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ABSTRACT

Biomedical grade of titanium alloys are prone to undergo degradation in 

body fluid environment. Surface coating such as Physical Vapor Deposition (PVD) 

can serve as one of the alternatives to minimize this issue. Past reports highlighted 

that coated PVD layer consists of pores, pin holes and columnar growth which act as 

channels for the aggressive medium to attack the substrate. Duplex and multilayer 

coatings seem able to address this issue at certain extent but at the expense of 

manufacturing time and cost. In the present work, the effect of ultrasonic vibration 

parameters on PVD-Titanium Nitride (TiN) coated Ti-13Zr-13Nb biomedical alloy 

was studied. Disk type samples were prepared and coated with TiN at various 

conditions: bias voltage (-125V), substrate temperature (100 to 300 °C) and nitrogen 

gas flow rate (100 to 300 seem). Ultrasonic vibration was then subsequently applied 

on extreme high and low conditions of TiN coated samples at two different 

frequencies (8 kHz, 16 kHz) and three set of exposure times (5 min, 8 min, 11 min). 

Encouraging results of PVD coating are observed on the samples coated at higher 

polarity of nitrogen gas flow rate (300 seem) and substrate temperature (300 °C) in 

terms of providing better surface morphology and roughness, coating thickness and 

adhesion strength. All TiN coated samples treated with ultrasonic vibration exhibit 

higher corrosion resistance than the untreated ones. Microstructure analysis under 

(Field Emission Scanning Electron Microscopy (FESEM) confirms that the higher 

ultrasonic frequency (16 kHz) and the longer exposure time (11 minutes) produce the 

most compact coating. It is believed that hammering effect from ultrasonic vibration 

reduces the micro channels’ size in the coating and thus decelerates the corrosion 

attack. Nano indentation test conducted on the ultrasonic treated samples provides a 

higher Hardness/Elasticity (H/E) ratio than untreated ones. This suggests that the 

ultrasonic vibration treated samples could also have a lower wear rate.
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ABSTRAK

Gred bioperubatan aloi titanium lebih cenderung mengalami kakisan dalam 
persekitaran cecair badan. Salutan permukaan seperti Physical Vapor Deposition 
(PVD) boleh digunakan sebagai salah satu alternatif untuk mengurangkan masalah 
ini. Hasil kajian sebelum ini menunjukkan bahawa lapisan salutan PVD terdiri 
daripada liang-liang, lubang pin, dan pertumbuhan kolumnar yang bertindak sebagai 
salah satu saluran untuk cecair menyerang substrat. Substrat yang disalut dengan dua 
lapisan atau lebih dilihat dapat mengatasi masalah ini pada kadar tertentu tetapi ianya 
melibatkan kos pembuatan yang tinggi dengan masa yang panjang. Dalam kajian ini, 
kesan parameter getaran ultrasonik ke atas PVD- Titanium Nitride (TiN) yang disalut 
ke atas aloi bioperubatan Ti-13Zr-13Nb telah dikaji. Sampel berbentuk cakera 
disediakan dan disalut dengan TiN pada voltan pincang (-125V), suhu substrat (100 
hingga 300 °C) dan kadar aliran gas nitrogen (100-300 seem). Getaran ultrasonik 
kemudiannya dikenakan ke atas sampel yang disalut dengan TiN dalam keadaan dua 
frekuensi yang berbeza (8 kHz, 16 kHz) dan tiga masa pendedahan (5 min, 8 min,
11 min). Hasil kajian salutan PVD yang menggalakkan diperolehi ke atas sampel 
yang dikenakan pada kadar aliran gas nitrogen dan suhu substrat yang tinggi dari 
segi morpologi dan keserataan permukaan, ketebalan salutan dan kekuatan lekatan 
yang lebih baik. Semua sampel yang dirawat dengan salutan TiN menggunakan 
getaran ultrasonik menunjukkan ketahanan kakisan yang tinggi jika dibandingkan 
dengan sampel tanpa rawatan. Analisis struktur mikro menggunakan Field Emission 
Scanning Electron Microscopy (FESEM) mengesahkan bahawa ultrasonik frekuensi 
yang tinggi dengan masa yang lama menghasilkan lapisan yang paling padat. Ini 
adalah disebabkan kesan ketukan yang dihasilkan oleh getaran ultrasonik yang mana 
dapat mengecilkan saiz saluran pada salutan tersebut dan dengan itu mengurangkan 
serangan kakisan. Ujian lekukan nano yang dijalankan ke atas sampel yang dirawat 
dengan getaran didapati menghasilkan nilai nisbah Hardness/Elasticy H/E yang 
tinggi jika dibandingkan dengan sampel tanpa rawatan. Ini menunjukkan bahawa 
sampel yang dikenakan rawatan getaran ultrasonik juga boleh menghasilkan kadar 
kehausan yang lebih rendah.
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CHAPTER 1

INTRODUCTION

1.1 Background of the problem

The field of biomaterial has caught attention of researchers because it can 

increase the length and quality of human life. Natural and artificial biomaterials are 

used to make implants or structures that replace biological structures lost to diseases 

or accidents. The application of biomaterial in musculoskeletal implants include 

dental implants, artificial hips, and knees prostheses and incorporate the screws, 

plates, and nails in these devices [1]. The materials used in surgical implants include 

stainless steel (316LSS), Co-Cr-based alloys, and Ti alloys. Titanium based alloys 

are preferable due to their excellent biocompatibility, outstanding corrosion 

resistance, relatively good fatigue resistance, and lower elastic modulus [2, 3].

Several types of titanium alloys have been developed and one of them is Ti- 

6Al-4V. Ti-6Al-4V was the first standard alloys employed as a biomaterial for 

implants. Although this alloy has an excellent reputation in terms of its 

biocompatibility and corrosion resistance, studies have shown that the release of 

aluminium and vanadium ions from this alloy causes long term problem, such as 

peripheral neuropathy, osteomalacia, and Alzheimer diseases [4]. Consequently 

other titanium alloys group have been developed as alternatives to the Ti-6Al-4V
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alloy. Among them, Ti-13Zr-13Nb is the most attractive biomaterial due to its low 

Young’s modulus and non-toxic composition. It has been reported that Ti-13Zr- 

13Nb alloy is preferred for biomedical applications due to its superior corrosion 

resistance and biocompatibility. The good biocompatibility of this alloy is due to the 

corrosion products of the minor alloying elements (niobium and zirconium) that are 

less soluble than those of aluminium and vanadium. This material also has good 

tensile and corrosion resistance compared to Ti-6Al-4V and Ti-6Al-7Nb alloys [5].

Although the Ti-13Zr-13Nb alloy has excellence corrosion resistance and 

biocompatibility under normal conditions, it is still subject to corrosion, especially 

when it is in contact with body fluids. The environment found in the human body is 

very harsh owing to the presence of chloride ions and proteins. As an implant 

corrodes, it releases toxic ions and causes inflammation, which may require further 

surgery [6]. This issue can be addressed by using a surface coating or surface 

modification techniques. Several studies have been conducted that attempt to 

increase of Ti-13Zr-13Nb. Techniques including thermal oxidation [2, 7-12], anodic 

oxidation [13-16], thermal spray [17], laser nitriding [18], plasma spray [19, 20], 

Chemical Vapour Deposition (CVD) [21], and Ion Implantation [22] have all been 

investigated. The processing temperature of surface modification techniques in these 

studies are relatively high (600 -  2000 °C), which restricts the type of substrates that 

can be used, as well as causing unexpected phase transitions and excessive residual 

stresses. Nevertheless, a few studies use surface modification techniques with low 

processing temperatures. Other surface modification techniques such as Physical 

Vapour Deposition (PVD) offer promising results using low processing temperatures 

(<500° C) over a wide range of coating thickness. In this thesis, PVD coating on Ti- 

13Zr-13Nb was proposed as a way to improve the corrosion resistance of medical 

implants.
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1.2 Problem statements

Surface coatings, such as PVD, can minimize the corrosion rate of titanium 

alloys that are exposed to body fluids. Past reports indicated that coated PVD layers 

have pores, pin holes, and columnar growths that act as channels for aggressive 

mediums to attack the substrate [23-26]. Duplex and multilayer coatings address this 

issue but at the expense of manufacturing time and cost. Therefore, an alternative 

method is needed to reduce the penetration of body fluids and react with bare 

substrate. One of possible surface modifications to PVD coatings uses a mechanical 

treatment. Several studies have demonstrated that sand blasting PVD coatings 

increases the compactness and hardness of the coating, which leads to lower wear 

rates [27-34]. However, very limited literature exists on surface mechanical 

treatment especially on the application of ultrasonic vibration to reduce corrosion 

attack of TiN coated Ti based implants. Most researchers have reported the 

behaviour of mechanical treatment on wear rate mechanism only. Therefore, a 

detailed study is needed to evaluate the effect of ultrasonic treatments on PVD-TiN 

coated Ti-13Zr-13Nb alloys in terms of corrosion resistance.

1.3 Objectives of the study

The objectives of this study were:

i. To analyse the effect of PVD coating parameters on the surface morphology, 

coating thickness, and adhesion strength of TiN coated biomedical grade Ti 

alloys.

ii. To investigate the effect of ultrasonic vibration treatment on the hardness and 

coating thickness of TiN coated samples.

iii. To compare the corrosion performance of ultrasonic treated and untreated 

TiN coating samples under simulated body fluids.
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1.4 Scopes of the study

The study was conducted using the following limits:

i. Ti-13Zr-13Nb was used as the substrate material.

ii. The variable CAPVD parameters included nitrogen gas flow rates (100-300 

sccm) and substrate temperature (100-300° C). The bias voltage was fixed at 

-125V.

iii. An ultrasonic machine (Sonic mill AP-10001X) was used to hammer the TiN 

coated samples using micro steel balls.

iv. Ultrasonic parameters varied from 8 to 16 kHz for 5, 8, and 11 minutes of 

exposure time.

v. FESEM was used to characterize surface morphology and coating thickness. 

A nano-indenter was used to determine TiN hardness.

vi. Tafel plot and EIS were used to evaluate corrosion on untreated and treated 

TiN coated samples.

vii. A Kokubo solution was used to simulate body fluids during corrosion 

resistance testing.

1.5 Significance of the study

The use of ultrasonic vibrations as a post treatment on TiN coated layers was 

expected to reduce corrosion when the implant was subjected to body fluids. The 

hypothesis was that ultrasonic vibration would provide micro-steel ball impingement 

that would result in a TiN coated layer with higher hardness and less porosity. The 

technique applied was less expensive than the multilayer and duplex coatings 

suggested by other researchers. The application of TiN coated Ti-13Zr-13Nb is 

appropriate for orthopaedic plates that are commonly used in bone surgery. The 

success of this method will improve the life of prosthesis and reduce implant 

revision costs. In addition, this study will help manufacturers produce more
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sustainable biomedical implants by increasing the surface hardness of the implant 

and thus providing better wear resistance capabilities. This study will also add to the 

knowledge and understanding of the behaviour of TiN coatings on biomedical 

implants.

1.6 Thesis organization

This thesis consists of five chapters. Chapter 1 is the introduction, which 

covers the background of research, the problem statement, and the objectives, scope, 

and significance of study. Chapter 2 provides an overview of general implant 

materials, a review of surface modification techniques, PVD, ultrasonic vibration, 

and an evaluation of coating performances. At the end of this chapter, the literature is 

summarized and gaps in the research are discussed.

In Chapter 3, the experimental approach adopted in this study is discussed 

including the substrate material and its preparation, and an explanation of the 

procedure for testing CAPVD and ultrasonic treatments. The analytical equipment 

used in this study is also discussed in this chapter, including a corrosion test, 

adhesion strength, nano indenter, FESEM, and XRD.

In Chapter 4, the results of Experiment Stages I, II and III are described and 

discussed. Experiment Stage I discusses the preliminary trials conducted before the 

actual experiment began. In Stage II, the effects of CAPVD parameters on surface 

morphology, coating thickness, and adhesion strength are discussed. Stage III 

describes the effect of ultrasonic treatments under extreme PVD conditions on 

corrosion resistance and hardness. Chapter 5 presents the conclusions from this study 

and recommendations for future work.
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