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ABSTRACT 

Unlike permanent implant materials, biodegradable metallic implants can 

avoid a revision surgery for implant removal. Recently, Zn and its alloys have 

received a lot of attention as an alternative to Mg-based alloys, especially for 

temporary implant applications such as fractured bone fixation devices. Advantage of 

zinc, apart from its significance for many biological functions, it also supports 

wound healing and exhibits superior degradation performance in physiological 

environment than Mg-based alloys. Earlier investigations have shown that, Zn-based 

alloys have limitations on its strength and ductility. In addition, the biocompatibility 

status of this alloy is also unknown. This work attempts to improve these properties, 

particularly on Zn-3Mg alloy via heat treatment followed by severe plastic 

deformation technique, i.e equal channels angular pressing (ECAP). Eutectic Zn-

3Mg alloy samples were prepared using the casting process. During casting, 

solidification behaviours were analysed to determine the feasible range of heat 

treatment temperature. Heat treatment was conducted using a vacuum tube furnace at 

370
ο
C for 5, 10, 15 and 25 hours dwelling time followed by quenching in three 

different media: water bath, inside the furnace and open air to room temperature. 

Corrosion behaviours of the untreated and treated alloy were evaluated using 

electrochemical polarisation and immersion methods. The experiments were 

conducted in Kokubo simulated body fluid (SBF). Apart from mechanical properties 

(hardness, tensile and compressive strengths), the samples were subjected to 

cytotoxicity test. As-cast microstructure consisted of star-like dendrites of Zn-rich 

and rectangular structures of Zn2Mg11 phases dispersed in segregated pattern. These 

phases were partially dissolved after heat treatment and became more homogenised. 

It was noticed that the ductility of the alloy improved by 64 % while the strength 

reduced by 45 %. A remarkable decrease in grains size up to 96.34 % was observed 

after the cast alloy was subjected to heat treatment followed by 2-ECAP passes. In 

addition, other properties such as ultimate tensile strength, yield strength and 

elongation were substantially increased by 2.63 fold, 3.15 fold and 4.98 fold 

respectively. Improvements on strength and ductility were attributed to the combined 

influence of microstructural changes, elimination of dendrite structure, as well as the 

existence of high-volume density of dislocations that occurred on the refined 

microstructure during 2-ECAP pressing. Assessment of corrosion showed that the 

corrosion rate decreased from 0.269 to 0.188 mm/year after the cast alloy was 

severely deformed. This was attributed to improved microstructure homogeneity and 

reduction in casting defects. The study also reveals that extract of Zn-3Mg alloy 

exhibits good biocompatibility towards normal human osteoblast cells (NHOst) in 

low concentration (<0.5 mg/ml). The proposed hybrid processing method seems able 

to enhance the properties of developed Zn-3Mg alloy after 2-ECAP passes. These 

encouraging findings would improve the prospects of Zn-3Mg alloy as a new 

alternative metallic biodegradable implants material. 
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ABSTRAK 

Tidak seperti bahan implan kekal, implan logam terbiorosot boleh mengelakkan 

pembedahan semula untuk menanggal implan. Baru-baru ini, Zn dan aloinya telah 

mendapat perhatian sebagai alternatif kepada aloi berasaskan-Mg, terutama sekali untuk 

aplikasi implan sementara seperti peranti bagi menetapkan tulang yang patah. Kelebihan 

zink, selain ia penting untuk kebanyakan fungsi biologi, ia juga menyokong 

penyembuhan luka dan memberikan prestasi yang baik dalam penurunan persekitaran 

fisiologi berbanding aloi berasaskan-Mg. Kajian sebelum ini menunjukkan bahawa aloi 

berasaskan-Zn mempunyai kekuatan dan kemuluran yang terhad. Di samping itu, status 

keserasian-bio aloi ini juga tidak diketahui. Kajian ini berusaha untuk memperbaiki sifat-

sifat ini, terutamanya pada aloi Zn-3Mg melalui rawatan haba yang diikuti dengan teknik 

ubah bentuk plastik yang teruk, iaitu saluran sama sudut mampatan (ECAP). Sampel aloi 

eutektik Zn-3Mg telah disediakan dengan menggunakan proses tuangan. Semasa proses 

tuangan dilakukan, tingkah laku pemejalan telah dianalisis untuk menentukan julat suhu 

rawatan haba. Rawatan haba telah dijalankan menggunakan tiub relau vakum pada 370 
ο
C dengan masa pemanasan selama 5, 10, 15 dan 25 jam diikuti dengan sepuh lindap 

kejut dalam tiga media yang berbeza: dalam takungan air, dalam relau dan dalam udara 

terbuka kepada suhu bilik. Tingkah laku kakisan aloi yang tidak dirawat dan dirawat 

telah dinilai menggunakan kaedah polarisasi elektrokimia dan ujian rendaman. Kajian ini 

telah dijalankan di dalam cecair badan tersimulasi Kokubo (SBF). Selain dari sifat-sifat 

mekanikal (kekerasan, tegangan dan kekuatan mampatan), sampel tersebut juga 

tertakluk kepada ujian sitotoksiti. Mikrostruktur sampel tuangan terdiri daripada struktur 

seakan-akan bintang dendrit Zn-asal dan struktur segi empat tepat fasa Zn2Mg11 yang 

tersebar dalam corak yang berasingan. Fasa-fasa ini sebahagiannya larut selepas rawatan 

haba dan menjadi lebih homogen. Didapati bahawa kemuluran aloi meningkat sebanyak 

64% manakala kekuatannya berkurangan sebanyak 45%. Penurunan saiz bijian yang 

luar biasa sehingga 96.34% telah diperhatikan selepas aloi tuangan dikenakan rawatan 

haba yang diikuti dengan 2 kali laluan ECAP. Di samping itu, ciri-ciri lain seperti 

kekuatan tegangan, kekuatan alah dan pemanjangan masing-masing telah meningkat 

dengan ketara sebanyak 2.63, 3.15 dan 4.98 kali ganda. Peningkatan kekuatan dan 

kemuluran adalah disebabkan oleh gabungan pengaruh perubahan mikrostruktur, 

penghapusan struktur dendritik dan juga disebabkan oleh kewujudan kehelan pada 

kepadatan yang tinggi yang terjadi kepada mikrostruktur halus semasa mampatan 2-

ECAP. Penilaian kakisan menunjukkan bahawa kadar kakisan berkurangan dari 0.269 

kepada 0.188 mm/tahun selepas aloi tuangan terhakis teruk. Ini disebabkan oleh 

kehomogenan mikrostruktur yang lebih baik dan pengurangan kecacatan tuangan. 

Kajian ini juga mendedahkan bahawa sari aloi Zn-3Mg mempamerkan keserasian-bio 

yang baik terhadap sel-sel kanser tulang manusia normal (NHOst) dalam kepekatan yang 

rendah (<0.5 mg/ ml). Kaedah pemprosesan kacukan yang dicadangkan ini 

menampakkan peningkatan sifat-sifat baru aloi Zn-3Mg selepas 2 kali laluan ECAP. 

Penemuan yang menggalakkan ini meningkatkan prospek aloi Zn-3Mg sebagai satu 

logam alternatif bahan implan boleh-biorosot yang baru.  
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CHAPTER 1 

1INTRODUCTION 

1.1 Background of the Research 

The phenomenon of population aging and less engagement of the human 

body in physical activities by individual persons due to technologically advanced 

innovative life systems gives major causes of reduction in bone mineral weight, bone 

quality and strength in human being muscles [1]. These mentioned factors coupled 

with accidental bone damaged or fractures signify increases in the incidence of bones 

failures or damages during the life cycle of human population. Proper healing of 

fracture bone needs an appropriate alignment and fixation of fractured fragments 

during it healing period. 

For the past two decades, the field of biomaterial implants has received 

tremendous research activities aimed towards enhancing or improving quality and 

longevity of the human life. Biomaterial implants mean a device that is designed, 

fabricated and applied to alter, replace, augment or repair a missing or damaged 

biological components [2]. Implant for load bearing and fracture fixation applications 

such as artificial hip and knee prostheses, fixation screws and pins need to have the 

same properties as close to the bones to be replaced or repaired. Metallic implant 

such as stainless steels, titanium, cobalt-chromium materials and their alloys play a 

dominant role compared with ceramics and polymeric materials. These metallic 

materials remain as permanent fixtures, which means they must be removed by a 

second surgical procedure after the tissue has healed [3]. In addition, durable metallic 

implant signifies a foreign body and the risks of local inflammation [4]. Higher 
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young’s modulus of a metallic fixation device causes a phenomenon known as 

“stress shielding effect. This obstructs the transfer of mechanical load to the bone 

tissue which is needed to maintain it rigidity during implants healing period [5, 6]. 

Another significant problem associated with the use of durable metallic implant 

fixation devices is their higher mechanical properties than the bones to be replaced. 

This makes the newly repaired or formed bone tissue not to be subjected to 

mechanical loading, which is a major requirement for bone growth and remodelling 

[7]. 

In an ideal scenario, implant materials should not be used as permanent but as 

intervention and should be remove from the body as soon as it finished its require 

functions. This is to prevent potential risks of local inflammation, late-stage 

infection, bone resorption or immune reactions [8, 9]. Furthermore, the required 

stabilization of bone fracture with the use of fixation devices on the surrounding 

bones using screws, pins, plates or nails, means another surgical operation to remove 

the fixation devices. This may cause serious morbidity to the newly repaired bone, 

cost of another surgical operation and discomfort for the patient, especially for old 

people where successful post-surgery is not always possible.  

To overcome the above-mentioned  limitations of durable metallic implant 

for fracture bone fixation devices, biodegradable implant materials as an alternative  

was investigated [10]. Widely researched biodegradable metallic materials for 

potential implant applications include magnesium, iron and their alloys [11, 12]. 

Among the investigated potential biodegradable metals, magnesium and its alloys 

have received the highest attention compared to other metals [10, 13, 14]. One good 

characteristics of magnesium is it high strength/weight ratio and appropriate 

mechanical properties closer to the human bone. 

Previously studied biodegradable magnesium alloys as potential implant 

materials are mostly conducted using alloys designed for industrial applications. 

These alloys contain some potential harmful rare earth elements (RE) such as 

Praseodymium (Pr), Cerium (Ce), Neodymium (Nd) and some transition metals 

(TM) such as Yttrium (Y) [3, 15]. It has already been proved that aluminium (Al) has 
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neurotoxicant effects on a human body [16]. It is also a risk factor for Alzheimer 

diseases and can cause muscle fibre damage [17, 18]. Furthermore, intense 

hepatotoxicity was detected after the administration of some rare earth elements [19]. 

Few of the novel magnesium alloys developed specifically for biodegradable implant 

applications are Mg-1Zn, Mg-5.12Zn-0.32Ca, Mg-6Zn-0.6Zr, Mg-3Ca, Mg-6Zn, 

Mg-5.19Zn-0.72Mn-0.99Ca, Mg-3Zn-xY(x = 0.36-1.54wt %), Mg-Zn1-Gd2.5, Mg-

6Zn-1Si, Mg72-Zn26.5-Y1.5 [20-29]. Unfortunately, the major limitations of 

magnesium and its alloys for biodegradable implant applications are its rapid 

degradation rate in physiological (pH 7.4 to 7.6) environment [30, 31] and the 

excessive hydrogen gas released during the degradation process may also hinder the 

healing process [32]. Observed from the earlier mentioned alloying systems of Mg-

base alloys, zinc is among the most preferred alloying element to magnesium. 

Limitations of Mg-based alloys widens the search to other fast degradable 

metals in physiological environment, which includes Zn and Zn based alloys [33, 

34]. While investigating the possible improvement to magnesium based alloys, a 

novel Zn and Zn based alloys were reported as alternative potential degradable 

implant fracture fixations devices [34-37]. This is because in terms of corrosion 

resistance,  zinc is nobler metal due to it higher Pilling-Bed Worth than magnesium 

[38]. In addition, from biocompatibility point of view, zinc is very significant for 

various biological functions in the human body due to its function as an essential 

micronutrient and it also aid cellular metabolism and gene expression [38]. Zinc was 

also reported to aid immune functions, DNA synthesizer and helps in wound healing 

with additional support for normal bone growth [22-25, 39]. These points indicate 

that zinc could pass the basic safety level for physiological environment utilization. 

Early interest shown to zinc metal arose because of the success reported on Mg-Zn-

Ca bulk metallic glasses (with about 50 wt.% of Zn contain) by Zberg et al. [40]. 

Another important factor for Zn based alloy is its cheaper cost of production due to 

its low melting temperature, cheaper material cost and ease to fabricate. The above 

information leads to development of Zn based alloys as an alternative metallic 

biodegradable implant material. However, newly developed Zn-based alloys 

properties still failed to meet some of the requirements for biodegradable implant 

applications such as fracture fixation screws and plates. Previous studies have 
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recommended the need to improve the mechanical properties of developed Zn and 

Zn based alloys tailored towards bone implant applications [34, 35]. Some of the 

probable methods to enhance its properties for better clinical performance are 

through alloying process, heat treatment and thermo-mechanical processing.  

1.2 Problem Statements 

Zn-based alloys are expected to be an alternative to other physiologically 

degradable metallic materials. This is highlighted in the recently reported studies [34, 

41] of zinc based alloys as an alternative to magnesium based alloys for 

biodegradable implant applications. However, previous investigated zinc based 

alloys have some limitations on their properties, which affect their potential as 

implant materials. Some research activities have been conducted to investigate the 

mechanical and degradation properties of zinc based alloys for probable utilization as 

metallic biodegradable implant materials [34-37]. However, these studies have 

reported the need to improve the properties of zinc based alloys. Currently observed 

limitations of these alloys are low ductility (1.8 % less than human cortical bone) and 

low strength (133 MPa less than human cortical bone). Limited toxicity study of 

developed Zn-Mg alloys was also noticed [34, 36, 42]. The biocompatibility 

investigation is of significant issue due to doubtful toxicity of zinc intake at high 

concentration [43]. Furthermore, its degradation performances need to be enhanced 

for maintaining its mechanical integrity during degradation process. Various 

techniques such as alloying systems and heat treatment have been investigated to 

improve the mechanical and degradation properties of zinc based alloys [34, 36, 37]. 

Recently, magnesium was alloyed to a zinc matrix (Zn-Mg alloys) to improve its 

mechanical and degradation properties for implant applications, but little success was 

observed. Literatures have been reported on a thermo-mechanical technique of metal 

processing called severe plastics deformation (SPD), which influences grain size 

refinement to give an improvement on both mechanical and sometimes corrosion 

properties on processed materials [44-48]. Equal channels angular pressing (ECAP) 

is one of the effective SPD techniques used to improve the mechanical properties of 

metallic materials. However, it is hardly found in the literature the use of this 
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technique to enhance the properties of Zn-Mg alloys, especially for biomedical 

implants applications. Therefore, this study systematically evaluates the influence of 

severe plastic deformation (SPD) on mechanical and degradation properties of newly 

developed Zn-3Mg alloy for potential bio-implant application. 

1.3 Objectives of the Research 

The primary objective of this research is to investigate the influence of 

thermomechanical processing technique called severe plastic deformation (SPD) on 

mechanical and degradation properties of newly developed eutectic Zn-3Mg alloy for 

biodegradable implants utilizations. The specific objectives of the research include 

the following:  

1. To cast and characterize the microstructure, mechanical and degradation 

behaviours of developed Zn-3Mg alloy before and after being homogenised 

through a heat treatment process. 

2. To evaluate the effect of hybrid heat treatment and SPD process on the 

microstructure homogeneity, mechanical and degradation properties of Zn-

3Mg alloy via hybrid heat treatment and SPD processes. 

3. To evaluate the biocompatibility of developed Zn-3Mg alloy towards normal 

human osteoblast cells (NHOst) for biomedical implant applications. 

1.4 Scope of the Research 

The research work was conducted within the following scope:  

i. Zn-3Mg alloy was developed using casting process in-house and used as 

sample material. 

ii. Thermal analysis was conducted to evaluate the phase reactions and 

solidification behaviour of the molten Zn-3Mg alloy based on temperature 

and time changes. 

iii. Heat treatment was conducted on the as-cast sample prior to SPD process. 
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iv. A special die set was fabricated in-house for conducting SPD process. 

Samples were processed through the fabricated die with selected processing 

parameters that give smooth pressing without fracture being observed on the 

processed samples surface.  

v. Appropriate pressing temperature between 100 
0
C to 250 

0
C was selected to 

conduct the SPD processing. 

vi. Samples microstructure and surface characterizations were analysed under 

OM, FESEM, EDX and XRD. 

vii. Biocompatibility assessment was conducted by MTS assay and Alkaline 

Phosphatase (ALP) extracellular enzyme assay using normal human 

osteoblast (NHOst) cells (CC-2538, Lonza, U.S.A)  

viii. Mechanical properties of developed alloy were analysed using 

microhardness, tensile and compressive strength measurements according to 

ASM standard procedures. 

ix. Degradation experiments were conducted using weight loss and 

electrochemical methods under Hank’s simulated body fluid solution (SBF). 

1.5 Significance of the Research  

This study expects that combination of heat treatment, severe plastic 

deformation (SPD) processes will improve the mechanical, and degradation 

properties of newly developed Zn-3 Mg alloy. Significant improvement on these 

properties will increase the potential of Zn-3Mg alloy to meet the fundamental 

requirements of biodegradable implant materials, especially for fracture fixation 

devices. In addition, the success of the alloys biocompatibility behaviour would 

eliminate the doubtful toxicity of zinc intake at high concentration and hence further 

improving its prospects for use as alternative material for biodegradable implant 

utilizations. The possible positive outcomes of this research will help the researcher 

to further his/her work in in vivo studies. It is hoped that the outputs from this 

research will provide an alternative to the existing potential metallic biodegradable 

materials at a competitive manufacturing cost.  
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Furthermore, it is hoped that conducting detailed and comprehensive research 

on Zn-3Mg alloy will contribute to the scientific knowledge on metallic 

biodegradable implant. This would enrich the understanding of zinc based alloys for 

potential biomedical implant applications and contribute towards improving the life 

quality of the world populations at large. 

1.6 Thesis Organisation 

This thesis is classified into five different chapters. Chapter 1, which consists 

of sub-headings of background of the research, problem statement, objectives of the 

research, scopes of the research, and significant of the research highlights the 

introduction to this research work. Chapter 2 consists of comprehensive literature 

review based on the research topic. The literature reviewed covers the overview on 

biomaterials and major issues related to implanting materials. It also explained the 

advantages and disadvantages of biodegradable materials. The chapter further 

describes the historical overview of zinc metal and the contribution of Mg as allying 

element to Zn-based alloys. Previous reported heat treatment and severe plastic 

deformation techniques performed on other types of Zn-based alloys are highlighted 

under this chapter. Chapter 3 explains the experiments methodology, 

characterizations and analysis conducted to achieve the research objectives. The 

chapter discussed the research approach and overall research flow chart. The 

experimental tasks include mould design and fabrication, sample material 

development, thermal analysis for phase detection and melt solidification behaviour. 

It also described the developed alloys sample preparation and heat treatment 

performed. Equal channels angular pressing (ECAP) die design, fabrication and 

billets processing are explained in this chapter. The procedures followed to analyse 

the developed samples microstructures, mechanical, corrosion and biocompatibility 

properties are highlighted in this chapter. The experimental results are discussed in 

details under chapter 4. The discussions are classified into preliminary and final stage 

experimental results. The development of Zn-3Mg alloy, solidification behaviour, 

microstructural analysis and effect of heating durations are explained in the 

preliminary section. The influence of heat treatment cooling mediums on 
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microstructure and microhardness of treated Zn-3Mg alloy is discussed in this 

section. In addition, discussion on significant of homogenisation treatment on 

developed alloys microstructure, mechanical and degradation property is done under 

this section. The final stage section consists of the result analysis from ECAP die 

material selection, processing of Zn-3Mg alloy via ECAP dies, ECAPed samples 

microstructure and grain size analysis. The chapter also explains the influence of 

combined heat treatment and ECAP processing on degradation behaviour of treated 

Zn-3Mg samples. Zn-3Mg alloys biocompatibility assessment is also discussed in the 

detail experimental section of chapter 4. 

Finally, conclusions are made based on the results obtained from the 

experiments conducted and presented in chapter 5. Recommendations for further 

investigations based on the research vacuums acknowledge during this study are 

mentioned and highlighted in chapter 5. 
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