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ABSTRACT 

 

 

 

 

Magnetorheological (MR) damper is a controllable shock absorber that can 

be applied in semi-active suspension systems. Recently, many researchers have 

utilized this appliance in vast applications. However, there are only a few published 

works on analysis and performance enhancement of the MR fluids and dampers in 

terms of controlling their temperature. In this research, a novel MR damper with low 

temperature property was proposed in which a new wiring arrangement is utilized for 

the electromagnetic coil in order to achieve higher performance in comparison to 

conventional MR dampers. A finite element method was used to demonstrate the 

performance enhancement of the new MR damper using Ansoft Maxwell software. A 

dynamic test was carried out to realize the dynamic characteristics of the new MR 

damper and its temperature was experimentally obtained by using thermal camera 

FLIR i7. The experimental result showed that the amount of input current can be 

raised up to 9A. Furthermore, the MR damper can withstand high input current for a 

long time by using the cooling system. Another experimental study was performed to 

compare the thermal properties of the new and conventional MR dampers and 

numerically characterised the dynamic behaviour of the conventional MR damper by 

using adaptive network-based fuzzy inference system (ANFIS). The experimental 

result showed that after an hour, the new MR damper had a stable temperature of 

35.3ºC while the conventional MR dampers reached more than 63ºC. ANFIS 

modelling result illustrated the distinct influence of input current, piston 

displacement and velocity on the damping force. A fuzzy-PID controller was applied 

in a quarter-car suspension system by using the constructed ANFIS model. The 

simulation result demonstrated the capability of fuzzy-PID controller in improving 

the performance of PID controller by 69.6%. An accurate model of the MR damper 

can enhance the performance of the control strategy.  
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ABSTRAK 

 

 

 

 

Peredam magnet-reologi (MR) ialah penyerap hentakan terkawal yang boleh 
digunakan dalam sistem suspensi semi-aktif. Kebelakangan ini, ramai penyelidik 
telah menggunakan aplikasi ini dalam pelbagai bidang. Namun, kertas kerja 
penyelidikan sangat terhad berkaitan analisis dan peningkatan prestasi cecair dan 
peredam MR dari segi kawalan suhu. Dalam kajian ini, peredam MR bersuhu rendah 
telah dicadangkan dengan susunan pendawaian baru untuk gegelung elektromagnet 
bagi mencapai prestasi yang lebih baik berbanding peredam MR konvensional. 
Kaedah elemen terhad digunakan bagi menggambarkan peningkatan prestasi 
peredam MR yang baru dengan menggunakan perisian simulasi Ansoft Maxwell. 
Ujian dinamik dijalankan untuk mendapatkan ciri-ciri dinamik peredam MR yang 
dicadangkan dan suhu yang terhasil diperolehi dengan menggunakan kamera haba 
FLIR i7. Hasil eksperimen menunjukkan bahawa jumlah arus masukan boleh 
dinaikkan sehingga 9A. Sebagai tambahan, peredam MR boleh bertahan dengan arus 
masukan yang tinggi untuk jangka masa yang panjang dengan menggunakan sistem 
penyejukan ini. Satu lagi kajian dilakukan untuk membandingkan sifat haba bagi 
peredam MR yang baru dengan peredam konvensional dan secara numerik telah 
mencirikan tingkah laku dinamik bagi peredam MR konvensional dengan 
menggunakan model Adaptive Network-based Fuzzy Inferences System (ANFIS). 
Hasil eksperimen menunjukkan bahawa selepas satu jam, MR peredam baru 
mempunyai suhu yang stabil pada 35.3ºC manakala peredam MR konvensional 
mencapai suhu melebihi 63ºC. Hasil pemodelan ANFIS menggambarkan pengaruh 
yang berbeza bagi setiap  arus masukan, anjakan omboh dan halaju pada daya 
redaman. Pengawal fuzzy-PID diaplikasikan dalam sistem suspensi kereta 
seperempat dengan menggunakan model ANFIS yang dibina. Hasil simulasi 
menunjukkan keupayaan pengawal fuzzy-PID dalam meningkatkan prestasi PID 
kawalan kepada 69.6%. Model yang tepat bagi peredam MR boleh meningkatkan 
prestasi strategi kawalan.  
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CHAPTER 1  

INTRODUCTION 

1.1 Background 

Magnetorheological (MR) damper is a kind of controllable shock absorbers 

whose characteristics can be changed by altering the amount of exerted input current. 

The capability of a MR damper as a semi-active system to produce high force 

capacity and wide dynamic range attracted researchers to focus more on MR 

dampers. Some comprehensive reviews have considered a wide variety of studies 

involving MR dampers: design and modelling for a rotary MR damper (Imaduddin et 

al., 2013a), structure design and analysis (Zhu et al., 2012), state of the art of 

structural control (Spencer & Nagarajaiah 2003) and parametric modelling (Wang 

and Liao, 2011). Fig. 1.1 shows a schematic of an MR damper and its components. 

 

 
Figure 1.1 Schematic of an MR damper with an accumulator 
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The MR fluid provided in MR damper has micron size magnetic particles. 

These magnetic particles are capable to change the characteristics of MR fluid when 

the magnetic field is applied to the fluid. The applied input current produces a 

magnetic flux in which the flux lines are perpendicular to the MR fluid flow. The 

produced magnetic field influences MR fluid magnetic particles arrangement to 

increase the MR fluid viscosity in terms of magnetic flux density (the magnified 

ellipse in fig. 1.1). This phenomenon generates a complex relation between the 

effective input parameters such as piston displacement, which represents the 

behaviour of the accumulator as a spring, velocity, which corresponds to the 

damping behaviour of the MR damper, and input current.  

1.2 Motivation of Study 

According to Chae et al. (2013) and Ding et al. (2013), undesired movement 

or disturbance is a major portion of researches which needs to be eliminated from the 

system. Suspension system is a device to reduce or eliminate the effect of 

disturbances on specified target. Controllability of the suspension system is a key 

parameter in enhancing the performance of the system. Thus, an appropriate 

controllable shock absorber needs to be utilized in the suspension system. An MR 

damper is a promising appliance for semi-active suspension systems, due to its 

capability of damping undesired movement using an adequate control strategy. 

In the MR fluids, numerous internal and external forces are affecting on 

magnetic particles; Van Der Waals (Ebner et al., 2000), repulsive (Melle et al., 

2002), Brownian (Kim, 2004), viscous, magnetic (Liu et al., 2012), gravitational and 

buoyant forces. The effect of these forces on magnetic particles is studied in particle 

dynamics criteria (Han et al., 2010; Liu et al., 2012; Ly et al., 1999). The presence of 

the magnetic particle among carrier fluid causes to increase the amount of friction 

and consequently increase the temperature of MR fluid. Therefore, the main sources 
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of heat generation in MR fluid are amongst the particle-particle and particle-fluid 

interactions.  

The temperature analysis of the conventional MR fluid illustrates that the 

increase of temperature causes to reduce the viscosity of the MR fluid and its 

performance as well (Dogruoz et al., 2003; Gordaninejad and Breese, 1999; Susan-

Resiga, 2009). There are few studies related to heat transfer and the effects of 

temperature changes in MR damper behaviour and performance (Breese and 

Gordaninejad, 1999; Dogruoz et al., 2003; Gordaninejad and Breese, 1999). Breese 

& Gordaninejad (1999) conducted a theoretical study on heating of MR fluid damper 

and proposed a theoretical model to estimate the temperature rise of the MR damper 

during a sinusoidal piston movement. In another study, they performed an 

experimentally study and investigated the effects of temperature increase on 

damping force capacity in different input currents and sinusoidal movement 

frequencies (Gordaninejad and Breese, 1999). The results showed that the force, or 

peak force, is related to the temperature of the MR damper. Time is another 

considerable parameter that affects the MR damper’s performance. In continuous 

duty, the temperature is increased until achieving a saturating temperature. Higher 

input current, which produces higher magnetic field and consequently damping 

force, causes the temperature rise of MR damper. Kordonsky et al. (1993) 

experimentally investigated the magnetic field influence on the thermal 

developments in MR suspensions. Zheng et al. (2014) showed that the majority of 

the temperature rise is caused by the friction inside the MR damper rather than the 

electromagnetic coil (wires). In another study, Wilson et al. (2013) obtained the 

temperature of the MR fluid with respect to time for a continuous duty of 15min. As 

seen in fig. 1.2, they showed that the linear MR damper temperature is raised up to 

100ºC in few minutes (around 16min for 0A and around 3min for 2.5A). 
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Figure 1.2 Temperature vs. time in continuous duty (Wilson et al., 2013) 

Dogruoz et al. (2003) utilized fins in order to enhance heat transfer of fail-

safe MR damper. The results, experimental and theoretical, showed that the use of 

fins has successfully enhanced the heat transfer of MR damper. In addition, they 

proposed a theoretical model to describe the relationship between temperature and 

the characteristics of MR damper and its wiring system. The proposed relationship 

has governed from energy equation which is as, 

  (1.1) 

where , , and 
dU

dt
 are the rates of heat transfer, work and internal energy 

change of the MR damper, as a closed system with consistent boundaries, 

respectively. Hence, the relationship can be defined as (Dogruoz et al., 2003), 

  (1.2) 

where  is piston velocity, I  and R  are exerted input current and resistance of 

winding coil, h  and sA  are heat transfer coefficient and surface area of MR damper 

and  T t  and ambT  are the damper transient temperature and ambient temperature, 

respectively. p

n

mc  is the accumulated heat capacity of the MR damper elements 

consisting piston, cylinder, MR fluid, etc. A numerical method, e.g. Runge-Kutta, 

needs to be utilized to solve the above equation. 
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All presented studies focused on describing the behaviour of MR fluid with 

respect to temperature changes (Breese and Gordaninejad, 1999; Dogruoz et al., 

2003; Gordaninejad and Breese, 1999; Susan-Resiga, 2009). Among all researches, 

Dogruoz et al. (2003) endeavoured to reduce the temperature of MR fluid by using 

fins. They successfully reduced the temperature of the system by using the fans 

around the cylinder (see fig. 1.3). Thus, the heat generated by MR fluid is emitted to 

the air. However, the main issue is that the winding coil which is bounded by the 

MR fluid has a heat concentration. This heat generates from both wire resistance and 

MR fluid. Therefore, this research has motivated a new design of MR damper in 

which a cooling system is utilized to create a new heat transfer method in order to 

control the temperature of both MR fluid and winding coil. In the proposed method, 

an air circuit is utilized to transfer the heat from winding wire and MR fluid to the 

cooling system. The MR damper is expected to outperform the conventional MR 

dampers in terms of damping force capacity and durability. 

 

 

Figure 1.3 The heat transfer mechanisms proposed by Dogruoz et al. (2003) 

 

 



6 
 

1.3 Objectives 

The objectives of the current research are as follows: 

- To develop a new concept of high current MR damper with low temperature 

property. 

- To characterise the new MR damper by utilizing a finite element method and 

experimentally evaluate its performance. 

- To experimentally compare the thermal properties of new and conventional 

MR dampers and numerically characterise the dynamic behaviour of the 

conventional MR dampers.  

1.4 Scope 

An investigation of a novel concept of MR damper with low temperature 

property is carried out. The research focused on the introduction of a new wiring 

arrangement and cooling system in MR damper in order to control the temperature of 

carrier fluid and wiring system. MR fluid MRF-132DG is used as the carrier fluid. 

The performance of the new MR damper is numerically and experimentally 

analysed. A 2D simulation study is carried out to investigate the performance of the 

MR damper in terms of magnetic flux density. The effects of piston radius, coil 

dimension and coil boundary lengths on MR damper performance is numerically 

investigated. 

Another aspect of the study is to compare the thermal properties of the new 

MR damper to the conventional one. The temperature of both MR dampers is 

experimentally obtained for a continuous duty of an hour. The dynamic behaviour of 

the conventional MR dampers is characterised by using an intelligent approach. This 

model is validated by experimental results. The proposed model is a combination of 

artificial neural network and fuzzy logic approaches and able to accurately predict 
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the phenomenon in specific inputs interval. The inverse model of the MR damper is 

constructed on the basis of experimental result. The aim of constructing inverse 

model is to produce an appropriate input of the MR damper model with respect to 

the controller decision. An intelligent controller is utilized to evaluate the influence 

of the MR damper model on the MR damper’s performance. The controller is 

employed on a quarter-car suspension system. 

1.5 Thesis Outline 

The thesis consists of five chapters which are introduction, literature review, 

methodology, results and discussions, and conclusions. In the first chapter, an 

introduction of the study is presented and the objectives and scope of the research are 

proposed. Second chapter deals with the literature of the MR damper structure 

design, modelling, control, and applications in numerous criteria. The methodology 

of this work is presented in chapter three. The results of the research are provided in 

fourth chapter. Last chapter has summarized the conclusions of this research. 
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