Linear elastic model
MCCM	-	Modified cam clay model
MCM	-	Mohr coulomb model
OMC	-	Optimum moisture content
PFA	-	Pulverised fuel ash
SEM	-	Scanning electron microscopy
SG	-	Specific gravity
SSM	-	Soft soil model
UCS	-	Unconfined compressive strength
UK	-	United Kingdom
ULS	-	Ultimate limit state
USA	-	United States of America
USCS	-	Unified soil classification system
UTHM	-	Universiti Teknologi Tun Hussein Onn
UTM	-	Universiti Teknologi Malaysia
TGA	-	Thermal gravimetric analysis

XRD - X-Ray diffraction

XRF - X-Ray fluorescence

LIST OF SYMBOLS

В	-	Width of foundation
c	-	Cohesion of soil
C _c	-	Compression index
c _{increment}	-	Cohesion increment
c _{peak}	-	Peak cohesion
c _{d peak}	-	Peak cohesion for consolidated drained
c' _{peak}	-	Peak cohesion for consolidated undrained
c _{residual}	-	Residual cohesion
c _{d residual}	-	Residual cohesion for consolidated drained
c' _{residual}	-	Residual cohesion for consolidated undrained
Cs	-	Swelling index
c _u	-	Undrained shear strength
C_U	-	Coefficient of uniformity
c _v	-	Coefficient of consolidation
D	-	Depth factor
D_{f}	-	Depth of foundation
DH	-	Depth to firm stratum
D ₁₀	-	Effective size
D ₃₀	-	Diameter finer than 30 %
D ₆₀	-	Diameter finer than 60 %
E	-	Young's stiffness
Eincrement	-	Stiffness increment
E_m	-	Young's stiffness of aluminum alloy
E _{oed}	-	Oedometer stiffness
E _p	-	Young's stiffness of concrete
Eur	-	Unloading stiffness
E ₅₀	-	Secant stiffness
F	-	Factor of safety

g	-	Gravity, 9.81 m/s ²
G_0	-	Elastic shear modulus
G _{ref}	-	Shear modulus
G_s	-	Specific gravity
Н	-	Height of embankment
h	-	Thickness of soil layer
H _s	-	Depth of failure
$\mathbf{I}_{\mathbf{p}}$	-	Plasticity index
$\mathbf{k}_{\mathbf{x}}$	-	Horizontal permeability
$\mathbf{k}_{\mathbf{y}}$	-	Vertical permeability
Ls	-	Linear shrinkage
m_v	-	Coefficient of volume change
Ν	-	Scale factor
N_s	-	Stability coefficient
t	-	Test time
W	-	Natural water content
W_L	-	Liquid limit
Wopt	-	Optimum moisture content
Wp	-	Plastic limit
β	-	Slope angle
ε _a	-	Axial strain
φ	-	Internal friction angle
ϕ_{peak}	-	Peak friction angle
\$	-	Peak friction angle for consolidated drained
φ' _{peak}	-	Peak friction angle for consolidated undrained
• residual	-	Residual friction angle
\$ d residual	-	Residual friction angle for consolidated drained
¢'residual	-	Residual friction angle for consolidated undrained
γ	-	Unit weight of soil
γd	-	Dry unit weight of soil
Ydmin	-	Minimum dry unit weight of soil
Ydmax	_	Maximum dry unit weight of soil
Veot	_	Saturated unit weight of soil
1 Sat		Sand and a second of both

Yunsat	-	Unsaturated unit weight of soil
v	-	Poisson ratio
$\sigma_{\rm n}$	-	Normal stress
σ_1	-	Major principle stress
σ_3	-	Minor principle stress
τ	-	Shear stress

 ψ - Angle of dilatancy

LIST OF APPENDICES

APPENDIX	TITLE	PAGE
А	Instrumentation calibration	248
В	Hydrometer analysis	251
С	Dry sieving test data	257
D	Specific gravity data	260
E	X- ray diffraction analysis	263
F	Compaction test analysis	272
G	Direct shear test analysis	277
Н	Permeability test	283
Ι	Unconfined compression test	289
J	California bearing ratio test	301
Κ	One-dimensional consolidation test	304
L	Thermal gravimetric analysis	329
М	Laboratory physical model test results	338
Ν	Standard error analysis	350

CHAPTER 1

INTRODUCTION

1.1 Background of Research

Coal is largely used around the world as a source or power generation. In Peninsular Malaysia, the existing coal-fired power plants are Sultan Azlan Shah Power Station, Manjung Perak (3 x 700 MW) commissioned in 2003, Sultan Salahuddin Abdul Aziz Power Station Kapar (4 x 300 MW, 2 x 500 MW) commissioned in 1988, Tanjung Bin, Pontian, Johor (3 x 748 MW) commissioned in 2005 and Jimah Port Dickson (2 x 752 MW) commissioned in 2008, as shown in Figure 1.1. Sarawak has two coal fired-power plants which are Mukah (2 x 135 MW) and Sejingkat (2 x 50 MW, 2 x 55 MW) (Coal-Fired Power Plants in Malaysia, 2010). Looking at the electricity generation mix, the percentage of coal remains stable at an average of 8.6 percent from 1993-2010 and increased slightly to 12 and 14.1 percent in 2001 and 2002 respectively. However, in 2003, the percentage increased tremendously from 14.1 percent to 24.6 percent of coal in the electricity generation mix due to the commissioning of Sultan Azlan Shah Power Station Manjung. According to Joseph (2005), with the two more new constructed coal-fired power plants, Jimah, Port Dickson Negeri Sembilan and Tanjung Bin, Pontian Johor, coal consumption has been expected to increase from 11 million tonne to 21 million tonne in year 2012.

Figure 1.1: Location of coal fired power plants in Peninsular Malaysia (Mahmud, 2008)

The burning of coal for power generation produced solid waste, referred to as coal ash. The solids wastes are classified as fly ash (FA), bottom ash (BA), boiler slag and fuel gas desulfurization (FGD). The large utilization of coal produces a large volume of coal ash. In general, about 10% of the coal burned produces ash (Huang, 1990, Karim, 1997, Muhardi, 2010 and Hassan, 2013). According to the American Coal Ash Association (ACAA, 2003), the general production ratio of fly and BA is approximately 80:20. The heavier ash that drops through the bottom of the furnace, where it is collected in a funnel, is called BA. It is classified as wet or dry BA depending on the type of furnace used and it is relatively coarse grained. The lighter FA is carried through the boiler with the exhaust gases and is collected by ash precipitators (Huang, 1990). FA accounts for 70 to 80 percent of the coal ash produced by most electric power plants while BA constitutes about 10 to 18 percent of the overall ash.

According to Mahmud (2003), the coal power plants in Malaysia are usually designed using coal as blended materials in which bituminous coals are mixed with sub-bituminous coal with the proportion of 70 %: 30 %. The main reason is to reduce the cost of purchasing bituminous coal. The ash produced from this blended coal might possess different properties as compared to the ash produced from the sole use of bituminous coal or solely of sub-bituminous coal.

Basically the applications or potential applications of coal ash include the cement and concrete industries, production of synthetic aggregates and zeolites, backfill and embankment materials for highway construction, stabilization of engineered soils for construction purposes, and improvement of soils behaviour for agriculture and horticulture (Mahmud, 2008). The geotechnical, geochemical and mineralogical properties of the coal combustion products may vary from individual sample depending on the type of raw materials, feedstock handling and inflammation condition.

Several projects in the United States of America (USA) and the United Kingdom (UK) that use FA in embankment construction as structural materials have shown economic savings, both to the highway department and power plant companies (Yoon *et al.*, 2009; Kim, 2003; Golden and DiGioia, 2003 and Sear, 2001). In Malaysia, however, there are still no well-known projects utilizing FA or BA as materials in any Geotechnical Engineering or construction work. This may be due to the fact that no abundant or excess of FA has been produced to date. As for BA, perhaps it is because the properties have yet to be adequately looked into.

Pandian (2004) and Muhardi (2010) reported that, FA has good potential for use in geotechnical engineering application. Its low specific gravity, freely draining nature, ease of compaction, insensitiveness to change in moisture content, good frictional properties, and others can be fully exploited in the construction of embankment, roads, reclamations of low-lying areas and fill behind retaining structures. It can also be used in reinforced concrete construction. BA particles are much coarser than FA. The grain size typically ranges from fine sand to gravel in size. According to Kumar and Vaddhu (2003), chemical composition of BA is similar to FA but typically contains greater quantities of carbon. BA tends to be relatively more inert because the particles are larger and more fused than FA. Since these particles are highly fused, they tend to show less cementitious/pozzolanic activity and less suited as a binder constituent in cement or concrete products. However, BA can be used as a concrete aggregate or for several other civil engineering applications where sand, gravel and crushed stone are used. Chemical composition of both FA and BA shows some cementitious /pozzolanic properties, which can result in time dependent change in the properties of products made using this type of FA and BA.

A lot of studies had been concentrated on the properties of coal ash, but the investigation on the coal ash mixtures is very limited. Kumar and Vaddu (2003) observed that strength and stiffness of FA and BA mixtures vary with the curing periods. Karim (1997) examined the effect of mixture proportions of FA and BA on compaction and shear strength. He reported that the behavior of FA mixed with BA (FA-BA mixtures) varies with the mixture proportions. For usage as fill materials, it is anticipated that FA-BA mixtures will give economic advantage in which the cost of purchasing the fill material will be reduced significantly. The utilization of FA-BA mixture may answer the disposal and environmental problems in power plant industry, beside an alternative lightweight material for embankment construction on soft clay, as soil stabilization and in engineering construction. Due to lightweight properties and strength gained with time, these materials hypothetically could be used as replacement of soft soils, either in full replacement or partial replacement.

Physical models play a basic role in the development of geotechnical engineering understanding. Physical modelling is carried out to validate theoretical or empirical theories. Normally, physical modelling is performed to study the particular aspects of the behaviour of prototypes. Full scale testing is an example of physical modelling, where all features of the prototype are reproduced at full scale. However, most physical models are constructed at smaller scales than the prototype because it is expected to obtain information of response more rapidly and allow more control over model details than full scale testing. One example of the small scale physical modelling would be the laboratory physical model. As an example, in the laboratory embankment model test, the material such as the soil to be used can be chosen easily, while the boundary and loading conditions of the model can be varied without difficulties. The costs of individual tests are correspondingly lower than the full scale tests (Muhardi, 2010).

1.2 Problem Statement

Every year, the coal-fired power plant produced large volume of coal ash which are FA and BA all over the world. Malaysia is also not excluded as a contributor of large volume of FA and BA. Even though there is no report about the producing of coal ash annually in Malaysia, but basically, about 10% of total weight of the coal burned produces ash. Both the FA and BA is disposed as waste materials. Landfill has been the primary method of disposal of these waste materials. The problems that occur to disposing this coal ash are limited availability of land and very costly since large volume of coal ash is generated. Besides that, the coal ash presents a significant environmental problem to the surrounding area. However, this environmental problem can be minimised by reducing the need for ash landfills. From these problems, many researchers have proved that FA can be used in most construction and Geotechnical Engineering works. So, many developed countries have recycled the FA and minimise all of the above mentioned problems.

The used of BA is still very insignificant compared to the FA. Besides that, the research about coal ash mixture properties is also very limited. Since FA particle are very fine, mostly spherical and vary in diameter while BA particles are much coarser than FA, the mixture of both materials will have a good potential in construction industry, in particular the Geotechnical Engineering works. Hence, a research is necessary to determine various properties of FA-BA mixtures such as a physical, mechanical, chemical, microstructure and mineralogical, especially their variation with time. This is because previous study showed that there was pozzolanic reaction in FA-BA mixture. The usage of large volume of both FA and BA as FA-BA mixture in geotechnical application may offer an attractive alternative, provided that their properties and behaviour are fully known. However, although there are a lot of studies related to the properties of coal ash internationally, the investigation about the local coal ash is very limited. In particular for FA-BA mixture, the work is insignificant, locally and internationally.

1.3 Objectives of Research

The aim of this research was to determine the suitable of FA-BA mixtures in Geotechnical Engineering work, particularly as full and partial replacement of soft soil based on laboratory experimental works and laboratory physical model tests. In order to achieve the aim of this research, the following objectives have been fulfilled:

- 1. To determine the compaction characteristics of various FA-BA mixtures.
- 2. To determine various properties of compacted FA-BA mixtures such as the physical, mechanical and chemical properties as well as the microstructure and mineralogical characteristic and their changes with time.
- 3. To determine the settlement performance of soft kaolin with and without the replacement of FA-BA mixtures by means of single gravity laboratory physical model tests.
- 4. To develop design charts for application of FA-BA mixtures as alternative materials in geotechnical engineering works.

1.4 Scope of Research

In order to achieve the objectives of this research, the following scope had been covered:

- The coal ash used in this research had been collected from Tanjung Bin Power Plant in Pontian, Johor. Samples of bottom ash were taken from the ash pond while the fly ashes were taken from ash hoppers.
- FA-BA mixtures had been prepared at six (6) different FA contents (0%, 30%, 50%, 70%, 90% and 100% by weight of the total samples) and tested at three (3) curing periods (0, 14, and 28 days).
- 3. The laboratory physical model was constructed to examine the settlement of single layer of soft clay and soft clay with fully and partially replaced by FA-BA mixtures.

1.5 Significance of Research

- 1. Stabilisation mechanism of FA-BA mixtures had been established and this contributed to the existing state of knowledge.
- 2. Properties and behavior of various FA-BA mixtures with time, established from this study would be a reference to Geotechnical Engineers in considering the usage of these materials in Geotechnical Engineering works and construction. These could also be a baseline for researchers working on FA-BA mixtures in the future.

- 3. The developed design charts on the usage of FA-BA mixtures in Geotechnical Engineering work, particularly as soft soil replacement could be used by other researchers as validation for numerical modeling on the performance of FA-BA mixtures as soft soil replacement.
- 4. FA-BA mixtures would give economic advantage in which the cost of purchasing the fill material would be reduced significantly. The environmental impact of construction utilizing coal FA-BA mixtures may be a concern to potential users of these materials. Results from this research show that FA-BA mixtures will not give detrimental effects on their surrounding environments. The utilizations of FA-BA mixtures may answer the disposal and environmental problems in power plant industry, beside an alternative lightweight material for replacement of soft subgrade soils or as backfill in embankment construction on soft soil.

1.6 Thesis Organisation

The thesis consists of eight (8) chapters. The essence of each chapter is as follows:

Chapter 1 gives the introduction of the research that includes background, statement of problem, objectives, scope and significance of research.

Chapter 2 reviews the generation of coal ash, its collection, disposal, production and utilization in the world. An overview of the physical characteristics, chemical and engineering properties of FA, BA and FA-BA are presented. Others are also discussed that include the soft clay problems and physical modelling of embankment.

Chapter 3 discusses the research methodology including the overview of the research activities, testing programme, research planning and schedule, and preparing of sample. The design, construction and testing of laboratory physical model tests are also discussed.

Chapter 4 discusses the physical and mechanical characterization FA-BA mixtures, including compaction, permeability, strength and compressibility characteristics. This chapter also addresses the effect of curing age of 0, 14 and 28 days on the properties of FA-BA mixtures and the effects of FA composition in the FA-BA mixtures.

Chapter 5 summarizes and discusses and the results of morphology, mineralogy, chemical and corrosivity characteristics of FA-BA mixtures, including SEM, XRD, XRF. This chapter also addresses the effect of FA compositions in the ash mixtures and the curing periods on the properties of FA-BA mixtures.

Chapter 6 contains the performance of settlement analysis from the experimental work by laboratory physical model tests. It includes the settlement of soft clay layer and the soft clay layer which was fully and partially replaced by FA-BA mixtures.

Chapter 7 explains the development of the design charts of coal ash mixtures as alternative materials in geotechnical engineering works based on the results of the experimental work and physical model. The conclusion and recommendations for further research as drawn from this study are described in Chapter 8.

REFERENCES

- American Coal Ash Association (ACAA) (2003). Fly Ash Facts for Highway Engineers. Technical Report ACAA, USA.
- American Society of Testing Materials (2004). *ASTM 2004*. USA: *Standard Specification for Fly Ash and Raw or Calcined Natural Pozzolan for Use as a Mineral Admixture in Portland Cement Concrete*.
- Basak, S., Bhattacharya, A. K. and Paira, S.L.K. (2004). Utilization Fly Ash in Rural Road Construction in India and its Cost Effectivenes. *The Electronic Journal of Geotechnical Engineering (EJGE)*. 155-165
- Bayat, O. (1998). Characterisation of Turkish fly ashes, fuel 77:1059 1066.
- Baykal, G., Edincliler, A. and Saygili, A. (2004). Highway Embankment Construction Using Fly Ash in Cold Regions. *Journal of Resources, Conservation, and Recycling.* Vol. 42, p 209-222.
- Bergado, D.T., Long, P.V. and Murty, B.R.S. (2002). A Case Study of Geotextile-Reinforced Embankment on Soft Ground. *Journal of Geotextiles and Geomembranes*, Vol. 20, p 343-365.
- Bergado, D.T. and Teerawattanasuk, C. (2007). 2D and 3D Numerical Simulations of Reinforced Embankments on Soft Ground. *Journal of Geotextiles and Geomembranes*.
- Borges, J. L. (2004). Three Dimensional Analysis of Embankments on Soft Soils Incorporating Vertical Drains by Finite Element Method. *Journal of Computers and Geotechnics*, Vol. 31, p 665-676.
- Brown, M. E. (2004). Introduction to Thermal Analysis, Techniques and Applications. Kluwer Academic Publisher, USA.
- British Standard (1990). B.S. 1377. UK. Method of Test for Soils for Civil Engineering Purposes.
- Consoli, N.C., Li, X.S., Prietto, P.D.M., Carraro, J.H.A. and Heineck, K.S. (2001). Behavior of Compacted Soil - Fly Ash - Carbide Lime Mixtures. *Journal of Geotechnical and Geoenvironmental Engineering*, Vol. 27, No. 9.
- Craig, R.F. (2004). Soil Mechanics. Taylor & Francis Group, London.
- Das, S.K. and Yudbhir. (2006). Geotechnical Properties of Low Calcium and High Calcium Fly Ash. *Journal of Geotechnical and Geological Engineering*, Vol. 24, p 249-263.
- Das, S.K. and Yudbhir. (2005). Geotechnical Characterisation of Some Indian Fly Ashes. *Journal of Materials in Civil Engineering*, Vol. 17, No. 5.
- Diamon, S. (1985) "Selection and use of fly ash for highway concrete" report no FHWA/IN/JHRP 85/8 Final Report.
- Eisazadeh, A., Khairul, A. K. and Hadi, N. (2010). "Stabilization of tropical kaolin soil with phosphoric acid and lime word academic of science engineering of tech"

- Edil, T.B., Acosta, H.A. and Benson, C.H. (2006). Stabilizing Soft Fine Grained Soils with Fly Ash. *Journal of Material in Civil Engineering*, Vol. 18, No. 2.
- Fabio, S., Lin, L. and Farshad, A. (2011). "Geotechnical Properties of Fly Ash and Soil Mixtures for Use in Highway Embankment. World of coal ash". (WOCA) Conference-May 9-12, 2011, in Denver, CO, USA.
- Fujitomi, M. and Matsui, K. (2005). *APEC Energy Review 2005*. Asia Pacific Energy Research Centre (APERC), the Institute of Energy Economics, Japan.
- GAU Consultant, INC/USIFCAU (1993) "Use of coal ash combustion product in highway construction" prepared for general assembly of Indiana. Act 1056 and senate bill 209.
- Geertsema, A. (2001). Coal Products: Status and Future for the USA. *International* Ash Utilization Symposium 22 24 October 2001, Lexington Kentucky, USA.
- Golden, D.M. and DiGioia, A.M. (2003). *Fly Ash for Highway Construction and Site Development*. Coal Combustion Product Partnership, USA.
- Goswami, R.K. and Mahanta, C. (2007). Leaching Characteristics of Residual Lateritic Soils Stabilized with Fly Ash and Lime for Geotechnical Applications. *Journal of Waste Management*, Vol. 27, p 466-481.
- Hasan, M. (2013). Strength and Compressibility of Soft Soil Reinforced with Bottom Ash Columns. Doctor of Philosophy, Universiti Teknologi Malaysia, Johor.
- Hasan, M., Marto, A, Hyodo, M. and Makhtar, A.M. (2011). The Strength of Soft Clay Reinforced with Singular and Group Bottom Ash Column. *The Electronic Journal of Geotechnical Engineering (EJGE)* paper.
- Head, K.H. (2002). *Manual of Soil Laboratory Testing*. ELE International Limited, Pentech Press, London.
- Huang, H. W. (1990). The use of bottom ash in highway embankments, subgrade, and subbases. Joint Highway Research Project Final Report, FHWA/IN/JHRP-90/4, Purdue Univ., W. Lafayette, Ind
- Hui, T.W. and Nithiaraj, R. (2004). *Characterization of Tropical Soils in the Design* of Material as Natural Foundation and Fill. Tropical Residual Soils Engineering, Taylor & Francis Group, London.
- Joseph and C. Chong (2005). Report of the fourth meeting of the Asean on Coal (AFOC) Council New World Renaisence Hotel Phyliphinies.
- Kaniraj, S.R. and Gayathri, V. (2004). Permeability and Consolidation Characteristics of Compacted Fly Ash. *Journal of Energy Engineering*, Vol. 130, No. 1.
- Karim, M and Lovell, C.W., (1997). Building Highway Embankment of Fly/Bottom Ash Mixtures, Final Report FHWA/In/JTRP-97/1
- Kempfert, H.G. and Gebreselassie, B. (2006). *Excavations and Foundations in Soft Soils*. Springer-Verlag Berlin Heidelberg.
- Khatib, A. (2009). Bearing Capacity of Granular Soil Overlying Soft Clay Reinforced with Bamboo-Geotextile Composite at the Interface. Doctor of Philosophy. Universiti Teknologi Malaysia, Johor.
- Lee, F.W, (2008). Morphology, Mineralogy and Engineering characteristic of Tanjung bin Bottom Ash, Bachelor of Civil Engineering, Universiti Teknologi Malaysia, Johor.
- Saeed. K.A, Eisazadeh. A, and Kasim, K.A. (2012). Lime Stabilized Malaysian Lateritic Clay Contaminated by Heavy Metals. *Electronic Journal Geotechnical Engineering (EJGE)* Paper 2012 – 150.
- Kim, B. (2003). Properties of Coal Ash Mixtures and their Use in Highway Embankments. Doctor of Philosophy, Purdue University, Indiana, USA.

- Kim, B., Prezzi M, and Salgado, R. (2005a). Mechanical properties of class F and bottom ash mixtures for embankment application. IGC, 17-19 December 2005, Achemadabat, INDIA.
- Kim, B., Prezzi, M., and Salgado, R., (2005b). Geotechnical Properties of Fly and Bottom Ash Mixtures for Use in Highway Embankments, 914, Journal of Geotechnical and Geoenvironmental Engineering © ASCE/ July 2005.
- Kim, B. and Prezzi, M. (2007). Evaluation of the Mechanical Properties of Class F Fly Ash. *Journal of Waste Management*, Vol. 28, p 649-659.
- Kumar, S and Mishra, S., (2005). Morphological and Strength Analysis of PCC Bottom ash Amended with Bentonite. *Geotechnical and Geological Engineering* (2006), 24: 1009-1020.
- Latifi, N., Marto, A. and Eisazadeh, A. (2013) "Structural Characteristics of Laterite Soil Treated by SH-85 and TX-85 (Non-Traditional) Stabilizers" *The Electronic Journal of Geotechnical Engineering (EJGE)*
- Lav, A.H., Lav, M.A. and Goktepe, A.B. (2006). *Analysis and Design of a Stabilized Fly Ash as Pavement Base Material*. Istanbul Technical University, Faculty of Civil Engineering, Turkey.
- Lee, F.W. (2008). Morphology, Minerology and Engineering Characteristic of Tanjung Bin Bottom Ash, Bachelor of Civil Engineering, Universiti Teknologi Malaysia.
- Leonard J.W. & Cockrell C.F. (1992). *Characterization and utilization studies of limestone modified fly ash*. Coal Research. Bureau, Vol. 60.
- Li, G. and Wu, X. (2005). Influence of Fly Ash and Its Mean Particle Size on Certain Engineering Properties of Cement Composite Mortars. *Journal of Cement and Concrete Research*, Vol. 35, p 1128-1134.
- Look, B. (2007). *Handbook of Geotechnical Investigation and Design Tables*. Taylor and Francis Group, London.
- Lorenzo, G.A., Bergado, D.T., Bunthai, W., Hormdee, D. and Phothiraksanon, P. (2004). Innovations and Performances of PVD and Dual Function Geosynthetic Applications. *Journal of Geotextiles and Geomembranes*, Vol. 22, p 75-79.
- Mahmud, H.O. (2003). Coal Fired Plant in Malaysia. The 15th JAPAC International Symposium. Tokyo.
- Majidzadeh, K., El-Mitiny, R. N. and Bokowski, G. (1977). "Power plant bottom ash in black base and bituminous surfacing." Vol. 2, User's Manual, Federal Highway Administration, Report No. FHWA-RD-78-148, Washington, D. C.
- Marto, A. (1996). *Volumetric compression of a silt under periodic loading*. Doctor of Philosophy. University of Bradford, United Kingdom.
- Marto, A., Latifi, N. and Sohaei, H. (2013). Stabilization of Laterite Soil using GKS Soil Stabilizer. *Electronic Journal of Geotechnical Engineering (EJGE)*. Vol 18: 521-532
- Marto, A., Hassan, M., Hyodo, M. and Makhtar, A. M. (2014). Shear Strength Parameters and Consolidation of Clay Reinforced with Single and Group Bottom ash Column. *Arabian Journal for Science and Engineering*, 39(4), 2461-2654.
- Marto, A., Othman, B.A., Mohd Hanipiah, M.Z. and Hirman, H. (2010). *Performance of Bamboo-Geotextile Composite Reinforced Embankment on Soft Clay*. 3rd International Graduate Conference on Engineering, Science and Humanities (IGCESH), 2-4 November 2010, UTM Skudai Johor Bahru, Malaysia.

- McLaren, R. J. and DiGioia, A. M. (1987). The typical engineering properties of fly ash. Proc. Geotechnical Practice for Waste Disposal '87, Geotechnical Special Publication No. 13, E. Wood, ed., ASCE, New York, 683–697.
- Meij, R. and Berg, J. (2001). Coal Fly Ash Management in Europe Trends, Regulations and Health & Safety Aspects. International Ash Utilization Symposium 22 – 24 October 2001, Lexington Kentucky, USA.
- Mendonsa, A. and Lopes, M. L. (2003). *Centrifuge Modelling of Soil Reinforced Systems with Geogrids*. Research Project Report POCTI/42806/ECM/2001, Portugal.
- Misra, A. (2000). Utilization of Western Coal Fly Ash in Construction of Highways in Midwest. Final Report, University of Missouri, Kansas City, USA.
- Muhardi. (2002). *Stress Strain Behavior of Pulverized Fuel Ash*. Master Thesis, Manchester University, Manchester, UK.
- Muhardi, Kasim, K.A., Makhtar A.M., Lee, F.W. and Yap, CS.L. (2010) "Engineering characteristic of Tanjung Bin Coal Ash Mixtures Vol 15 (2010) Bunk K.
- Murat, M. and Yuksel, Y. (2001). Potential use of fly ash and bentonite mixture as liner or cover as waste disposal areas. Environmental Geology Paper 2001.
- Muzamir, H., Marto, A., Hyodo, M. and Makhtar A.M. (2013). The Strength of Soft Clay Reinforced width Singular and Group Bottom ash column. *Electronic Journal of Geotechnical Engineering (EJGE)* Vol 16 (2013) PP 1217-1217.
- Noor Rafida, A.T. (2009). Engineering Characteristic of Bottom Ash from Power Plants in Malaysia. Bachelor of Civil Engineering, Universiti Teknologi Malaysia, Johor.
- Pandian, N.S. (2004). Fly Ash Characterization with Reference to Geotechnical Applications. *Journal of Indian of Institute of Science*, Vol. 84, p 189-216.
- Panesar, H.S. (2005). Serviceability Based Design Approach for Reinforced Embankments on Soft Clay. Master Thesis, Saskatchewan University, Canada (Unpublished).
- Prabakar, J., Dendorkar, N. and Morchhale, R.K. (2004). Influence of Fly Ash on Strength Behavior of Typical Soils. *Journal of Construction and Building Materials*, Vol. 18, p 263-267.
- Reed, S.J.B. (2005). *Electron Microprobe Analysis and Scanning Electron Microscopy in Geology*. Cambridge University Press, UK.
- Roberts, J. E. and DeSouza, J. M. (1985) "The compressibility of sands." Proc., American Society for Testing and Materials, 58, 1269–1277.
- Roszczynialski, W. (2002). Determination of Pozzolanic Activity of Materials by Thermal Analysis. *Journal of Thermal Analysis and Calorimetry*, Vol. 70, p 387-392.
- Sahu, B.K. (2001). Improvement in California Bearing Ratio of Various Soils in Botswana by Fly Ash. International Ash Utilization Symposium, Lexington Kentucky, USA.
- Salgado, R., Bandini, P. and Karim, A. (2000). "Shear strength and stiffness of silty sand." *Journal Geotech. Geoenviron*. Eng.126(5), 451–462.
- Sanjeev, K., Sanjay, M., Manoj, Bernard, R.S. and Prashahst, V. (2006) "Morphological and Strength analysis of PCC Bottom ash amended with bentonite. Geotechnical and Geological Engineering (2006) 24. 1009-1020 Department of Civil Engineering, Southern Illinois University Carbondale

- Sato, A. and Nishimoto, S. (2001). *Effective Reuse of Coal Ash as Civil Engineering Material*. International Ash Utilization Symposium, Lexington Kentucky, USA.
- Seals, R. K., Moulton, L. K. and Ruth, B. E.(1972). "Bottom ash: An engineering material" *Jornal Soil Mech. Found*. Div.,98~4, 311–325
- Sear, L.K.A. (2001). *The Properties and Use of Coal Fly Ash*. Thomas Telford Ltd, London, UK.
- Shen, S.L., Chai, C.J., Hong, Z.S. and Chai, F.X. (2005). Analysis of Field Performance of Embankments on Soft Clay Deposit with and without PVD Improvement. *Journal of Geotextiles and Geomembranes*, Vol. 23, p 463-485.
- Sugmin, Y., Umarshankar, B., Irem, Z., Monica, P. and Nayyar, Z.S. (2009). Construction of an Embankment with a Fly and Bottom ash Mixtures: *Field Performance Study Journal of material in Civil Engineering, ASCE.*
- Suphi, U. (2005). Comparison of Fly ash properties from Afsin-Elbiston coal basin Turkey, Journal of Hazardous Materials B119 (2005) 85-92, Department of Mining Engineering Cukurova University, Turkey.
- Tanosaki, T., Watanabe, Y., Ishikawa, Y., Nambu, M. and Lin, J. (2009). Characterization of East Asian fly ash by polarization microscope, Abstract of Japan Society of Material Cycles and Waste Management (in Japanese)
- Terzaghi, K. (1943) Theoretical Soil Mechanic, Wiley New York.
- Terzaghi, K. and Peck, R.B. (1996). *Soil Mechanic in Engineering Practice*, Wiley New York.
- Thomas, Z. (2002). *Engineering Properties of Soil Fly Ash Sub-grade Mixtures*. Iowa State University, Department of Civil Engineering, USA.
- Tobita, T., Iai, S. and Ueda, K. (2006). *Dynamic Behavior of a Levee on Saturated Sand Deposit*. Annuals of Disaster Preventive Research Institute, Kyoto University.
- Tri Utomo, S.H. (1996). *The Effects of Time on Properties of Pulverised Fuel Ash*. PhD Thesis, University of Newcastle upon Tyne, UK (Unpublished).
- Trivedi, A. and Sud, F.K. (2002). Grain Characteristics and Engineering Properties of Coal Ash. *Journal of Granular Materials*, Vol. 4, p 93-101.
- US Army Corps of Engineer (USACE). (2003). Engineering and Design Slope Stability (EM 1110-2-1902). CECW-EW Publication, US.
- Usmen, M. A. (1977). "A critical review of the applicability of conventional test methods and materials specifications to the use of coal associated wastes in pavement construction." PhD dissertation, WestVirginia Univ., Morgantown, W.Va
- Utomo, P., Syakur, P. and Nikraz, H.R. (2004) "Review on the performance of modified Cam Clay Model in Predicting the Mechanical Behaviour of heavily overconsolidation clay".
- Varuso, R.J., Grieshaber, J.B. and Nataraj, M.S. (2005). Geosynthetic Reinforced Levee test Section on Soft Normally Consolidated Clays. *Journal of Geotextiles and Geomembranes*, Vol. 23, p 362-383.
- Vesic A.S, "Analysis of Ultimate of shallow Foundation" J.Soil Mech Found Div ASCE 99 (SM1) 45-73.
- Wan Zuhairi W.Y., Muchlis, Samsuddin, A.R. and Taha, R. (2009). Visualization of DNAPL Movement through Different Soil Heterogeneities. Proceedings of Waste Management Regional Conference, Kuala Lumpur, Malaysia.
- Winter, M.G. and Clarke, B.G. (2002). Improved Use of Pulverised Fuel Ash as General Fill. *Proceeding of Institution of Civil Engineers*, Vol. 2, p 133-141.

Wood, D.M. (2004). Geotechnical Modelling. E & FN Spoon Ltd, London, UK.

- Xu, G.M., Zhang, L. and Liu, S.S. (2005). *Preliminary Study of Instability Behavior* of Levee on Soft Ground during Sudden Drawdown. Slopes and Retaining Structures under Seismic and Static Conditions, ASCE.
- Yeon, K.S. and Kim, Y.S. (2011). The Engineering Characteristics of Fly Ash and Bottom Ash Soil Mixtures, *Sciencitific Research and Assays Vol.* 6(24), pp. 5224-5234, 2011, ISSN 1992-2248 © Academic Journals.
- Yoon, (2005). "Forensic Examination of the severe heaving of an embankment constructed with fluided-bed combustion.
- Yoon, S., Balunaini, U., Yildirim, I.Z., Prezzi, M. and Siddiki, N.Z. (2009). Construction of an Embankment with a Fly and Bottom Ash Mixture: Field Performance Study. *Journal of Materials in Civil Engineering*, Vol. 21, No. 6.