
AUXETIC STRUCTURES FOR ENERGY ABSORPTION APPLICATIONS 

MOZAFAR SHOKRI RAD 

A thesis submitted in fulfilment of the 

requirements for the award of degree of 

Doctor of Philosophy (Mechanical Engineering) 

Faculty of Mechanical Engineering 

Universiti Teknologi Malaysia 

JUNE 2015 

 



iii

To my kind parents for their priceless support and motivation, and to my wife as well.



iv

ACKNOWLEDGEMENT

Firstly, I would like to thank my supervisors Dr. Zaini Ahmad, Dr. Yunan
Prawoto, Dr. Amran Alias for their valuable suggestions, guidance and consistent
support throughout this project.

Secondly, my thanks are also extended to all strength of materials and Vibration
Laboratories members for their cooperation and interest.

Lastly, but not least, I would like extend my gratitude to my kind parents, my
wife; this thesis would not exist without their patience, understanding and support.



v

ABSTRACT

Auxetic materials are new class of materials exhibiting negative Poissons
ratio. This unusual behavior results in improvement of mechanical properties such
as energy absorption capability. This research focuses on design of auxetic materials
in order to enhance and control mechanical properties. Mechanical design of auxetic
structures has been developed for both high and low stiffness applications. For
high stiffness applications, auxetic structures were designed to be used for making
auxetic materials. Among several auxetic structures, re-entrant structures have been
selected due to their potential of modeling auxetic materials. The basic mechanical
properties and impact characteristics have been determined using analytical and
numerical methods. The analytical formulation has been validated by finite element
analysis whereas the numerical results have been corroborated against experimental
results. For validation, the basic mechanical properties and energy absorption capacity
have been compared accordingly to subsequently carry out further analyses. As
additional results, dynamic analysis of viscoelastic structures under impact loading
was also demonstrated to examine the amount of impact resistance. For low stiffness
applications, negative Poissons ratio polyurethane foam was precisely fabricated
through a modified fabrication process which later involved experimental works to
measure and control the mechanical properties. The effects of fabrication parameters
namely hydraulic pressure, heating temperature and time on auxeticity of specimens
have also been investigated. More importantly, a new method based on image
processing technique has been proposed for measuring Poissons ratio of foam. In
addition to this, energy absorption capability of auxetic foam was measured by using
a high speed camera and falling weight system. Overall, the results highlight the
pronounced effect of unit cell cross section and unit cell angle on the auxeticity and
energy absorption characteristics. The primary outcome of this thesis is development
of auxetic structure design for high stiffness application and modification of fabrication
process of auxetic foam. Furthermore, the results demonstrated the importance of
analyzing auxetic foam-filled thin-walled tubes as part of an energy absorbing system.
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ABSTRAK

Bahan-bahan auxetik adalah bahan kelas baru yang menunjukkan nisbah
Poisson bernilai negatif. Keadaan perilaku luar biasa bahan ini menghasilkan
pembaikan bagi sifat mekanikal seperti keupayaan penyerapan tenaga. Kajian ini
memberi tumpuan kepada rekabentuk bahan auxetik bagi meningkatkan dan mengawal
sifat-sifat mekanikal. Rekabentuk mekanikal bagi struktur auxetik telah dibangunkan
untuk kedua-dua aplikasi kekakuan tinggi dan rendah. Untuk aplikasi kekakuan
tinggi, struktur auxetik telah direkabentuk untuk diguna dalam pembuatan bahan
auxetik. Di antara beberapa struktur auxetik, struktur berbentuk lekukan telah dipilih
disebabkan potensinya di dalam penghasilan bahan auxetik. Sifat mekanikal asas
dan karakternya terhadap hentaman telah ditentukan dengan menggunakan kaedah
analitik dan berangka. Persamaan yang dianalisis telah disahkan dengan analisis unsur
tak terhingga manakala keputusan berangka telah ditentusahkan terhadap keputusan
eksperimen. Untuk pengesahan, sifat mekanikal asas dan kapasiti penyerapan
tenaga telah dibandingkan sejajarnya untuk seterusnya melakukan analisis lanjut.
Sebagai keputusan tambahan, analisis dinamik bagi struktur viskoelastik di bawah
bebanan hentaman juga telah ditunjukkan untuk memeriksa jumlah rintangan terhadap
hentaman. Untuk aplikasi kekakuan rendah, busa auxetik telah dihasilkan secara
teliti melalui proses fabrikasi yang diubahsuai yang mana kemudiannya melibatkan
kerja-kerja eksperimen untuk mengukur dan mengawal sifat-sifat mekanikal. Kesan
parameter pembuatan iaitu tekanan hidraulik, suhu dan masa pemanasan bagi spesimen
keauxetikan juga telah disiasat. Yang lebih penting lagi, satu kaedah baru berdasarkan
kepada teknik pemprosesan imej telah dicadangkan untuk mengukur nisbah Poisson
bagi busa. Tambahan lagi, keupayaan penyerapan tenaga busa auxetik telah diukur
dengan menggunakan sebuah kamera berkelajuan tinggi dan sistem kejatuhan berat.
Secara keseluruhannya, hasil keputusan memberikan penekanan kepada kesan yang
jelas daripada keratan rentas and sudut bagi sel unit terhadap keauxetikan dan ciri-ciri
penyerapan tenaga. Hasil utama tesis ini adalah pembangunan rekabentuk struktur
auxetik untuk penggunaan kekakuan tinggi dan pengubahsuaian proses pembuatan
busa auxetik. Tambahan pula, keputusan ini telah menunjukkan kepentingan
menganalisa busa auxetik yang dimasukkan ke dalam tiub berdinding nipis sebagai
sebahagian daripada sistem penyerapan tenaga.
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CHAPTER 1 

 

 

 

INTRODUCTION 

 

 

 

1.1 Background of the Research 

 

Modern technology requires new materials of special and improved properties. 

One of the reasons for interest in materials of unusual mechanical properties comes 

from the fact that they can be used as matrices to form composites with other materials 

with other required properties, e.g. electric, magnetic, etc. A new field of structural 

mechanics is to study materials exhibiting negative Poisson’s ratio (NPR). These new 

types of materials are known as auxetic materials. In contrast to conventional materials 

(like rubber, glass, metals, etc.), auxetic materials expand transversely when pulled 

longitudinally and contract transversely when pushed longitudinally (Prawoto, 2012). 

Some of the important mechanical properties such as indentation resistance, energy 

absorption capacity, impact resistance, fracture toughness, fatigue toughness and 

shear strength are mainly dependent on Poisson’s ratio (Prawoto, 2012). Due to the 

unique characteristic of negative Poisson’s ratio in improving these properties, auxetic 

materials are excellent in the great number of structural applications. For instance, 

they have great potential to meet many needs of medical, military, automotive and 

textile industries where indentation resistant and energy absorbing material are 

required. From the mechanics of material point of views, when an object impacts an 

auxetic material and compresses it in one direction, the auxetic material also contracts 

laterally in which material flows into (compresses towards) the vicinity of the impact, 

as shown in Figure 1.1 (Evansand Alderson, 2000a). As such, it creates an area of 

denser material, which is more resistant to indentation. The previous investigation 



2 

 

showed that re-entrant foams have higher yield strength and less stiffness than 

conventional foams with the same original relative density. It has also been further 

proven that re-entrant foams indeed densify under indentation due to increase in shear 

stiffness. Figure 1.1 depicts the deformation behaviours of both conventional and 

auxetic materials when subjected to impact compressive loading. 

 

 

Figure 1.1:  Deformation behavior of materials. (a)Auxetic  (b) Conventional 

 

The application of auxetic material in energy absorbing structures could be 

divided into two main aspects; low stiffness and high stiffness applications. From 

automotive design aspects, auxetic materials can be used for bumpers, cushions, 

thermal protection, sounds and vibration absorber parts those need shear resistant, 

fasteners, etc. Nevertheless, for low stiffness application, auxetic materials need 

substantial porosity (Prawoto, 2012). Thereby, this type of material has low stiffness 

compared with the solids. Thus, there are some limitations in the structural 

applications of using materials with negative Poisson’s ratio. Consequently, for 

applications that require substantial load-bearing, they are probably not the best 

choice. 

 

In order to fabricate auxetic man-made materials from conventional ones, 

substantial porosity is required (Prawoto, 2012). For instance, low density polymeric 

foam such as polyurethane foam has great potential to be used in producing auxetic 

materials. Due to considerable porosity of these materials, their stiffness is 

considerably low. Therefore, they can be used only for low stiffness applications such 

as automotive bumper. To improve the energy absorption capacity in low stiffness 
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application, the present study has duly modified the fabrication technique to meet the 

higher level of energy absorption capability. 

 

However, for high stiffness applications such as vanes for gas turbine engine, 

artificial skin, and artificial blood vessel, they are not proper choices. Recently, 

attempt has been done to design and fabricate auxetic structures experimentally. These 

structures in micro level can be used for making high stiffness auxetic materials. 

Owing to the lack design guideline for the high stiffness application, the present study 

has extensively investigated the mechanical properties and energy absorption capacity 

of auxetic materials using finite element technique in conjunction with experimental 

and analytical approaches.  

 

 

 

1.2 Statement of Problem 

 

Energy absorption and impact resistance of materials are among important 

mechanical properties which can facilitate various industries such as automotive, 

aerospace and biomedical industries. In particular, lightweight materials with high 

energy absorption capability are desirable in designing crashworthy structures. 

Auxetic materials as new class of materials have the potential to absorb more energy 

compared to conventional materials. In point of view of automotive design, the 

available crush zone of frontal structure is still limited to sustain the adverse effect of 

impact. It is indispensable to include a unique material as supplementary material 

which may absorb impact load with higher capacity under limited crush zone. Due to 

the unusual characteristic of auxetic material, it can be one of the best candidates to 

be applied in automotive design. 

 

Furthermore, there is insufficient data to understand in-depth the behaviour of 

auxetic material in open literature.  Although a large number of experimental works 

have been done on auxetic materials, only few of them have focussed on the 

theoretical aspect and finite element modelling technique, particularly in energy 

absorption applications (Zi-Xing Lu, 2011).To comprehend the mechanical 

characteristics of auxetic material, finite element approach has been comprehensively 
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employed in this present research. Also, in spite of a number of continuous modified 

fabrication methods of auxetic foams for low stiffness application, further 

modification is still necessary. For the abovementioned research problems, the present 

research has attempted to design and develop auxetic materials analytically, 

numerically and experimentally. Such approaches have been adopted to develop 

reliable and accurate finite element model which can represent the actual behaviour 

of the auxetic materials. Introducing modified fabrication method and new technique 

in measuring mechanical properties have also been highlighted throughout the study. 

 

 

 

1.3   Objectives of the Research 

 

This research focuses on determination of mechanical properties and energy 

absorption capability of auxetic structures and auxetic materials. It primarily 

emphasizes on the geometrical design of auxetic structures for high stiffness 

applications and improvement of fabrication method of auxetic foams for low stiffness 

applications. This present study embarks on the following objectives. 

 

a) To develop 3D models of auxetic structures for high stiffness applications. 

b) To determine basic mechanical properties of auxetic structures. 

c) To determine the effect of viscoelastic material on impact resistance of auxetic 

structures. 

d) To establish fabrication process of auxetic foams and methods for measuring 

important mechanical properties in low stiffness applications. 

 

 

 

1.4   Scope of the Work 

 

In general, scopes of this research are divided into two sections namely auxetic 

materials for high stiffness applications and for low stiffness applications. 

 

The scope for high stiffness applications is as follows. 
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a) To determine basic mechanical properties of the auxetic structures by using 

energy methods: Castigliano’s theorem and virtual work. Among different 

shapes of auxetic structures, re-entrant structures and starhoneycomb are 

studied. 

b) Explicit finite element code Abaqus is employed in finite element modelling 

of the auxetic structures. 

c) Mathematical formulation of auxetic structures is developed as a guideline for 

auxetic structural designers. Poisson ratios, elastic modulus, and density ratio 

of star honeycomb re-entrant structures are formulated. For calculating the 

coefficients of the formulas, finite element modelling is used.  

d) In order to increase energy absorption capacity of auxetic structures, a 

viscoelastic material is included into the auxetic structure.  The structure is 

then subjected to impact loading and dynamic analysis is carried out using 

continuum mechanics. Maxwell and Kelvin-Voigt models are used for 

modelling viscoelastic material. Numerical solution and MATLAB software 

are employed to solve nonlinear-coupled differential equations.  

e) Different 3D re-entrant structures and conventional structures are fabricated 

using 3D printing machine for assessment energy absorption of auxetic and 

conventional structures. The material is ABS. 

f) By using Abaqus software, finite element modeling of the auxetic structures 

in case of impact loading and quasi-static loading is carried out to obtain 

specific energy absorption and impact resistance of different structures.  

 

The scope for low stiffness applications is as follows. 

a) Fabrication of conventional polyurethane foam by mixing two components 

named Polyol and Isocyanate and pouring the mixture inside a mold. The 

weight ratio of the component is 60% polyol and 40% Isocyanate.  

b) Fabrication of auxetic foam specimens from the conventional foam through a 

modified fabrication process. Manufacturing parameter includes hydraulic 

pressure, heating time, and heating temperature. The effect of the 

manufacturing parameters on the auxeticity of the specimen is examined. Four 

hydraulic pressures and four heating temperatures are used to fabricate sixteen 

(16) auxetic specimens with different properties.  
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c) Determination of Poisson’s ratios of the auxetic specimens by using image 

processing technique in MATLAB software. A high speed camera model 

phantom V710 is used for capturing the photos. 

d) Determination of energy absorption capacity and impact resistance of the 

specimens by using two methods: a high speed camera and a special impactor 

system equipped with an accelerometer.  

e) Determination of energy absorption capacity of auxetic foam-filled tube and 

conventional foam-filled tube. Among the fabricated auxetic foams, the most 

higher energy absorption capacity is chosen for filling the aluminum tube. The 

auxetic foam-filled tube is subjected to uniaxial compression test to obtain 

energy absorption capacity and comparison is made with conventional foam-

filled tube.     

 

 

 

1.5   Significance of the Study 

 

Previous studies of auxetic materials and structures shows that analytical study 

and finite element work in this area is still limited and sparse, thus needing further 

development (Zi-Xing Lu et al, 2011). In this present study, a new auxetic structure 

named 3D re-entrant auxetic structure was developed. Analytical and finite element 

work has been done on the structure. In analytical work, energy methods was used 

which can be deemed as an alternative approach in auxetic material computation. The 

results provide a theoretical and imaginary basis for those interested in the research of 

auxeticity concept. Also, the analytical results can be used to design auxetic structures 

with desired mechanical properties. 

 

In experimental section of this research, a modified fabrication method for 

fabricating auxetic polymeric foams was established which can contribute to fabricate 

more uniform auxetic specimens compared to the previous published methods. Also, 

a new approach based on image processing technique was used for measuring 

Poisson’s ratio of flexible materials such as auxetic foam specimens. Since this 

method is economical and more accurate, this can be considered as one of the 

significance outcome of this research. More importantly, two new methods were 
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developed for measuring energy absorption of low stiff materials such as foams. This 

also reveals the significance of this research.  

 

 

 

1.6   Contribution of the Research 

 

The contribution of this research is highlighted as follows. 

 

a) The developed fabrication method of auxetic foams can be used in several 

industries. For instance, it can be used in automotive industry to fabricate 

auxetic foam for improving energy absorption capability of bumpers. 

b) Developed analytical formulation for the 3D auxetic structure can be used to 

design auxetic structures with controllable mechanical properties.  

c) An accurate and reliable method was established to measure Poisson’s ratio of 

foam. The method can contribute to foam-manufacturing companies to measure 

Poisson’s ratio of different types of foams. 

d) Two methods were used to measure energy absorption and impact resistance of 

foam. By changing the mass of impactor or initial height of impactor and using 

an image processing technique, it is possible to obtain true stress versus true 

strain curves for different values of strain rate. The presented experimental data 

can be used to be included in finite element modelling of the auxetic foam.   

 

 

 

1.7   Organization of the Thesis 

 

The present thesis is organized into seven chapters. The content of each 

chapter is outlined as follows. 

 

Chapter 1 presents an introduction of this thesis. It includes the research 

background, problem statement, objectives, scopes, and significance as well as 

contributions of the research.  
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Chapter 2 focuses on a literature study of auxetic materials. Previous works 

on fabrication methods of these materials is addressed. Geometrical structures for 

modelling of these materials were then reviewed. Subsequently, previous studies of 

formulation, testing, mechanical properties, and application of the mentioned 

materials were also highlighted throughout this chapter.  

 

Chapter 3describes the methodologies used in the present research. The 

methodologies include theoretical, experimental, and computational methodology. 

Also, the structure and logical flow of the research are outlined at the end of the 

chapter. 

 

Chapter 4 is devoted to analytical solution and finite element approach for 

calculation of basic mechanical properties of auxetic structures. Among different 

geometrical structures, re-entrant structure is selected because of its high potential for 

modelling auxetic materials. The mentioned structure is analysed theoretically and 

computationally in both 2D and 3D cases. In theoretical part, energy methods such as 

Castigliano’s theorem and virtual work are used. Also, Abaqus software is used for 

finite element modelling.   

 

Chapter 5 deals with application of viscoelastic materials in auxetic industry 

in order to re-increase energy absorption capability. In this chapter, re-entrant star 

honeycomb structures are used to simulate the auxetic behavior. A viscoelastic 

component was then added to the structure. Maxwell and Kelvin-Voigt models were 

employed to model the viscoelastic part. The structure is subjected to linear and 

nonlinear impacts. The response of the structure is obtained for both viscoelastic 

models and compared.   

 

Chapter 6treats the energy absorption capability of auxetic structures and 

materials. It includes two sections as the following: 

In the first section, finite element and experimental methods were used to 

obtain impact resistance and energy absorption of auxetic structures. In finite element 

modelling, several re-entrant structures with different geometrical parameters were 

modelled for calculation of impact resistance and energy absorption. Also, energy 

absorption capability of non-auxetic structures was calculated and compared with that 
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of auxetic ones. In experimental section, different structures were first produced by 

using 3D printing machine. The models were then subjected to uniaxial compression 

test. Elastic modulus and energy absorption of each model was calculated. 

 

In the second section, a modified method is employed to fabricate auxetic 

polymeric foams. In this method, polymeric foam specimens are compressed triaxially 

by hydraulic oil pressure. After compression, the specimens are put inside special 

molds and then placed inside an oven to heat up to a temperature around softening 

temperature for a special time. After that, the specimens are removed and cool down 

in room temperature. A number of auxetic specimens with different volumetric 

compression, heating time and heating temperature are fabricated by this method. To 

measure Poisson’s ratio of the specimens accurately, image processing method is 

used. Experimental work is carried out to measure the impact resistance and energy 

absorption capacity of the specimens. The effect of hydraulic pressure, and heating 

temperature on impact resistance and energy absorption capability of the auxetic 

foams is investigated.  

 

Chapter 7sums up the research project and the suggestions for future research 

works are also presented. 
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