
A NOVEL MAGNETORHEOLOGICAL VALVE WITH 

MEANDERING FLOW PATH STRUCTURE 

 

 

 

 

 

 

 

 

FITRIAN IMADUDDIN 

 

 

 

 

 

 

 

 

UNIVERSITI TEKNOLOGI MALAYSIA 



A NOVEL MAGNETORHEOLOGICAL VALVE WITH MEANDERING FLOW
PATH STRUCTURE

FITRIAN IMADUDDIN

A thesis submitted in fulfilment of the
requirements for the award of the degree of

Doctor of Philosophy

Malaysia-Japan International Institute of Technology
Universiti Teknologi Malaysia

JUNE 2015



iii

To my father, my mother, my wife and my brothers



iv

ACKNOWLEDGEMENT

I wish to praise the Almighty Allah the Most Gracious for the blessing and
strength that have been given to my life. My deepest gratitude goes firstly to my main
supervisor, Associate Professor, Ir. Dr. Hj. Saiful Amri bin Mazlan for his tremendous
support during my entire study. His intensive encouragement, enthusiasm and guidance
have made me able to pass through this process easier. I also would like to thank
my co-supervisor Dr. Hairi bin Zamzuri for his advice, interest and support to my
work. I must also express my gratitude to the Malaysia-Japan International Institute
of Technology (MJIIT) for the financial support provided during my study though the
MJIIT scholarship. I also would like to thank the Lembaga Pengelola Dana Pendidikan
(LPDP) for providing the additional incentive during the completion of my thesis
writing.

Appreciation is also given to the faculty members and colleagues in the Vehicle
System Engineering (VSE) research laboratory, especially Jamal, Yasser and Izyan
for helping me a lot during my earlier time in the university. Thanks also to Mr.
Hairullail, Madam Aishah and the remaining MJIIT staffs that have been supportive to
me during my study. Particular credit is also given to my Indonesian friends in UTM
Kuala Lumpur especially Ubaidillah and Burhanuddin for being my family abroad. I
would also like to thank Aizzat and the developers of the utmthesis LATEX project for
making the thesis writing process a lot easier for me. Special acknowledgement goes to
my previous supervisors Dr. Khisbullah Hudha and Dr. Gunawan Nugroho. They have
influenced me with the passion and love to the scientific research. I regret that I cannot
mention all the valuable names here, but I believe and pray that Allah will reward all
the good deeds that have been given to me.

Lastly, I would like to express my sincerest gratitude to my parents, Dr. Ahmad
Dahlan and Umi Sholichatin for unlimited love, support, trust and pray that have
brought me to this level. My two little brothers, Zamzam Ibnu Sina and Allahyarham
Ghilman Hunafa, for being such a good role model for me. Last but not least, my
dearest wife, Vivi Diawati, for the pray, patience, love and understanding that have
made me through this journey without any hesitations.



v

ABSTRACT

The development of a new Magnetorheological (MR) valve with meandering
flow path as a new approach to improve the MR valve performance is presented in
this research. The meandering flow path was formed by the arrangement of multiple
annular and radial channel so that the total effective area in an MR valve can be
increased without compromising the size and power requirement of the valve. The
main objective of this research is to explore the achievable pressure drop of the
MR valve with meandering flow path. This research was started with the concept
development where the meandering flow path structure is analytically modeled and
numerically simulated to predict and analyze the effect of variables involved. The
prediction results showed that the meandering flow path structure is able to increase
the achievable pressure drop of an MR valve significantly. The gap size analysis
showed that the size of annular gaps mainly contributed to determine the viscous
pressure drop component. Meanwhile, the field-dependent pressure drops were mainly
determined by the size of radial gaps. The prediction results of the concept was also
assessed and confirmed by the experimental work using a dynamic test machine. Based
on the experimental data, two hysteresis models, namely the polynomial model and
the modified LuGre model, were developed to model the hysteresis behavior. The
assessment results of the hysteresis models indicated that both model were able to
replicate the hysteresis behavior. However, the modified LuGre model, though 9.5%
less accurate than the polynomial model, was showing better consistency in a wider
range of input values. In general, the new concept contributes in the development of
a new type of MR valve that could achieve pressure drop nearly three times than the
annular, radial and annular-radial type MR valve.
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ABSTRAK

Pembangunan konsep baru injap reologi magnet (MR) dengan menggunakan
laluan aliran yang berliku-liku sebagai pendekatan baru untuk meningkatkan prestasi
injap MR dibentangkan dalam kajian ini. Laluan aliran yang berliku-liku dibentuk
melalui beberapa susunan saluran gegelang dan tebaran jejari secara berurutan
supaya jumlah kawasan yang berkesan di dalam injap MR boleh ditingkatkan tanpa
menjejaskan saiz keseluruhan dan prestasi injap. Tujuan utama kajian ini adalah untuk
meneroka kebolehcapaian nilai susutan daripada injap MR dengan menggunakan
laluan aliran yang berliku-liku. Kajian ini bermula dengan pembangunan konsep,
di mana injap dengan laluan aliran yang berliku-liku dimodelkan secara analitikal
dan disimulasikan secara berangka untuk meramalkan prestasi injap dan juga untuk
mengambil kira kesan pembolehubah yang terlibat. Keputusan simulasi menunjukkan
bahawa konsep injap dengan laluan aliran yang berliku-liku mampu meningkatkan
kebolehcapaian yang ketara dari segi nilai susutan tekanan daripada injap MR.
Berdasarkan kepada analisis saiz saluran telah dijalankan, hasil menunjukkan bahawa
saiz saluran gegelang lebih menyumbang kearah menentukan komponen kelikatan
dari susutan tekanan manakala komponen susutan tekanan akibat medan magnet
ditentukan terutamanya oleh saiz saluran dari tebaran jejari. Konsep ini turut dinilai
melalui kerja eksperimen menggunakan mesin ujian dinamik, yang telah mengesahkan
keputusan yang diramalkan oleh simulasi. Berdasarkan data eksperimen, dua model
histerisis, iaitu model polinomial dan model LuGre yang telah diubahsuai, telah
dibangunkan untuk mengilustrasikan tingkah laku histerisis injap MR. Keputusan
penilaian model histerisis menunjukkan bahawa kedua-dua model dapat mereplikasi
ciri-ciri histerisis daripada injap MR. Walau bagaimanapun, model LuGre yang
telah diubahsuai, walaupun 9.5% kurang tepat berbanding model polinomial, telah
menunjukkan konsistensi yang lebih baik dalam pelbagai ruang lingkup data masukan
yang lebih besar. Secara umumnya, konsep baru injap MR ini dapat memberikan
pendekatan baru dalam membangunkan sebuah injap MR yang dapat meningkatkan
kebolehcapaian susutan tekanan sehingga tiga kali ganda berbanding injap MR jenis
gegelang, jejari dan gegelang-jejari.
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CHAPTER 1

INTRODUCTION

1.1 Introduction

Magnetorheological (MR) fluid is one of the fluids in the class of field
responsive material [1, 2], that has sensitive rheological properties to magnetic field
[3–7]. The development of the fluid, together with the progressing research in the
understanding of its behavior, has convinced researchers and engineers that MR fluid
is a promising material for future applications [8–10]. This is because of their adaptive
force capacity and their inherent ability to provide a simple, fast and robust interface
between electronic controls and mechanical components. The fluid was first introduced
in Rabinow’s Magnetic clutch in 1948 [11] and has gained in popularity since entering
the automotive market. MR fluid is very responsive to magnetic field, with an estimated
response time of less than 10 milliseconds [12], and requires relatively low power to
operate. The advantages of MR fluid have created great interest in MR based device
development in a wide range of applications.

One of the most popular devices that utilized the unique characteristics of
MR fluid is MR damper [13], which has been commercially available for high-
end passenger vehicles as a semi-active suspension or adjustable suspension [14].
The working principle of an MR damper is basically similar to a conventional
viscous damper which employs flow restriction concept to generate damping. The
flow restriction in a conventional viscous damper is normally generated by an orifice
channel which act as the valve. Since the gap of the orifice channel is fixed, the flow
restriction that can be generated by the valve of the conventional viscous damper is
also fixed. The MR dampers use different approach by employing MR fluids as its
working fluid and an MR valve in its flow restriction mechanism. Although the gap
size of the channel in an MR valve also can be fixed, the magnetic field strength in the
flow channel of the MR valve can be regulated [15]. Therefore, the flow of MR fluid
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that pass through the MR valve can be controlled without having to modify the gap
size of the channel. On the other hand, it can be said that the performance of the MR
valve to generate flow restriction highly determines the overall performance of the MR
damper.

Considering the importance of MR valve, many designs of MR valve have
been proposed. One of the earliest design of stand-alone MR valve was proposed in
Kordonski et al. [16] which later elaborated by Gorodkin et al. [17]. In the literatures,
annular MR valve designs with optimize-able geometry and controllable MR fluid flow
resistance were provided. A simpler concept of annular MR valve was proposed by
Yokota et al. [18], which consisted of annular flow channel and electromagnetic coil
installed in adjacent to the flow channel. The works were improved by Yoshida et al.
[19] by proposing a three-port annular MR valve using permanent magnet. In the same
time, a meso-scale (less than 25 mm outer diameter) annular MR valve were proposed
by Yoo and Wereley [20] using internal double coils with counter flux direction. While
the advancement of annular type MR valve were continuously explored, Wang et
al. [21] started to discuss about the radial type MR valve for the large-scale seismic
bypass damper configuration. The benefit of radial MR valve over annular MR valve
in terms of pressure drop rating as well as the benefit of external bypass MR valve
configuration was compared in the literature. Performance assessments of MR valve
were also performed by Grunwald and Olabi [22] through the performance analysis
of the annular and orifice type MR valve. The discussions of MR valve type were
extended by Ai et al. [23] and Wang et al. [24] through an MR valve design with both
annular and radial flow path. In their design, both type of resistance channel were used
in an MR valve to increase the on-state resistance force while maintaining valve size
and power consumption. In order to make an MR valve more applicable to retrofit
general hydraulic applications, Yoo and Wereley [25] introduced the installation of
multiple MR valves in H-bridge configuration to actuate a hydraulic cylinder. The work
then followed by John et al. [26] with the embedded version of H-bridge MR valve and
by Salloom and Samad [27] with the introduction of 4/3 way MR valve design.

1.2 Motivation of Study

MR damper for semi-active vehicle suspension systems are among the most
popular and commercially successful MR fluid devices [28–34]. In general, vehicle
suspension system can be divided into three categories; passive suspension system,
semi-active suspension system, and active suspension system [35]. Passive suspension
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system is the common suspension system installed in most vehicle nowadays
which typically consists of spring and damper in parallel configuration. Semi-active
suspension system is similar with passive suspension system but the stiffness of the
component (spring and/or damper) can be controlled to suit the desired ride or handling
performance [36, 37]. Active suspension system, on the other hand, is the suspension
system with the involvement of active actuators such as hydraulic [38], pneumatic [39]
or electro-mechanic [40,41], which could provide external force to the suspension. MR
dampers are usually implemented as a semi-active device to retrofit hydraulic dampers
to enhance passive suspension performance. Enhancement of suspension performance
is feasible since the performance limitations of passive suspension system occurred due
to a fixed stiffness value of the spring and damper. In this case, MR damper, in contrast
to conventional linear hydraulic damper, has the capability to change its damping
stiffness by varying the magnetic field strength inside the damper. Together with
embedded control system, MR dampers have gained popularity and proved its potential
to enhance the performance of suspension systems. Aside of dampers, other types of
MR devices have been developed to meet other automotive application demands such
as engine vibration suppressors [42–45], seat suspensions [46–49], brakes [50–53] and
clutches [54–57].

According to the location of the valve, the MR damper can be divided into two
groups, the MR damper with internal valve and the MR damper with bypass valve.
The MR damper with internal valve typically has MR valve embedded in the piston
of the damper, similarly with the configuration of the valve in a conventional viscous
damper. This configuration is the most common valve installation in an MR damper
since it is neat and compact. However, the internal valve configuration is not without
setback. The disadvantages of internal valve configurations are mainly in the space
limitation of MR valve installation, the complexity of wiring and in the risk of thermal
build-up from the immersed valve. The MR valve integration to the piston is the main
reason why the construction of the MR damper with internal valve can be really neat
and compact. However, since the available space inside the cylinder is very limited
and the MR valve requires sufficient space for electromagnetic coil and magnetization
channel, the performance range of the damper is very narrow. Moreover, since the
coil is embedded with the piston, the common way of wiring installation is normally
made through the conduit along the rod, which made it prone to leakages and tends
to be costly for fabrication. On the other hand, the heat dissipation, as a result of
kinetic energy conversion into heat, can be more severe in an MR damper than in a
conventional viscous damper because the magnetically altered damping stiffness will
definitely increase the heat dissipation. In the case where the MR valve is immersed in
the MR fluid, the heat dissipation from the MR valve will have to disperse to the MR
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fluid first, which responsible in the increase of fluid temperature, before eventually
released to the environment. The experimental observation conducted by [58] reported
that the temperature rise of MR fluid in an MR damper after 400 s of operation at
current input of 2 A and frequency excitation of 6 Hz have caused the damping force to
degrade in about 38%. However, the same experiment observed that less degradation
can be achieved if the MR damper is properly finned, whereas increase the thermal
release to the environment.

The practice in the other type of MR damper, known as the bypass MR
damper, is not embedding the valve in its piston since the construction uses no
fluid channel in the piston [59]. In the bypass MR damper, the fluids flow between
chambers through the bypass channel outside the cylinder where MR valve is installed.
Therefore, the valve in the bypass MR damper configuration is easier to be installed and
maintained since the construction of the main cylinder is similar with the structure of a
conventional hydraulic cylinder. The bypass MR damper is also less prone to over-heat
because the valve is already located outside the cylinder. Various types of MR valve
also can be implemented in an MR damper with bypass configuration because the valve
size is no longer constrained by the cylinder size nor the piston size. However, the
existence of bypass channel and MR valve outside the cylinder are obviously making
the bypass construction not as neat and compact as the damper with internal valve.
The MR damper with bypass configuration is also difficult to be installed in space-
constrained applications since the bypass damper requires more room than the damper
with internal valve. With these characteristics, the bypass configuration is normally
implemented in the large scale MR damper with high energy dissipation [60–62].

Despite the advantages and disadvantages of each MR damper structure,
the technological advancement of the MR valve, as the heart of the MR damper
performance, is not as extensive as the advancement of the MR damper. Regardless
the types of MR damper, most of them are still using the same MR valve concept. The
only differences are probably the size, coil configuration and/or MR fluid types. Most
of MR dampers are employed with annular type MR valve as one of the most popular
types of MR valve [29, 46, 49, 63–68]. The annular MR valve is the first generation
of MR valve that utilized the annular channel as the effective area. The effective area
is the area where the MR fluids are exposed to magnetic flux perpendicularly to the
flow direction. There are several variants of annular MR valve that has been proposed
by researchers [16–20, 69], but the main concept is basically similar. The annular MR
valve is popular because it is simple to be manufactured and has a high ratio between
the on-state and off-state performance. However, the effectiveness of space utilization
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in the conventional annular MR valve is very low because not all areas of the annular
channel can be utilized as the effective area. Therefore, any improvement effort on
the annular valve performance will typically tend to increase the valve size either in
length, by enlarging the effective area, or in diameter, by enlarging the electromagnetic
coil. Thus, in a constrained space device such as in the MR damper with internal valve
configuration, the desired performance improvements are sometimes difficult to be
achieved.

Due to the limitation of the annular MR valve, another type of valve, known as
the radial MR valve, was introduced by [21]. The radial MR valve, as a distinction from
annular MR valve, has radial flow channel inside the valve and utilize it as the effective
area. The utilization of radial channel as the effective area offers several benefits than
the effective area of the annular channel, especially in terms of area efficiency since
the radial channel can be made in multi-stage configuration. Therefore, with multi-
stage capability of the radial MR valve, the performance improvement of radial valve
typically has lower implication to the valve size than the one in the annular MR valve.
As a result, the radial valve concept has been installed to serve several concepts of
large scale MR dampers [61, 62, 70, 71]. Recently, another concept of MR valve also
has been developed by combining both annular and radial valve concept in a single
valve [23,24]. The combination of both annular and radial channel in an MR valve has
been proven effective to improve the performance of MR valve. It has been reported
by [72] that the MR valve with combination of annular and radial channel has higher
achievable pressure drop than annular valve with lower power consumption although
at the cost of lower valve ratio. The MR valve with combination of annular and radial
channel also has been implemented in MR mount design [42] and MR damper design
[73].

From these explanations, it can be observed that the technological advancement
of an MR valve has a significant impact to the advancement of other MR devices.
Therefore, particular explorations of the MR valve concept are necessary as a basis
to provide knowledge on how to improve the performance of MR devices in general.
The concept explorations is not limited to the geometrical and design arrangements of
the MR valve, but also in terms of behavioral characteristics of the MR valve such as
the identification of the MR valve hysteretic behavior. The hysteretic behavior, as well
as other complex characteristics, in generally in any MR devices is still considered a
challenging problem in terms of the modeling technique and controller design [14,74].
The hysteresis could be occurred due to magnetic field remnant in steel elements
and due to the viscoelastic properties of MR fluid itself. In terms of controllability,
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hysteresis behavior is a disadvantage since the controller will face difficulties to track
the damper behavior. For example, according to Wang and Liao [74], tracking ability of
damping force is one of the highly important issues that should be considered in order
to get an accurate MR damper controller. However, a controller with such capability
will tend to be more complex, require more computational resources, be costly and
less robust. Therefore, innovation in the control design is also vital to support the
final implementation of MR devices. Innovation of the control algorithm will be more
difficult if the model that is used in the controller design phase is not able to simulate
the hysteresis phenomenon accurately. A simple and accurate model of an MR valve, in
particular, is needed in order to design an appropriate controller with good robustness,
stability and reliability. Therefore, the advancement of modeling technique that have
the ability to accommodate the hysteretic behavior of MR valve is as important as the
advancement of the MR valve concept.

1.3 Research Objectives

This study embarks on the following objectives:

(a) To develop a new concept of MR valve with meandering flow path to improve
the achievable pressure drop.

(b) To analyze the effect of gap size selection to the achievable pressure drop of MR
valve.

(c) To assess the performance of MR valve using experimental work.

(d) To model the hysteretic behavior of the MR valve.

1.4 Research Scope

In this research, a new concept of MR valve will be investigated. This study
focuses on the elaboration of a new concept of MR valve utilizing the combination of
multiple annular and radial gaps that formed a meandering flow path. The new concept
of MR valve is introduced to provide an adjustable pressure drop with a high on-state
limit. In order to examine the capability of the MR valve, the steady-state model of
the new MR valve concept is derived and the magnetic circuit performance of the
MR valve is simulated using Finite Element Method Magnetics (FEMM) software



7

package. The performance of MR valve, in this study, is only evaluated in terms of
the achievable pressure drop as a function of gap size of the flow channel, magnitude
of current input charged to the coil, and fluid flow rate. This research is also covering
the experimental evaluation of the MR valve using an MR valve testing cell in variable
flow rates, to reveal the hysteretic behavior, with constant current inputs. The measured
performance of the MR valve is also used to model the hysteretic behavior of the MR
valve, which is not covered in the steady-state model. However, the optimization of the
concept is not discussed in this research and the demonstration of control application
is only performed.

1.5 Significance of Research

The significance of this research is mainly in terms of general advancement
of MR devices and applications especially to answer the demand of smart, simple yet
high performance and reliable new MR devices. The new concept of MR valve with
meandering flow path is expected to provide a new method to improve the design of an
MR valve, which will highly influence the design of MR damper as well as other MR
based actuators. Moreover, the concept is expected to be performed as a demonstration
of a generic MR device that can suit various applications. Therefore, the concept can
be anticipated as a modular and re-sizable device so that the range of operation and the
capacity can be adjusted. The significances of this research are summarized as follows:

(a) This study demonstrates a new concept of MR valve using a meandering flow
path structure.

(b) This research provides knowledge of the effect of gap size selection to the
achievable pressure drop of the valve which will be further useful for valve sizing
process.

(c) The hysteretic modeling process of the MR valve introduces a new modeling
approach of MR valve using modified LuGre hysteresis model.

1.6 Outline of Thesis

This thesis is organized in six chapters. Each respective chapter in this
thesis ends with a brief summary outlining the achievements and findings that were
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established in the chapter. The outline of this thesis is organized as shown:

Chapter 2 covers the theoretical background, which includes the properties
and the working modes of MR fluids, the basic knowledge of MR valves, the recent
advancement of MR valves, as well as the applications of MR valves.

Chapter 3 explains the new concept of the MR valve with meandering flow
path, the design consideration for the performance assessment, the steady-state model
derivation, the magnetic simulation as well as the performance prediction of the new
MR valve with respect to various dependent variables.

Chapter 4 elaborates the experimental evaluation of the MR valve including the
description of the experimental setup, the experimental procedure and the analysis of
the experimental results.

Chapter 5 presents the development of two different hysteresis MR valve
models, the parameter estimation processes and the performance comparison of these
two models.

Chapter 6 concludes the work and presents the achieved contribution of the
research as well as recommends open problems for future work.
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