
 

 

GAS EXPLOSION CHARACTERISTICS IN CONFINED STRAIGHT AND 90 

DEGREE BEND PIPES  

 

 

 

 

 

 

 

SITI ZUBAIDAH BINTI SULAIMAN 

 

 

 

 

 

 

 

 

 

 

 

 

 

UNIVERSITI TEKNOLOGI MALAYSIA 

 



 

 

GAS EXLOSION CHARACTERISTICS IN CONFINED STRAIGHT AND 90 

DEGREE BEND PIPES  

 

 

SITI ZUBAIDAH BINTI SULAIMAN 

 

 

A thesis submitted in fulfilment of the 

requirements for the award of the degree of  

Doctor of Philosophy (Gas Engineering) 

 

 

 

Faculty of Petroleum and Renewable Energy Engineering 

Universiti Teknologi Malaysia 

 

 

 

JULY 2015 

  



iii 

 
 

 

 

 

 

 

I dedicate this thesis to my lovely husband, son, parents, parent’s in-law and friends. 

I couldn’t have done this without you. Thank you for all your support and help 

during my PhD journey. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



iv 

 
 

ACKNOWLEDGEMENT 

 

 

 

 

In the name of Allah, The Most Gracious, The Most Merciful. Praise is to 

Allah S.W.T by whose grace and blessing I receive guidance in completing this 

study. Thanks for His greatest love and blessing. May Allah S.W.T also bless The 

Prophet Nabi Muhammad S.A.W and grant him and his family peace. 

 

 Firstly, I would like to extend my deepest gratitude and appreciation to my 

supervisor, Dr Rafiziana Md Kasmani and co-supervisor Assoc. Prof. Dr Azeman 

Mustafa for providing invaluable advice, untiring assistance, encouragement, 

motivation and support that enable me to accomplish in this doctoral research. My 

special thanks and appreciation goes to Assoc. Prof. Dr. Rahmat Mohsin, Dean of 

faculty FPREE, for giving me an opportunity to use FLACs simulator at Simulation 

Laboratory (Gasteg). Further thanks goes to Dr Tuan Amran Tuan Abdullah, Institute 

of Hydrogen Economy, UTM (IHE) for allowing me to carry out the gas 

chromatography (GC) analysis at Hydrogen and Fuel Cell Laboratory and their 

support and assistance.  

 

 My heartfelt and sincere appreciation goes to my husband, Safuan Zaki bin 

Mohd Bakri and my son, Isyhad for their love, kind assistance, constant 

encouragement, scarifies, patience and understanding throughout the time. 

 

Grateful acknowledgements are extended to the staff members of GASTEG, 

En Zaid, En Ridhuan, En Shamsul, Pn Rosnani for their sincere help and 

cooperation. Last but not least, a huge warm thanks to all my friends for their 

supports and encouragement throughout the course of the study.  



v 

 
 

ABSTRACT 

 

 

 

 

Gas explosion inside a pipe is a complex phenomenon. Extensive studies 

have been carried out to investigate factors governing to the explosion development 

i.e. the flame speed and the maximum pressure. However, most of the works are 

limited to open straight pipes. Worst, the effect of the obstructions on the explosion 

severity is still unclear. Most of the gases used in the industrial piping are highly 

combustible and has a potential to initiate detonation hazard. In this work, gas 

explosions inside closed pipes are considered. Experimental and Computational 

Fluid Dynamic (CFD) analyses using FLACs are adopted to investigate the physical 

and dynamic behaviour on gas explosion development in pipes. Hydrogen, acetylene, 

ethylene, propane and methane were used as fuels. The effect of pipe configuration 

(straight and 90 bend pipe) with different length to diameter ratio (L/D) was 

investigated. From the results, it was observed that the presence of 90 degree bend 

enhances the explosion severity by a factor of 1.03-3.58 as compared to that of the 

straight pipe. Based on the simulation analysis, the compression effect at the bending 

region and at the end of the pipe plays an important role to attenuate the burning rate, 

which resulting to a higher flame speeds and hence, increases the overpressure. 

Interestingly, a maximum overpressure of 14 barg with flame speed of 700 m/s was 

observed in the smaller pipe of L/D=40 with acetylene fuel  which indicated that the 

detonation-like event take place. The ability of the flame to quench becomes 

insignificant in a smaller pipe, promoting a strong interaction of the fast flame and 

turbulence, particularly at the bending. This phenomenon amplifies the mass burning 

rate, increases the flame speeds and leading to a higher pressure rise. From the 

results, it shows that fuel reactivity and pipe size and configuration gives a 

significant effect to the overall overpressure and flame acceleration development 

which can lead to a catastrophic explosion. 
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ABSTRAK 

 

 

 

 

 Letupan gas di dalam paip adalah satu fenomena yang kompleks. Kajian 
menyeluruh telah dijalankan bagi mengkaji faktor-faktor yang mengawal kejadian 
letupan seperti kelajuan api dan tekanan maksimum. Walau bagaimanapun, 
sebahagian besar daripada kajian-kajian yang telah dijalankan terhad kepada paip 
lurus terbuka. Malangnya, kesan halangan terhadap tahap letupan masih tidak jelas. 
Kebanyakan gas yang digunakan di dalam paip perindustrian adalah sangat mudah 
terbakar dan berpotensi untuk mengundang bahaya letupan. Dalam kajian ini, letupan 
gas di dalam paip tertutup dipertimbangkan. Ujikaji dan Pengkomputeran Dinamik 
Bendalir (CFD) digunakan untuk mengkaji tingkah laku fizikal dan dinamik kepada 
kejadian letupan gas di dalam paip. Hidrogen, asetilena, etilena, propana dan metana 
telah digunakan sebagai bahan api. Kesan konfigurasi paip (lurus dan 90 darjah 
lentur) serta perbezaan nisbah panjang kepada diameter (L/D) telah dijalankan. Hasil 
daripada keputusan, didapati bahawa kehadiran 90 darjah lentur meningkatkan tahap 
letupan dengan faktor 1.03-3.58 berbanding dengan paip lurus. Berdasarkan analisa 
simulasi, kesan mampatan di rantau lenturan dan dihujung paip memainkan peranan 
penting bagi meningkatkan kadar pembakaran, yang membawa kepada perambatan 
kelajuan api yang lebih tinggi serta meningkatkan tekanan lampau. Menariknya, 
tekanan lampau maksimum 14 barg dengan kelajuan api 700 m/s diperhatikan dalam 
paip yang lebih kecil daripada L/D=40 pada bahan api asetilena dan ini menunjukkan 
bahawa fenomena letupan telah berlaku. Keupayaan untuk pemadaman api menjadi 
tidak penting di dalam paip yang lebih kecil dan ia menggalakkan interaksi yang kuat 
di antara api dengan pergolakan terutama di bahagian lentur. Fenomena ini 
menguatkan lagi kadar pembakaran, meningkatkan kelajuan api dan kenaikan 
tekanan yang lebih tinggi. Daripada keputusan, ia menunjukkan bahawa kereaktifan 
bahan api serta saiz paip dan konfigurasi memberikan kesan yang besar kepada 
pembangunan tekanan lampau dan kelajuan api yang boleh membawa kepada 
bencana letupan. 
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CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

 

 

1.1 Background 

 

 

The potential for the gas explosion hazard in the process industry or the oil 

and gas sector is a reality which safety design must recognize and consider in a 

processing plant. If the potential hazards are not properly addressed, the result will be 

catastrophic. The result of the explosion blast can damage the structures, loss of 

properties as well as fatality or injury to personnel. In order to aid a European 

directive on equipment and protective system compliance also known as 

ATmosphères Explosives (ATEX) guideline, a safety device needs to be correctly 

placed in order to minimize the explosion severity (Oakley and Thomas, 2004). 

However, there are still some uncertainties to identify the potential location of the 

safety devices due to the lack of knowledge of where the deflagration or deflagration 

to denotation (DDT) will occur and the factors contributing to these effects. Thus, it 

is important to predict the mode of flame propagation and combustion behavior in 

order to install appropriate protective systems. 
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In a processing plant, transmission and distribution line, an offshore sector 

and mining industry, the explosion incident often takes place in a confined area 

within the vessel, pipes, channels or tunnels. Mostly, the vessel, pipe, channel or 

tunnel carries a reactive or combustible material in order to transport from one 

section to another and some, for storage purposes. If leaks are found in pipes or 

vessels, even though a very tiny pin hole leak, this constitutes a very significant 

safety hazard and possibly leads to the development of explosion. Garrison (1988) 

reported that the pipe explosion occurred in chemical or petrochemical plant, or gas 

pipeline is related to the stress cracking due to piping vibration problem. Such failure 

causes a series of explosions, and fires occurred as at the Ethylene Plant in Texas in 

June 1997 (Thomas et al., 2010). 

 

Worst, one case of the gas explosion incidents on average could happen in 

each industrialized country every day (Bjerketvedt et al., 1997). One of the most 

classic and destructive accidents in the chemical industry had happened in June 1974, 

in the Nypro plant at Flixborough. The worst industrial disaster that involved 

detonation gas or vapor totally destroyed the plant; 28 people killed and 36 others 

injured. The incident happened due to 50 tons cyclohexane in form of a vapor cloud 

released from the ruptured pipe. This cloud was ignited after 1 minute of its release 

before the disaster happened (Thomas et al., 2010).  

 

In Malaysia, fire and gas explosion accidents are not rare. In 2003, a major 

fire occurred in the exhaust system of the propane compressor gas turbine at the 

MLNG Tiga Plant in Bintulu, Sarawak leading to a temporary shutdown. The 

incident occurred due to the natural gas seeping from the ruptured pipe and mixing 

with the air inside the waste heat recovery unit (WHRU) at a very high temperature 

of 570 °C. Methane only requires a 4% volume in air to reach its lower flammability 

limit and the auto-ignition temperature of 537 °C (Ismail, 2005). Thus, the auto 

ignited methane gas leakage led to the explosion inside the WHRU. Another incident 

involved the gas explosion occurred in a chemical tanker, Bunga Alpinia owned by 

the Malaysian International Shipping Company (MISC), on 26th July 2012. The 

incident killed one crewman while four men were missing. The explosion started 

during the methanol loading from the tanker to the terminal through the pipeline. It is 

believed that due to pipe leakage and bad weather (with lightning) caused the 
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incident (Goh, 2012, Ahmad, 2012). The most recent gas explosion incident involved 

a Petronas transmission gas pipeline at northern district of Sarawak (interstate 

between Lawas town and Long Sukang) (Then, 2014). However, no fatality was 

reported but some houses and vehicles were damaged. Lacking of proper safety 

management system in a gas pipeline would lead to a catastrophic disaster as 

mentioned in the incidents above. Hence, the fundamental explosive parameters on 

gas explosion as well as the physical and dynamic mechanism during explosion 

development are vital to be understood in order to minimize the potential for 

explosion severity. 

 

 

 

 

1.2 Problem Statement 

 

 

Deflagration, a subsonic process of explosion wave propagation can occur as 

initial and transition stage in the explosion development. Although this is a 

deflagration phenomenon, the results are applicable to quite a number of subjects. 

Many pipe configurations in processing industry, gas pipeline or mining industry 

incorporate with tees, elbows and valves. So, if the fuel or flammable material inside 

the pipe at right concentrations and appropriate ignition conditions are presented, it is 

possible that initially a slow flame front propagation may cause the detonation. 

Detailed research on flame propagation and combustion behaviour along the 

pipe/channel/tube/duct is essential in order to identify the worst-case explosion 

impact and to install an appropriate protective system in place.  

 

Extensive and comprehensive studies on understanding the dynamic flame 

propagation have been carried out by the researchers, (Blanchard et al., 2011, Zhu et 

al., 2012, Zipf Jr et al., 2014). However, most of the studies focused on the flame 

propagation in obstructed pipes/tubes by using plates and orifices with the open end 

pipe. The presence of an obstacle in a pipe is favorable to randomize the flow and 
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increase the flame speed and overpressure up to 5 times higher as compared to that of 

the straight pipe/tube (Phylaktou et al., 1993). However, Blanchard et al., (2010) in 

their work depicted that the presence of 90 degree bend in closed pipe/tube could 

cause the pressure to decrease due to  the weaker flame-reflective wave interaction 

after bending  than that of the bending region. In a closed pipe/tube, the end wall is 

acted as an obstacle and has a tendency to initiate the flame perturbation and 

subsequently, affect the explosion parameter.  

 

Flame front and reflective wave interaction are a common phenomenon in a 

closed pipe. The interaction between flame and acoustic/shock wave reflected from 

the end tube may affect the flame evolution (Liberman et al.,2010). Zhu et al., (2012) 

observed that the effect of reflective acoustic wave could enhance the pressure 

evolution by a factor of 1.5 as compared to the open end pipe. The findings 

contradicted with the study done by Thomas et al., (2010). They depicted that the 

interaction between flame and reflective acoustic wave gave adverse effect towards 

the flame propagation and pressure development. (Blanchard et al., 2010). Different 

findings have been reported by Wang et al., (2012). They observed that the flame-

reflective wave interaction was stronger at the bending region. The non-agreeable 

findings could be due to the experimental method, fuel reactivity and the intensity of 

the fuel concentration.  

 

In spite of extensive research on flame propagation being done on straight 

and bending pipes, yet there are still many baffling problems particularly of the 

turbulent hot flame interaction and pressure wave (acoustic wave) effects at the end 

wall pipe. This phenomenon is not well explored, and the understanding of this 

phenomenon should be examined thoroughly, as it has been recognized as one of the 

factors contributing to the onset of detonation (Li et al., 2005). Thus, it is crucial to 

understand the mechanism causing the flame propagation and leading to detonations 

hazard in such that the effective corrective action can be inherently safer. Therefore, 

this research aims to provide an additional knowledge related to the gas explosion in 

closed straight and bend pipe; in terms of physical and dynamic mechanisms, kinetic 

mechanism  as well as contributing effects on explosion development.  
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1.3 Objectives 

 

 

The objectives of this research are:- 

 

i. to evaluate the explosion parameters such as  maximum pressure, Pmax, 

flame speed, Sf, rate of pressure rise, dP/dt and unburned gas velocities, Sg in 

both straight and 90 degree bend pipes with the influence of fuel reactivity 

and fuel concentration. 

 

ii. to quantify the effect of length and pipe diameter to physical and dynamic 

explosion mechanism in pipes.  

 

iii. to validate the experimental results with numerical analysis using a 

commercial software, Flame Acceleration Simulator, FLACs version 10.1 

developed by Gexcon AS. 

 

 

 

 

1.4 Scopes of Research 

 

 

Studies on gas explosion in closed pipe showed that the evolution of 

explosion depends on the nature of initial explosive mixtures and the geometrical 

characteristics. The initial explosive material consists of mixture composition, fuel 

reactivity, an initial temperature and pressure whereas the geometrical characteristics 

describe the dimension and shape of the pipe as well as the presence of the obstacles. 

With some limitations, the scopes of work were emphasized to assess the effects of 

pipe configuration, pipe size and fuel reactivity on the explosion severity. The scopes 

of work considered in the study are as follow:- 
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i. The explosion test was performed in a closed pipe at the ambient condition. 

The ignition source was placed at the centre of one of the blind flanges. 

 

ii. The experimental work involved in different configurations i.e. straight pipe 

and straight pipe with 90 degree bends with a radius of 0.1 m. The bend 

position was fixed at 3.0 m from the ignition point.  

 

iii. Two different diameter and length pipes were adopted in this work giving 

length-to-diameter ratio (L/D) of 40 and 51 to observe the explosion 

development on the effect of pipe diameter and length.  

 

iv. The two pipe size of 0.10 m and 0.05 m Schedule 40 were chosen to 

replicate the gas reticulation and commercial pipelines in the processing 

plant. 

 

v. Premixed hydrogen, acetylene, ethylene, propane and methane–air with 

different concentrations or equivalence ratios,  (lean, stoichiometric, rich) 

were used to compare the explosion characteristics. 

 

vi. CFD code FLACs was used to simulate the dynamics of flame propagation 

at stoichiometric concentration for each fuel. 

 

 

 

 

1.5 Limitations of the study 

 

 

The main limitations are as follows: 

 

i. Lack of facility for the vapor removal causes the water vapor not to be 

completely removed from the pipe wall. This condition can lead to the 

moisture problem inside the pipe wall. 
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ii. In FLACs software, the geometry domain was constructed based on a 

circular, square or rectangular object. Due to the limitation, 90 degree sharp 

bends were constructed (instead of curved bend) to replicate the actual pipe 

configurations. 

 

 

 

 

1.6 Significance of the study 

 

 

The study focused on quantifying the gas explosion mechanism in a closed pipe on 

different configurations and L/Ds. The influent factors governing the explosion 

development were highlighted. Moreover, the results of the study will be beneficial 

to the following: 

 

i. This research explores the complex mechanism on the flame propagation, 

particularly on the interaction of the fast flame and reflective wave, which is 

considered as one of the contributing factors to the catastrophic explosion. 

 

ii. This research will give additional fundamental data on gas explosion 

mechanism in a closed pipe for different sizes and configurations as well as 

fuel reactivity. 

 

iii. This research will provide additional information towards application on 

severity of the gas explosion where the protection system can be applied 

correctly. 

 

iv. Minimize the fire explosion in a pipe system 
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1.7 Thesis Outline 

 

 

The thesis consists of six chapters. Chapter 1 includes the introduction, 

statement of the problem, objectives, significance of the study as well as the scope 

and limitation. Chapter 2 covers related literature based on the extensive reviews and 

analysis reported by various authors. The topic covers the general overview on gas 

explosion, gas explosion parameters, laminar flame, turbulent flame and flame 

instabilities, and factor influencing the flame propagation in a closed pipe. Chapter 3 

presents the research methodologies used in the study. The schematic diagram of the 

experimental rig consisting of all equipment is discussed in this chapter. The study 

procedure highlighted includes the equipment used, data acquisition system, and data 

analysis. In Chapter 4, analysis is done on the gathered data from the experimental 

work which includes flame speeds, pressure time histories, and the rate of pressure 

rise. The data are organized in a sequential order i.e. straight to bending pipe 

explosion in order for readers to understand the physical and dynamic explosion 

mechanism and the effect of bending to the overall explosion development. The 

results discussed include the effect of fuel reactivity and concentrations to explosion 

parameters and numerical analysis on the flame structures and flame evolution. The 

influence of L/D is covered in Chapter 5 with the discussion on the quantification of 

detonation alike on the effect of pipe diameter and length. Chapter 6 offers the 

summary of findings, the conclusion, and recommendations in accordance with the 

findings for the future works. 
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