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ABSTRACT 

Series of lithium and magnesium oxide modified borate glasses of 

compositions 30Li2O – (70 – x) B2O3 – xDy2O3 where 0 ≤ x ≤ 1 mol % (LB:Dy),                

20Li2O – 10MgO – (70-x) B2O3 – xDy2O3 where 0.3 ≤ x ≤ 1 mol % (LMB:Dy) and 

20Li2O – 10MgO – (69.5 – x) B2O3 – 0.5Dy2O3 – xP2O5 where 0.5 ≤ x ≤ 2 mol % 

(LMB:Dy,P) were prepared using melt-quenching method. The present study was 

performed with the aim of improving the thermoluminescence (TL) properties of 

lithium borate glass. The prepared glass samples were characterized by X-Ray 

diffraction (XRD) and differential thermal analysis (DTA). The room temperature 

photoluminescence (PL) emission spectra of the glass series at 350 nm excitation 

consist of two peaks centered at 481 nm and 573 nm corresponding to the 

transitions (4F9/2 → 6H15/2) and (4F9/2 → 6H13/2), respectively. The TL glow curves of 

LB:Dy (0.5 mol %) revealed a single prominent peak at a maximum temperature 

(Tm) of 190 °C. An enhancement of TL response about 1.4 times was observed with 

the presence of MgO as a second modifier to lithium borate. The addition of P2O5 

as co-dopant into LMB:Dy (0.5 mol %) enhanced the TL intensity by a factor of 

2.2, with the increase of P2O5 concentration up to 1 mol % and quenching effects 

occurred beyond this concentration value. LMB:Dy,P was found to have a good 

effective atomic number (Zeff=9.05), linear dose response up to 100 Gy and showed 

a higher TL response compared to LMB:Dy and LB:Dy. The study of fading 

characteristic showed that LMB:Dy,P glass has lower fading compared to LMB:Dy 

and LB:Dy. The trap parameters, including the order of kinetics, activation energy 

(E) and frequency factor (s) for the glass samples were also determined. In 

conclusion, the prepared glasses have potential as a thermoluminescence material 

for radiation monitoring and dose measurement. 
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ABSTRAK 

Siri kaca borat litium dan magnesium oksida diubahsuai komposisinya 

30Li2O - (70 - x) B2O3 - xDy2O3 dengan 0 ≤ x ≤ 1 mol% (LB:Dy),                            

20Li2O - 10MgO - (70-x) B2O3 - xDy2O3 dengan 0.3 ≤ x ≤ 1 mol% (LMB:Dy) dan 

20Li2O - 10MgO - (69.5 - x) B2O3 - 0.5Dy2O3 - xP2O5 dengan 0.5 ≤ x ≤ 2 mol% 

(LMB:Dy,P) disediakan dengan menggunakan kaedah sepuh lindap. Kajian ini telah 

dijalankan dengan tujuan untuk meningkatkan sifat-sifat pendar cahaya terma (TL) 

kaca litium borat. Sampel kaca yang disediakan telah dipercirikan menggunakan 

analisis pembelauan sinar-X (XRD) dan analisis pembezaan terma (DTA). Pancaran 

spektrum fotoluminesens suhu bilik (PL) siri kaca pada pengujaan 350 nm terdiri 

daripada dua puncak berpusat di 481 nm dan 573 nm masing-masing sepadan 

dengan peralihan (4F9/2 → 6H15/2) dan (4F9/2 → 6H13/2 ). Lengkung berbara pendar 

cahaya LB:Dy (0.5 mol%) menunjukkan puncak tunggal pada suhu maksimum (Tm) 

190 °C. Satu peningkatan sambutan TL kira-kira 1.4 kali ganda diperhatikan 

dengan kehadiran MgO sebagai pengubahsuai kedua litium borat. Penambahan 

P2O5 sebagai ko-dopan ke dalam LMB:Dy (0.5 mol%) meningkatkan keamatan TL 

dengan faktor 2.2, dengan peningkatan kepekatan P2O5 sehingga 1 mol% dan kesan 

pelindapan berlaku selepas nilai kepekatan ini. LMB:Dy,P didapati mempunyai 

nombor atom berkesan (Zeff = 9.05), sambutan dos linear sehingga 100 Gy dan 

menunjukkan sambutan TL yang lebih tinggi berbanding dengan LMB:Dy dan 

LB:Dy. Kajian ciri kepudaran menunjukkan bahawa kaca LMB:Dy,P mempunyai 

kepudaran yang lebih rendah berbanding dengan LMB:Dy dan LB:Dy. Parameter 

perangkap, termasuk aturan kinetik, tenaga pengaktifan (E) dan faktor kekerapan (s) 

untuk sampel kaca juga telah ditentukan. Kesimpulannya, kaca-kaca yang 

disediakan ini berpotensi sebagai bahan pendar cahaya terma untuk pemantauan dan 

pengukuran dos sinaran. 
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CHAPTER 1 

INTRODUCTION 

1.1 Research Background  

Radiation is an energy that is transmitted into the form of waves or particles. 

There are two kinds of radiations: ionizing and non-ionizing. In this study, some 

ionizing radiations will be discussed such as X-rays, gamma-rays, beta-rays, and 

other forms of penetrating radiations. Ionizing radiations are found in varying 

amounts in the environment and in increased amounts in hospitals, clinics, 

laboratories, and other establishments. It is desirable to guard against the probability 

of exposing being exposed to unsafe quantities of such ionizing radiations. So that, 

ionizing radiations require to be monitored and detected because the penetration 

power for ionizing radiation can cause cancer.  

  

Ionizing radiation is involved in our lives and in many ways such as 

medical, nuclear and industrials fields. As a result of radiation applications, special 

protective considerations should be taken to reduce radiation hazards. A radiation 

dosimeter is one of the significant methods used to monitor and determine the 

absorbed dose. The most common types of radiation dosimeters that are used to 

monitor and detect ionizing radiation, e.g., ionization chambers, Geiger-Mueller 

counters, scintillation detectors, proportional counters, semiconductor diode 

detectors, thermoluminescence dosimeters (TLD) and X-ray film              

(Podgorsak, 2003).  
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Radiation dosimeters are commercially available for radiation dose 

measurement. These dosimeters are classified into two main categories: immediate 

read-out and delayed read-out. Ionization chamber dosimeters, proportional and 

Geiger Mueller counters are immediate and self-reading. However, ionization 

chamber dosimeters are small electronic dosimeters but they have some 

disadvantages like being expensive, the need for batteries and not being resistant to 

severe conditions such as very high or low temperatures and humidity. Proportional 

and Geiger Mueller counters are radiation detectors. In high doses, these counters 

are overwhelmed and cannot monitor the total dose exposure. TLD and X-ray film 

are delayed read-out and they require to be read out in laboratory for the 

determination of the dose. TLD and X-ray film can monitor as well as detect 

radiation over a very wide dose range, e.g., 0.1 mGy-10 Gy (Podgorsak, 2003). 

 

As mentioned above, TLD is considered a very common type of delayed 

read-our dosimeters. Thermoluminescence (TL) is the phenomenon of light 

emission from solid materials formerly subjected to ionizing radiation under 

circumstances of increased temperature. A thermoluminescent material or phosphor 

has the features of taking up and storing energy in traps when subjected to ionizing 

radiation. Afterward, this energy is liberated from these traps by the heating of the 

material, with the production of a luminescent glow curve. The intensity of the 

emitted light released from the TL emission in the material depends on the nature 

and the quantity of impurities (dopants); the size of component particles of material; 

the network of defects present in the material and the effect of radiation interaction 

(McKeever, 1988). 

 

TLD is generally used in personal monitoring (i.e. to monitor the radiation 

dose experienced by a person working in such a radiation environment) and in 

medical applications, e.g. radiation therapy. TLD used for the previous described 

applications is outstanding to other dosimeter systems because of its some 

properties like stability response in widely varying environmental conditions, 

reusability and the accordance of low average cost per dose measurement.  

 

A diversity of TLD such as lithium fluoride (LiF, TLD-100 and TLD-600) 

and calcium sulphate (CaSO4:Dy and CaSO4:Tm) are known  to be used in X-ray 
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and gamma ray dosimetry. However, these dosimeters are used in low-level 

radiation detection because of their low-level saturation limit. The TLD 100 

exhibits good sensitivity to radiation, but has two drawbacks: dose linearity    

(supra-linearity) and a complex annealing procedure (Furetta, 2003).  

 

Through reviewing previous studies, these afore mentioned drawbacks were 

overcome by some researchers like Schulman et al. (1967) through the use the 

borate instead of fluoride in their studies. Schulman et al. (1967) was the first 

researchers to propose the use of borate as a TLD and to overcome these problems. 

Lithium tetraborate was activated with manganese oxide and manufactured in 

crystalline form. This phosphor material has attractive properties due to its effective 

atomic number (7.3) but shows low radiation sensitivity. This drawback was 

attributed to the incompatibility between the wavelength of the emitted light       

(600 nm) and the photomultiplier tube response of the TL reader (TLD reader). 

 

An excellent work to enhance the sensitivity by using dysprosium oxide 

with a borate dosimeter was carried out by (Kazanskaya et al., 1974). The 

dysprosium oxide shifts the luminescence light to shorter wavelengths                

(475 and 580 nm) which match the photomultiplier tube (PMT) response 

(Kazanskaya et al., 1974). Anishia and colleagues (2011) studied the glow curve 

property of lithium magnesium borate doped with dysprosium (LMB:Dy). This 

dosimeter exhibited two intense peaks at 180 and 350 °C. The peak at 180 °C 

displayed an intensity three times higher than that at 350 °C. 

 

Any TLD should possess several properties such as good linearity, high 

sensitivity, low energy dependence, low fading, a simple TL glow curve, and good 

reproducibility. 

1.2 Problem Statement 

This study encompasses an investigation of the performance of three series 

of TLD detector namely LB:Dy, LMB:Dy and LMB:Dy,P. In general, this study 
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investigates these dosimeters in terms of their preparation, characterization and 

thermoluminescence properties.  

 

As mention in the research background, Schulman was the first researcher 

used the borate in the dosimeters. This dosimeter was activated by manganese, 

which shows desired properties like effective atomic number but it has low 

radiation sensitivity (Schulman et al., 1967). The sensitivity was improved using 

different transition elements and rare earth as an activator instead of manganese that 

shifted the red-light emission (600 nm) to the blue-light emission (Takenaga et al., 

1980; Kazanskaya et al., 1974). Indeed, the emitted light with 480 nm wavelength               

(red emission spectra) enhanced the sensitivity more than ten times, and overcame 

the sensitivity drawback (Kazanskaya et al., 1974).  

 

Several studies were carried out to improve the properties of borate 

dosimeters in terms of their preparation methods, modifiers, and activator 

modification (Prokic 1980; Campos and Fernandes Filho 1990; Furetta et al., 2000; 

Prokic 2000; Li et al., 2004; Liu et al., 2007; Jiang et al., 2008; Anishia et al., 2010; 

Jiang et al., 2010; Alajerami et al., 2013a). The preparation methods are divided 

into three types: the single crystal technique (Fernandes et al., 2008; Patra et al., 

2013; Ekdal et al., 2014), the polycrystalline technique (Li et al., 2005; Anishia et 

al.,  2010; Anishia et al., 2011; Annalakshmi et al., 2013; Kawashima et al., 2014), 

and the glass system technique (Rao et al., 2002; Nageswara Rao et al., 2006; 

Yoshimura et al., 2009; El-Adawy et al., 2010; Elkholy, 2010; Ayta et al., 2011; 

Alajerami et al., 2012b; Aboud et al.,  2014).  

 

Different types of alkali and alkaline earth metals were used as modifiers to 

reduce the hygroscopic properties and improve the mechanical stability. The 

addition of another modifier reagent improved the intensity, created disruption in 

the lattice, opened the network structure, weakened the bond strength, and lowered 

the viscosity of glass (Li et al., 2004; Liu et al., 2007; Jiang et al., 2008; Jiang et 

al., 2010; Ayta et al., 2011; Alajerami et al., 2013a; Aboud et al., 2014; Hashim et 

al., 2014). During the last decades, several alkaline earth metals oxides (such as 

BaO, CaO, MgO, ZnO, PbO, TeO, Bi2O, and SrO) were used as modifiers to 

improve physical, optical, and TL properties (Santiago et al., 2001; Li et al., 2004; 
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Li et al., 2008; Anishia, et al., 2010; Aboud et al., 2012; Alajerami et al., 2012a; 

Alajerami et al., 2012b; Annalakshmi et al., 2013). 

 

Various transition metals and rare earths were used as activators and co-

activators to enhance the luminescence via the electrons’ transition and to increase 

the number of trap centers (Furetta et al., 2000; Prokic, 2000; Elkholy, 2010; Jiang 

et al., 2010; Alajerami et al., 2013; Alajerami et al., 2013a; Hashim et al., 2014). 

 

One of the challenges confronting researchers is the quenching state 

resulting from the dopant activation. The co-dopant technique is an effective 

method used to overcome this drawback (Furetta et al., 2000; Furetta et al., 2001; 

Prokic 2001; Alajerami et al., 2012a; Alajerami et al., 2013a). 

 

The problem statement is illustrated in the schematic shown in Figure 1.1. 

 

Figure 1.1   Schematic of the problem statement of the current study 
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1.3 Research Objectives  

1. To determine the physical properties and characterization of the proposed 

dosimeters (LB:Dy, LMB:Dy and LMB:Dy,P) for understanding their 

structure 

 

2. To examine the photoluminescence properties of the proposed dosimeters 

that contributes to the TL signals  

 

3. To investigate the TL features such as the TL glow-curve, annealing 

procedure, reproducibility, fading, photon dose response, minimum 

detectable dose, TL sensitivity, effective atomic number, energy 

dependence, and kinetic parameters of the proposed dosimeters in order to 

evaluate their dosimetric properties.  

 

4. To explore the role of magnesium oxide (MgO) as a second modifier and 

phosphorous oxide (P2O5) as a co-dopant in the TL properties of the 

proposed dosimeters which can be useful for their applications in radiation 

dosimetry 

1.4 Scope of the Study 

Lithium borates are attractive dosimeter hosts due to their tissue equivalent, 

good linearity, high sensitivity to external dose, low cost, and easy preparation. In 

this study, the melt-quench technique is exploited to prepare three series of glass 

dosimeters (LB:Dy, LMB:Dy and LMB:Dy,P). The amorphous nature of the 

proposed dosimeters are examined by X-ray diffractometer. The stability of the 

proposed dosimeters are checked by DTA. Physical properties such as density and 

molar volume; ion concentration (N); Polaron radius (rp); internuclear distance (ri) 

and field strength (F) are calculated. Photoluminescence of prepared glasses is 

measured. In addition, the dosimetric properties of the proposed dosimeters are 

studied. 
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1.5 Significance of the Study 

The development of new glass dosimeters with their attractive dosimetric 

properties are of a great interest at the present time in radiation dosimeters. Such 

dosimeters can be provided by applying the rare earth (RE) ions in crystals and 

glasses. Among the REs, the Dy2O3
 ion presents good dopants with borate in TL 

field. The simple glow curve of lithium borate glass system doped with Dy2O3 

(LB:Dy) is the key to improve the dosimetric properties when compared to other 

dosimeters. In the current study, the introduction of MgO as second modifier and 

P2O5 as co-dopant in prepared dosimeters is the main interest to enhance its TL 

intensity and reduce the hygroscopic. This study provides great knowledge on the 

roles of the second modifier and the co-dopant on dosimetric properties of LB:Dy. 

The ideal glass dosimeters (LMB:Dy,P) can be used radiation dosimetry.  

1.6 Thesis Outline 

This thesis contains five chapters. A brief outline of each chapter is given 

below. Chapter 1 includes a research background. In addition, the problem 

statement and objectives of the study are presented 

 

Chapter 2 presents the literature review. This chapter is divided into two 

parts. The first part includes the scientific data (i.e. TL materials, glass formation, 

borate glass, materials used in this study, luminescence phenomena, and theory of 

TL). Previous studies and related work are discussed in the second part of this 

chapter.   

 

Chapter 3 provides a brief demonstration of experimental techniques utilized 

in the current study. This demonstration includes the preparation methods, the 

optimization process for current samples, and the instruments. These instruments 

are split into three parts: the characterization includes X-Ray Diffraction (XRD) and 

Differential Thermal Analysis (DTA), the photoluminescence (PL) and the TL 

study includes annealing furnaces, irradiation sources, and TLD readers. 



8 

 

 

Chapter 4 presents the results of the experiments described in Chapter 3. 

These results include the outputs from the characterization analysis and PL 

properties as well as the TL measurements. 

  

Finally, Chapter 5 is devoted to the conclusions drawn from this study and 

recommendations for future studies. 
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