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ABSTRACT 

 

 

 

 

The wind speed forecasting is important to observe the wind behaviour in the 

future and control the harms caused by high or slow speeds.  Daily wind speed is 

more consistent and reliable than other time scales by providing vast monitoring and 

effective planning.  Although a linear autoregressive integrated moving average 

(ARIMA) model has been used for wind speed forecasting in many recent studies, 

but the model is unable to identify the nonlinear pattern of wind speed data.  ARIMA 

modelling process causes the stochastic uncertainty as a second reason of inaccurate 

forecasting results.  Wind speed data collection process faces several problems such 

as the failure of data observing devices or other casual problems that lead losing 

parts of data.  Therefore, wind speed data naturally contains missing values.  In this 

study, an ARIMA-artificial neural network (ANN) and ARIMA-Kalman filter (KF) 

methods are proposed to improve wind speed forecasting by handling the 

nonlinearity and the uncertainty respectively.  A new hybrid KF-ANN method based 

on the ARIMA model improves the accuracy of wind speed forecasting by rectifying 

both nonlinearity and uncertainty jointly.  These proposed methods are compared 

with others such as AR-ANN, AR-KF, and Zhang’s method.  AR-ANN method is 

also used to impute the missing values.  It is capable to overcome the missing values 

problem in wind speed data with nonlinear characteristic.  It is compared with linear, 

nearest neighbour, and state space methods.  Two different daily wind speed data 

from Iraq and Malaysia have been used as case studies.  The forecasting results of 

the ARIMA-ANN, ARIMA-KF and the new hybrid KF-ANN methods have shown 

in better forecasting than other compared methods, while AR-KF and AR-ANN 

methods provided acceptable forecasts compared to ARIMA model.  The ARIMA-

ANN and the new hybrid KF-ANN methods outperformed all other methods.  The 

comparison of missing values imputation methods has shown that AR-ANN 

outperformed the others.  In conclusion, the ARIMA-ANN and the new hybrid KF-

ANN can be used to forecast wind speed data with nonlinearity and uncertainty 

characteristics more accurately.  The imputation method AR-ANN can be used to 

impute the missing values accurately in wind speed data with nonlinear 

characteristic. 
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ABSTRAK 

 

 

 

 

Ramalan kelajuan angin adalah penting untuk memerhatikan tingkah laku angin 

di masa depan dan mengawal kemudaratan yang disebabkan oleh kelajuan tinggi atau 

perlahan. Kelajuan angin harian yang lebih konsisten dan lebih dipercayai daripada 

skala masa lain boleh disediakan dengan pemantauan yang luas dan perancangan 

yang lebih berkesan. Walaupun model bergerak autoregresi linear bersepadu purata 

(ARIMA) telah digunakan untuk ramalan kelajuan angin dalam banyak kajian baru-

baru ini, model ini tidak dapat mengenal pasti pola linear kelajuan angin. Proses 

pemodelan ARIMA mengenalpasti ketidakpastian stokastik sebagai sebab kedua 

keputusan ramalan yang tidak tepat. Proses pengumpulan data kelajuan angin 

menghadapi pelbagai masalah seperti kegagalan peranti data atau masalah kasual lain 

yang membawa kepada kehilangan bahagian data pemerhatian. Oleh itu, data 

kelajuan angin semulajadi akan mengandungi nilai-nilai yang hilang. Dalam kajian 

ini, model ARIMA-Rangkaian neural tiruan (ANN) yang diubahsuai dan penapis 

ARIMA-Kalman (KF) dicadangkan untuk meningkatkan ramalan kelajuan angin dan 

mengendalikan ketidaklinearan dan ketidakpastian masing-masing. Kaedah hibrid 

baru KF-ANN berdasarkan model ARIMA meningkatkan ketepatan ramalan 

kelajuan angin dengan memperbaiki kedua-dua ketidaklinearan dan ketidakpastian 

bersama. Kaedah ini dibandingkan dengan kaedah lain seperti AR-ANN, AR-KF, 

dan Zhang. Kaedah AR-ANN juga digunakan untuk menggantikan nilai-nilai yang 

hilang. Ia mampu mengatasi masalah nilai-nilai yang hilang dalam data kelajuan 

angin dengan sifat tak linear. Ia dibandingkan dengan kaedah linear, jiran terdekat, 

dan kaedah keadaan ruang. Dua data yang berbeza kelajuan angin setiap hari dari 

Iraq dan Malaysia telah digunakan sebagai kajian kes. Keputusan ramalan daripada 

kaedah ARIMA-ANN yang diubahsuai, ARIMA-KF dan kaedah hibrid KF-ANN 

baru telah menunjukkan keputusan ramalan yang lebih baik berbanding kaedah lain, 

manakala kaedah AR-KF dan AR-ANN yang digunakan memberikan ramalan yang 

boleh diterima pakai berbanding model ARIMA. ARIMA-ANN yang diubah suai 

dan kaedah hibrid KF-ANN baru mengatasi semua kaedah lain. Perbandingan kaedah 

untuk mengatasi nilai yang hilang menunjukkan bahawa AR-ANN mengatasi yang 

lain. Kesimpulannya, ARIMA-ANN yang diubahsuai dan hibrid baru KF-ANN boleh 

digunakan untuk meramal data kelajuan angin yang tidak linear dan ciri-ciri yang 

tidak menentu dengan lebih tepat. Kaedah imputasi AR-ANN juga boleh digunakan 

untuk menggantikan nilai-nilai yang hilang dengan tepat untuk data kelajuan angin 

yang bersifat tidak linear. 
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CHAPTER 1 

 

 

 

 

 1 INTRODUCTION 

 

 

 

 

1.1 Background of the Study 

 

 

Frequent, extreme wind speeds and the nonlinear nature of wind speed data 

makes forecasting a complex process.  The accuracy of wind speed forecasting is 

important to secure, control, optimize, and improve renewable wind power 

generation.  The chaotic fluctuation in the pattern of wind speed data is often the 

reason of the nonlinearity.   

 

 

Some authors have proposed using autoregressive integrated moving average 

(ARIMA) model, a classical statistical approach, to forecast wind speeds (Benth and 

Benth, 2010; Shi et al., 2011).  AR, ARIMA, or seasonal ARIMA models have been 

used for comparing with other methods by (Cadenas and Rivera, 2007, 2010; Chen 

and Yu, 2014; Guo et al., 2012; Liu et al., 2012b; Tatinati and Veluvolu, 2013).  

Finding the appropriate wind speed ARIMA model can be accomplished by 

following the approach proposed by Box-Jenkins.  Zhu and Genton (2012) reviewed 

statistical short-term wind speed forecasting models, including autoregressive models 

and traditional time series approaches, used in wind power developments to 

determine which model provided the most accurate forecasts.  Although an ARIMA 
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model is the preferable statistical model for forecasting, it can lead to inaccurate 

results for wind speed forecasting.   

 

 

The nonlinear pattern of wind speed data may be one reason for the 

forecasting inaccuracy of ARIMA model, which is a linear time series model 

(Cadenas and Rivera, 2007, 2010).  An ANN can be used to handle the nonlinear 

nature of wind speed data.  ANN was proposed to improve the forecasting accuracy 

of nonlinear time series data by (Assareh et al., 2012; Bilgili and Sahin, 2013; Peng 

et al., 2013; Pourmousavi-Kani and Ardehali, 2011).   

 

 

A hybrid ARIMA-ANN model is proposed in this study in order to 

accommodate all the linear and nonlinear components of wind speed data and 

combine them in one distinct approach.  The proposed hybrid model depends on all 

ARIMA inputs and their intersections which are those on the right side of ARIMA 

equation to determine the inputs structure of the ANN and provides the most accurate 

forecasts. 

 

 

Several recent studies have proposed different hybrid approaches that 

combine ARIMA and ANN.  Zhang’s hybrid model that combines both ARIMA and 

ANN models was proposed by (Zhang, 2003) and used by Aladag et al. (2009); and 

Cadenas and Rivera (2010).  Zhang’s hybrid model combined linear and nonlinear 

components of ARIMA and improved just the residual of ARIMA using ANN.   

 

 

An ANN can be constructed based on the autoregressive (AR) in order to 

simulate the ANN structure, this approach can be called hybrid AR-ANN model (Liu 

et al., 2012b) or only ANN (Khashei and Bijari, 2010, 2011; Zhang, 2003).  It was 

used and compared with other approaches by Guo et al. (2012); Li and Shi (2010); 

and Liu et al. (2012b).  Khashei and Bijari (2010) proposed a hybrid ANN using 

ARIMA model called an artificial neural network (p,d,q) model.   
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The inaccurate forecasting of ARIMA model is a problem that reflects the 

stochastic uncertainty of modelling process as another reason of inaccurate wind 

speed forecasting results.  The Kalman Filter (KF) model can be used for 

meteorological purposes, such as wind speed forecasting (Cassola and Burlando, 

2012; Galanis et al., 2006; Louka et al., 2008).  To obtain the best initial parameters 

for the KF, an ARIMA model is used to create the structure of the KF model that is 

regarded as the best model for handling the stochastic uncertainty and improve wind 

speed forecasting.  An ARIMA model is used with the KF model to construct the 

structure of the state equation.  This model can be called a hybrid ARIMA-KF.  

Determining KF state equation structures and ANN inputs structure has been done 

based on AR, ARIMA, or other time series models by Cadenas and Rivera (2007, 

2010); Chen and Yu (2014); Guo et al. (2012); Liu et al. (2012b); Malmberg et al. 

(2005); Tatinati and Veluvolu (2013); and Zhu and Genton (2012). 

 

 

In this study, a new hybrid KF-ANN model is proposed based on an ARIMA 

model to further improve the forecasting accuracy of wind speed.  ANN and KF are 

useful for handling nonlinearity and stochastic uncertainty problems associated with 

wind speed data.  Therefore, ANN and KF improve the accuracy of wind speed 

forecasting.  Many recent studies combined the KF model to handle stochastic 

uncertainty, with another converged approach, such as support vector machines 

which handle the nonlinearity of wind speed (Chen and Yu, 2014; Tatinati and 

Veluvolu, 2013).  In the proposed KF-ANN approach, first the KF state (system) and 

observation (measurement) equations are created based on an ARIMA model.  In a 

second step, the inputs variables of the ANN approaches are generated from the new 

state series that is the output of the state equation, while the target is the original 

wind speed series.  As a result, the output of the ANN represents the final fitted or 

forecasting series.   

 

 

The hybrid ARIMA-ANN and hybrid KF-ANN models resulted in better 

wind speed forecasting accuracy than their components, while the KF model and 

ANN separately provided acceptable forecasts compared to ARIMA model that 
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provided ineffectual forecasts.  The hybrid ARIMA-ANN model outperformed all 

other studied methods. 

 

 

The collection process of wind speed data as one of meteorological time 

series data faces several tactical problems such as thunderstorms, failure of data 

observing devices, or other unforeseen errors that lead to increased complexity in 

data analysis.  A sequential dataset is required for performing analysis and modelling 

processes.  Therefore, the missing values in wind speed data should be filled and 

imputed.  Missing values imputation can be accomplished using simple methods 

such as linear, nearest neighbour or others.  Although complex methods require 

additional expertise and specialization, they often outperform the simple methods.  

The classical methods such as linear, nearest neighbour, and state space may not 

provide accurate imputations when the wind speed data contains nonlinearity. 

 

 

In most meteorological time series datasets, nonlinearity is problem that may 

hamper time series analysis using linear methods as mentioned previously.  In 

particular, wind speed data suffer from nonlinearity in addition to the missing values.  

In recent studies, ANN was introduced to impute missing values and to handle the 

nonlinearity of meteorological time series datasets in general and wind speed dataset 

in particular (Coulibaly and Evora, 2007; He et al., 2013; Junninen et al., 2004; Kim 

and Pachepsky, 2010; Yozgatligil et al., 2013).  Using ANN to impute missing 

values was not limited to meteorological time series data as Kornelsen and Coulibaly 

(2012) introduced ANN as the most effective method for missing values infilling in 

soil moisture as hydrometeorological time series dataset. 

 

 

In this study, a hybrid AR-ANN method is proposed to reform the problems 

of this study by imputing missing values and jointly handling the nonlinearity 

problem.  Feed-forward back propagation is used as a neural network algorithm.  AR 

model is used only for determining the structure of the input layer for the ANN.  AR 

order can be determined by observing the significant lags in partial autocorrelation 

function (PACF).  Listwise deletion is also used as the simplest method before AR 
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modelling to handle missing value problems in wind speed time series datasets.  AR-

ANN method has been used in many recent papers for handling the nonlinearity in 

full dataset of wind speed without any missing value as mentioned previously. 

 

 

The stationarity conditions for the wind speed data were omitted in this stage, 

and the parameters, signs, and residual series were also omitted from the terms of AR 

equation, because the AR model was used only for determining the structure of the 

input layer for the ANN (Khashei and Bijari, 2010; Liu et al., 2012b).   

 

 

In many studies, AR model was also used purely as missing values 

imputation method (Alosh, 2009; Choong et al., 2009; Honaker and King, 2010).  

Applying the listwise deletion was suggested to produce consistent and unbiased 

attributes of parameters especially for performing data analysis and modelling using 

model or software that requires a sequential dataset (Cheema, 2014; Honaker and 

King, 2010).   

 

 

Many other methods of missing values imputation are compared with AR-

ANN method proposed in this study.  Linear method and nearest neighbour method 

are presented as more simple methods for imputing missing values.  ANN method 

and state space method are presented as complex methods that need more expertise 

and scientific specialization.  A linear method is summarized by connecting two data 

points with a linear equation line.  It was used for comparing with more complex 

methods in many recent papers such as in (Junninen et al., 2004; Kornelsen and 

Coulibaly, 2012; Norazian et al., 2008).  A nearest neighbour method is the simplest 

imputation method of missing values that can be summarized by replacing the 

missing values by the nearest neighbour data point.  A nearest neighbour method was 

used as a simple method for comparing with other proposed methods such as in 

(Junninen et al., 2004; Liew et al., 2011; Siripitayananon et al., 2003; Waljee et al., 

2013).  The state space model has been proposed and used as an imputation method 

of missing values in (Sarkka et al., 2004; Tsay, 2005).  Root mean square error 

(RMSE) measurement is computed for the error of missing values imputation for all 
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imputation methods and all datasets as a statistical criterion to evaluate the adequacy 

and accuracy of these methods.  AR-ANN method has been compared with linear, 

nearest neighbour, and state space methods.  The proposed ANN method 

outperformed other imputation methods.  The results have shown that ANN 

outperformed the other imputation methods. 

 

 

In conclusion, the wind speed data with nonlinearity and uncertainty 

characteristics can be forecasted more accurately using the hybrid models KF-ANN 

and ARIMA-ANN.  The missing values in wind speed data with nonlinear 

characteristic can be imputed more accurately using a hybrid AR-ANN method. 

 

 

 

 

1.2 Problem Statement 

 

 

Although an ARIMA model is the preferable statistical model for forecasting, 

it can lead to inaccurate results for wind speed forecasting.  The nonlinear pattern of 

wind speed data may be one reason for the forecasting inaccuracy of ARIMA model, 

which is a linear time series model (Cadenas and Rivera, 2007, 2010).  It is important 

to propose an appropriate method to accommodate all the linear and nonlinear 

components of wind speed data and combine them in one distinct approach in order 

to handle the nonlinearity.   

 

 

The inaccurate forecasting of ARIMA model is a problem that reflects the 

stochastic uncertainty of modelling process as another reason of inaccurate wind 

speed forecasting results.  Proposing a method that handles the stochastic uncertainty 

problem is important to obtain accurate forecasting.  Handling nonlinearity and 

stochastic uncertainty problems jointly associated with wind speed data using a 

suitable method is requested for more forecasting accuracy. 
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The collection process of wind speed data as one of meteorological time 

series data faces several tactical problems such as thunderstorms, failure of data 

observing devices, or other unforeseen errors that lead to increased complexity in 

data analysis.  A sequential dataset is required for performing analysis and modelling 

processes.  Therefore, the missing values in wind speed data should be filled and 

imputed.  Missing values imputation can be accomplished using the classical 

methods such as linear, nearest neighbour, and others.  The classical methods may 

not provide accurate imputations when the wind speed data contains nonlinearity. 

 

 

 

 

1.3 Research Question 

 

 

(a) What are the methods proposed in this study to improve the forecasting 

accuracy? 

 

 

(b) What are the most appropriate forecasting methods among the classical and 

the hybrid methods for Iraqi and Malaysian wind speed data? 

 

 

(c) What are the methods used to impute the missing values in Iraqi and 

Malaysian wind speed data? 

 

 

(d) What is the most appropriate method for missing values imputation among 

the classical and the proposed methods? 
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1.4 Research Objectives 

 

 

The following objectives are recognized to achieve the aims of the research: 

 

 

(a) To develop ARIMA-ANN hybrid model to handle the nonlinearity in wind 

speeds and to develop ARIMA-KF hybrid model to handle the stochastic 

uncertainty. 

 

 

(b) To develop a new KF-ANN hybrid model to handle nonlinearity and 

stochastic uncertainty problems jointly those associated with wind speed data.   

 

 

(c) To evaluate the forecasting performance of classical and proposed methods. 

 

 

(d) To develop hybrid AR-ANN model to impute the missing values in wind 

speed data. 

 

 

(e) To evaluate the performance of classical and proposed methods for imputing 

the missing values in wind speed datasets. 

 

 

 

 

1.5 Significance of the Research 

 

 

Some authors have proposed using ARIMA model, a classical statistical 

approach, to forecast wind speeds.  It can lead to inaccurate results for wind speed 

forecasting.  The nonlinear pattern of wind speed data may be one reason for the 
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forecasting inaccuracy of ARIMA model, which is a linear time series model 

(Cadenas and Rivera, 2007, 2010).  An ANN can be used to handle the nonlinear 

nature of wind speed data.  A hybrid ARIMA-ANN model is proposed in this study 

in order to accommodate all the linear and nonlinear components of wind speed data 

and combine them in one distinct approach for more handling of the nonlinearity.  

The hybrid ARIMA-ANN model depends on all ARIMA inputs and their 

intersections which are those on the right side of ARIMA equation to determine the 

inputs structure of the ANN and provides the most accurate forecasts.  Several recent 

studies have proposed different hybrid approaches that also combine ARIMA and 

ANN.  Zhang’s hybrid model that combines both ARIMA and ANN was proposed 

by (Zhang, 2003) and used by Aladag et al. (2009); and Cadenas and Rivera (2010).  

Zhang’s hybrid model only improved the residuals of ARIMA by using ANN.  

Constructing an ANN based on AR to simulate the ANN structure was used and 

compared with other approaches by Guo et al. (2012); Li and Shi (2010); and Liu et 

al. (2012b).  The advantages of the new hybrid ARIMA-ANN model were 

hybridizing the linear ARIMA model and a nonlinear ANN and combining their 

components in one distinct approach to improve wind speed forecasting accuracy. 

 

 

The inaccurate forecasting of ARIMA model reflects the stochastic 

uncertainty of modelling process as another reason of inaccurate wind speed 

forecasting.  An ARIMA model is used with the KF model to construct the structure 

of the state-space equation.  In recent studies, researchers proposed using hybrid AR-

KF model instead of hybrid ARIMA-KF model to maintain simplicity when the 

parameters of moving average and integration parts become zero (Chen and Yu, 

2014; Liu et al., 2012b; Tatinati and Veluvolu, 2013).  In this study, the KF model is 

initialized based on ARIMA(p,d,q)(P,D,Q)s to obtain a hybrid ARIMA-KF model.  

ARIMA-KF model combines all the components of both ARIMA and KF in distinct 

approach for more forecasting accuracy than AR-KF model.   

 

 

In this study, a new hybrid KF-ANN model is proposed based on an ARIMA 

model as a unique method for handling the nonlinearity and uncertainty jointly to 

further improve the forecasting accuracy of wind speed.  The wind speed data with 
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nonlinearity and uncertainty characteristics can be forecasted more accurately using 

the hybrid models KF-ANN and ARIMA-ANN. 

 

 

A sequential dataset is required for performing analysis and modelling 

processes.  Missing values imputation can be accomplished using classical methods 

such as linear, nearest neighbour or others.  The classical methods may not provide 

accurate imputations when the wind speed data contains nonlinearity.  In this study, a 

hybrid AR-ANN model was proposed to reform the missing values problem by 

imputing missing values and jointly handling the nonlinearity problem.  This method 

can be called hybrid AR-ANN model (Liu et al., 2012b) or ANN (Khashei and 

Bijari, 2010, 2011; Zhang, 2003).  The missing values in wind speed data with 

nonlinear characteristic can be imputed more accurately using AR-ANN model. 

 

 

 

 

1.6 Scope of the Study 

 

 

In this study, daily wind speed data from two meteorological stations were 

collected.  The first dataset was collected from the Mosul dam meteorological station 

in Mosul, Iraq 
1
.  It covered four hydrological years (1 October 2000 – 30 September 

2004) which was used for training.  Another four months of hydrological data (1 

October 2004 – 31 January 2005) was reserved for testing.  The other dataset was 

collected from the Muar meteorological station in Johor, Malaysia 
2
.  It covered four 

hydrological years (1 October 2006 – 30 September 2010) which was used for 

training.  An additional three months of hydrological data (1 October 2010 – 31 

December 2010) was used for testing.  These samples of data are applied to test the 

proposed methods. Appendix E and Appendix F include full Iraqi and Malaysian 

wind speed datasets respectively. 

                                                 
1  Dam and Water Resources Research Center, University of Mosul, Mosul, Iraq. 

2  Departments of Environment, Ministry of Natural Resources and environment, Malaysia. 
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Missing values datasets have been generated by distributing the missing 

values into the training periods of wind speed datasets.  The missing values have 

been distributed into three different parts 1, 3, 6 randomly. Three different 

proportions 10%, 20%, 30% have been considered percentages of missing values.  

Five datasets is the total number of missing datasets for each of Iraq and Malaysia.  

First three datasets include 10% of missing values that were distributed into one, 

three, and six equal parts respectively.  10% requires advanced methods for handling 

as mentioned in (Acuña and Rodriguez, 2004).  Last two datasets were distributed 

into six equal parts that includes 20%, and 30% of missing values respectively.  

Acuña and Rodriguez (2004) mentioned that any percentage of missing values more 

than 15% may impact the scientific interpretation. . 
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